4,371 research outputs found

    Attention Guiding Techniques using Peripheral Vision and Eye Tracking for Feedback in Augmented-Reality-based Assistance Systems

    Get PDF
    Renner P, Pfeiffer T. Attention Guiding Techniques using Peripheral Vision and Eye Tracking for Feedback in Augmented-Reality-based Assistance Systems. In: 2017 IEEE Symposium on 3D User Interfaces (3DUI). Los Angeles, CA: IEEE; 2017: 186-194.A limiting factor of current smart glasses-based augmented reality (AR) systems is their small field of view. AR assistance systems designed for tasks such as order picking or manual assembly are supposed to guide the visual attention of the user towards the item that is relevant next. This is a challenging task, as the user may initially be in an arbitrary position and orientation relative to the target. As a result of the small field of view, in most cases the target will initially not be covered by the AR display, even if it is visible to the user. This raises the question of how to design attention guiding for such ”off-screen gaze” conditions. The central idea put forward in this paper is to display cues for attention guidance in a way that they can still be followed using peripheral vision. While the eyes’ focus point is beyond the AR display, certain visual cues presented on the display are still detectable by the human. In addition to that, guidance methods that are adaptive to the eye movements of the user are introduced and evaluated. In the frame of a research project on smart glasses-based assistance systems for a manual assembly station, several attention guiding techniques with and without eye tracking have been designed, implemented and tested. As evaluation method simulated AR in a virtual reality HMD setup was used, which supports a repeatable and highly-controlled experimental design

    real time assistance to manual assembly through depth camera and visual feedback

    Get PDF
    Abstract The current fourth industrial revolution significantly impacts on production processes. The personalized production paradigm enables customers to order unique products. The operators assemble an enormous component variety adapting their process from product to product with limited learning opportunities. Digital technologies are increasingly adopted in production processes to improve performance and quality. Considering this framework, this research proposes a hardware/software architecture to assist in real-time operators involved in manual assembly processes. A depth camera captures human motions in relation with the workstation environment whereas a visual feedback guides the operator through consecutive assembly tasks. An industrial case study validates the architecture

    Opportunities for using eye tracking technology in manufacturing and logistics: Systematic literature review and research agenda

    Get PDF
    Workers play essential roles in manufacturing and logistics. Releasing workers from routine tasks and enabling them to focus on creative, value-adding activities can enhance their performance and wellbeing, and it is also key to the successful implementation of Industry 4.0. One technology that can help identify patterns of worker-system interaction is Eye Tracking (ET), which is a non-intrusive technology for measuring human eye movements. ET can provide moment-by-moment insights into the cognitive state of the subject during task execution, which can improve our understanding of how humans behave and make decisions within complex systems. It also enables explorations of the subject’s interaction mode with the working environment. Earlier research has investigated the use of ET in manufacturing and logistics, but the literature is fragmented and has not yet been discussed in a literature review yet. This article therefore conducts a systematic literature review to explore the applications of ET, summarise its benefits, and outline future research opportunities of using ET in manufacturing and logistics. We first propose a conceptual framework to guide our study and then conduct a systematic literature search in scholarly databases, obtaining 71 relevant papers. Building on the proposed framework, we systematically review the use of ET and categorize the identified papers according to their application in manufacturing (product development, production, quality inspection) and logistics. Our results reveal that ET has several use cases in the manufacturing sector, but that its application in logistics has not been studied extensively so far. We summarize the benefits of using ET in terms of process performance, human performance, and work environment and safety, and also discuss the methodological characteristics of the ET literature as well as typical ET measures used. We conclude by illustrating future avenues for ET research in manufacturing and logistics

    A Path-based Attention Guiding Technique for Assembly Environments with Target Occlusions

    Get PDF
    Renner P, Blattgerste J, Pfeiffer T. A Path-based Attention Guiding Technique for Assembly Environments with Target Occlusions. In: IEEE Virtual Reality 2018. IEEE; 2018

    Overcoming the limitations of commodity augmented reality head mounted displays for use in product assembly

    Get PDF
    Numerous studies have shown the effectiveness of utilizing Augmented Reality (AR) to deliver work instructions for complex assemblies. Traditionally, this research has been performed using hand-held displays, such as smartphones and tablets, or custom-built Head Mounted Displays (HMDs). AR HMDs have been shown to be especially effective for assembly tasks as they allow the user to remain hands-free while receiving work instructions. Furthermore, in recent years a wave of commodity AR HMDs have come to market including the Microsoft HoloLens, Magic Leap One, Meta 2, and DAQRI Smart Glasses. These devices present a unique opportunity for delivering assembly instructions due to their relatively low cost and accessibility compared to custom built AR HMD solutions of the past. Despite these benefits, the technology behind these HMDs still contains many limitations including input, user interface, spatial registration, navigation and occlusion. To accurately deliver work instructions for complex assemblies, the hardware limitations of these commodity AR HMDs must be overcome. For this research, an AR assembly application was developed for the Microsoft HoloLens using methods specifically designed to address the aforementioned issues. Input and user interface methods were implemented and analyzed to maximize the usability of the application. An intuitive navigation system was developed to guide users through a large training environment, leading them to the current point of interest. The native tracking system of the HoloLens was augmented with image target tracking capabilities to stabilize virtual content, enhance accuracy, and account for spatial drift. This fusion of marker-based and marker-less tracking techniques provides a novel approach to display robust AR assembly instructions on a commodity AR HMD. Furthermore, utilizing this novel spatial registration approach, the position of real-world objects was accurately registered to properly occlude virtual work instructions. To render the desired effect, specialized computer graphics methods and custom shaders were developed and implemented for an AR assembly application. After developing novel methods to display work instructions on a commodity AR HMD, it was necessary to validate that these work instructions were being accurately delivered. Utilizing the sensors on the HoloLens, data was collected during the assembly process regarding head position, orientation, assembly step times, and an estimation of spatial drift. With the addition of wearable physiological sensor data, this data was fused together in a visualization application to validate instructions were properly delivered and provide an opportunity for an analysist to examine trends within an assembly session. Additionally, the spatial drift data was then analyzed to gain a better understanding of how spatial drift accumulates over time and ensure that the spatial registration mitigation techniques was effective. Academic research has shown that AR may substantial reduce cost for assembly operations through a reduction in errors, time, and cognitive workload. This research provides novel solutions to overcome the limitations of commodity AR HMDs and validate their use for product assembly. Furthermore, the research provided in this thesis demonstrates the potential of commodity AR HMDs and how their limitations can be mitigated for use in product assembly tasks

    Human factors in instructional augmented reality for intravehicular spaceflight activities and How gravity influences the setup of interfaces operated by direct object selection

    Get PDF
    In human spaceflight, advanced user interfaces are becoming an interesting mean to facilitate human-machine interaction, enhancing and guaranteeing the sequences of intravehicular space operations. The efforts made to ease such operations have shown strong interests in novel human-computer interaction like Augmented Reality (AR). The work presented in this thesis is directed towards a user-driven design for AR-assisted space operations, iteratively solving issues arisen from the problem space, which also includes the consideration of the effect of altered gravity on handling such interfaces.Auch in der bemannten Raumfahrt steigt das Interesse an neuartigen Benutzerschnittstellen, um nicht nur die Mensch-Maschine-Interaktion effektiver zu gestalten, sondern auch um einen korrekten Arbeitsablauf sicherzustellen. In der Vergangenheit wurden wiederholt Anstrengungen unternommen, Innenbordarbeiten mit Hilfe von Augmented Reality (AR) zu erleichtern. Diese Arbeit konzentriert sich auf einen nutzerorientierten AR-Ansatz, welcher zum Ziel hat, die Probleme schrittweise in einem iterativen Designprozess zu lösen. Dies erfordert auch die BerĂŒcksichtigung verĂ€nderter Schwerkraftbedingungen

    An evaluation of the Microsoft HoloLens for a manufacturing-guided assembly task

    Get PDF
    Many studies have confirmed the benefits of using Augmented Reality (AR) work instructions over traditional digital or paper instructions, but few have compared the effects of different AR hardware for complex assembly tasks. For this research, previously published data using Desktop Model Based Instructions (MBI), Tablet MBI, and Tablet AR instructions were compared to new assembly data collected using AR instructions on the Microsoft HoloLens Head Mounted Display (HMD). Participants completed a mock wing assembly task, and measures like completion time, error count, Net Promoter Score, and qualitative feedback were recorded. The HoloLens condition yielded faster completion times than all other conditions. HoloLens users also had lower error rates than those who used the non-AR conditions. Despite the performance benefits of the HoloLens AR instructions, users of this condition reported lower net promoter scores than users of the Tablet AR instructions. The qualitative data showed that some users thought the HoloLens device was uncomfortable and that the tracking was not always exact. Although the user feedback favored the Tablet AR condition, the HoloLens condition resulted in significantly faster assembly times. As a result, it is recommended to use the HoloLens for complex guided assembly instructions with minor changes, such as allowing the user to toggle the AR instructions on and off at will. The results of this paper can help manufacturing stakeholders better understand the benefits of different AR technology for manual assembly tasks

    Augmented reality in support of intelligent manufacturing – A systematic literature review

    Get PDF
    Industry increasingly moves towards digitally enabled ‘smart factories’ that utilise the internet of things (IoT) to realise intelligent manufacturing concepts like predictive maintenance or extensive machine to machine communication. A core technology to facilitate human integration in such a system is augmented reality (AR), which provides people with an interface to interact with the digital world of a smart factory. While AR is not ready yet for industrial deployment in some areas, it is already used in others. To provide an overview of research activities concerning AR in certain shop floor operations, a total of 96 relevant papers from 2011 to 2018 are reviewed. This paper presents the state of the art, the current challenges, and future directions of manufacturing related AR research through a systematic literature review and a citation network analysis. The results of this review indicate that the context of research concerning AR gets increasingly broader, especially by addressing challenges when implementing AR solutions.No funding was received

    Developing Design Guidelines For Augmented Reality Applications As Operating Assistance For Manufacturing Machines

    Get PDF
    In the manufacturing industry, production costs, time, and quality are directly linked to the effectiveness and efficiency of human-machine interaction. The advanced digitalization of machinery continues to increase the number of interaction elements provided by a human-machine interface. At the same time, a growing shortage of skilled workers intensifies the need to support users in carrying out their work steps with machinery. Augmented Reality (AR) technology has demonstrated high potential for enhancing process efficiency and effectiveness. There are various domains, such as assembly applications or service tasks, in which AR applications provide users with supporting information during the execution of their tasks. In the field of manufacturing machinery, there is a lack of approaches addressing the development of AR applications which assist and guide the operator throughout their tasks. Therefore, this paper presents a set of guidelines for developing assistance AR applications used in the operation of manufacturing machines. This set of guidelines was developed based on scientific literature and challenges in the field of manufacturing machinery. Finally, the guidelines were applied based on an exemplary use case comprising the development of an AR assistance application in order to validate the applicability and practicability of the guidelines. The validation also included user testing of the application
    • 

    corecore