32,879 research outputs found

    Task scheduling techniques for asymmetric multi-core systems

    Get PDF
    As performance and energy efficiency have become the main challenges for next-generation high-performance computing, asymmetric multi-core architectures can provide solutions to tackle these issues. Parallel programming models need to be able to suit the needs of such systems and keep on increasing the application’s portability and efficiency. This paper proposes two task scheduling approaches that target asymmetric systems. These dynamic scheduling policies reduce total execution time either by detecting the longest or the critical path of the dynamic task dependency graph of the application, or by finding the earliest executor of a task. They use dynamic scheduling and information discoverable during execution, fact that makes them implementable and functional without the need of off-line profiling. In our evaluation we compare these scheduling approaches with two existing state-of the art heterogeneous schedulers and we track their improvement over a FIFO baseline scheduler. We show that the heterogeneous schedulers improve the baseline by up to 1.45 in a real 8-core asymmetric system and up to 2.1 in a simulated 32-core asymmetric chip.This work has been supported by the Spanish Government (SEV2015-0493), by the Spanish Ministry of Science and Innovation (contract TIN2015-65316-P), by Generalitat de Catalunya (contracts 2014-SGR-1051 and 2014-SGR-1272), by the RoMoL ERC Advanced Grant (GA 321253) and the European HiPEAC Network of Excellence. The Mont-Blanc project receives funding from the EU’s Seventh Framework Programme (FP7/2007-2013) under grant agreement no 610402 and from the EU’s H2020 Framework Programme (H2020/2014-2020) under grant agreement no 671697. M. Moretó has been partially supported by the Ministry of Economy and Competitiveness under Juan de la Cierva postdoctoral fellowship number JCI-2012-15047. M. Casas is supported by the Secretary for Universities and Research of the Ministry of Economy and Knowledge of the Government of Catalonia and the Cofund programme of the Marie Curie Actions of the 7th R&D Framework Programme of the European Union (Contract 2013 BP B 00243).Peer ReviewedPostprint (author's final draft

    Optimal railway infrastructure maintenance and repair policies to manage risk under uncertainty with adaptive control

    Get PDF
    The aim of this paper is to apply two adaptive control formulations under uncertainty, say open-loop and closed-loop, to the process of developing maintenance and repair policies for railway infrastructures. To establish the optimal maintenance and repair policies for railway lines, we use a previous design of risk model based on two factors: the criticality and the deterioration ratios of the facilities. Thus, our theory benefits from the Reliability Centered Management methodology application, but it also explicitly models uncertainty in characterizing a facility deterioration rate to decide the optimal policy to maintain the railway infrastructures. This may be the major contribution of this work. To verify the models presented, a computation study has been developed and tested for a real scenario: the railway line Villalba-Cercedilla in Madrid (Spain). Our results demonstrate again that applying any adaptive formulation, the cost of the railway lines maintenance shown is decreased. Moreover applying a Closed Loop Formulation the cost associated to the risk takes smaller values (40% less cost for the same risk than the deterministic approach), but with an Open Loop formulation the generated risk in the railway line is also smaller

    Architecture design for distributed mixed-criticality systems based on multi-core chips

    Get PDF
    In vielen Anwendungsbereichen wie beispielsweise der Avionik, industriellen Kontrollsystemen und dem Gesundheitswesen gewinnen sogenannte Mixed-Criticality Systeme, in denen Anwendungen mit unterschiedlicher Wichtigkeit sowie unterschiedlichen sicherheitskritischen Anforderungen auf einer gemeinsamen Rechenplattform implementiert werden, immer grĂ¶ĂŸere Bedeutung. Die Hauptanforderung an solche Systeme ist ein modularer Sicherheitsnachweis, der eine unabhĂ€ngige Zertifizierung von Anwendungen anhand der zugehörigen Sicherheitsebenen unterstĂŒtzt. Um dieses Ziel zu erreichen fehlt im Stand der Technik jedoch eine Mixed-Criticality Architektur fĂŒr vernetzte Multi-Core-Chips mit EchtzeitunterstĂŒtzung, Fehlereingrenzung und Sicherheit. Die Dissertation befasst sich mit dieser Problematik und bietet einen Lösungsansatz auf Basis von Architekturmodellen, selektiver Fehlertoleranz, Scheduling-Techniken und einer Simulationsarchitektur. Die Basis dieser Integration sind Mechanismen fĂŒr die zeitliche und rĂ€umliche Partitionierung, die die Sicherheit der Anwendungen mit verschiedenen KritikalitĂ€tsstufen sicherstellen, so dass keine gegenseitige Beeinflussung entsteht. Die zeitliche Partitionierung wird ĂŒber den Einsatz von autonomer zeitlicher Kontrolle basierend auf einem zeitgesteuerten Schedule mit definierten Zeitpunkten aller KommunikationsaktivitĂ€ten in Bezug auf eine globale Zeitbasis realisiert. Diese Zeitpunkte der periodischen Nachrichten verbessern die Vorhersehbarkeit und ermöglichen eine rigorose Fehlererkennung und Fehleranalyse. Zeitgesteuerte Schedules erleichtern zudem die Beherrschung der KomplexitĂ€t von Fehlertoleranzmechanismen und die Erstellung analytischer ZuverlĂ€ssigkeitsmodelle. Ferner wird eine Partitionierung der Netzwerkbandbreite verwendet um verschiedene Zeitmodelle (z.B. periodisch, sporadisch und aperiodisch) zu kombinieren. Ein weiterer Beitrag dieser Arbeit ist die selektive Fehlertoleranz fĂŒr Mixed-Criticality Systeme. Ein Hauptmerkmal der Fehlertoleranz in Kommunikationsprotokollen wie Time-Triggered Ethernet (TTEthernet) und ARINC 664 ist die Bereitstellung redundanter KommunikationskanĂ€le zwischen Netzwerkknoten ĂŒber mehrere unabhĂ€ngige Netzwerkkomponenten. Die DatenflĂŒsse zwischen den Netzwerkknoten sind gegen Fehler der verschiedenen Netzwerkkomponenten, wie beispielsweise Links oder Switches, geschĂŒtzt. Der Hauptnachteil replizierter Netzwerke in großen Systemen sind jedoch die zusĂ€tzlichen Kosten, insbesondere wenn die Netzwerke ihre Dienste fĂŒr mehrere Subsysteme, nĂ€mlich nicht-sicherheitskritische und kritische Subsysteme, bereitstellen. Diese Arbeit stellt eine neuartige Systemarchitektur vor, welche die Redundanz in Mixed-Criticality Systemen basierend auf einer Ring-Topologie unterstĂŒtzt. Diese Architektur erfĂŒllt die Anforderung der sicherheitskritischen Systeme und ist gleichzeitig auch fĂŒr nicht-sicherheitskritische Systeme wirtschaftlich einsetzbar. Das Hauptmerkmal der vorgeschlagenen Architektur ist die Fehlereingrenzung, so dass Fehler keinen Einfluss auf Subsysteme mit höherer KritikalitĂ€t aufweisen. Außerdem garantiert die vorgeschlagene Architektur die Bereitstellung von Nachrichten mit begrenzten Verzögerungen und begrenztem Jitter. Basierend auf den in dieser Arbeit vorgestellten ArchitekturansĂ€tzen werden effiziente Scheduling-Algorithmen fĂŒr große Mixed-Criticality Systeme mit verschiedenen Zeitmodellen eingefĂŒhrt. Die Architekturmodelle werden auch mit Hilfe eines Simulations-Frameworks evaluiert, welches hierarchische Mixed-Criticality Systeme mit vernetzten Multi-Core-Chips unterstĂŒtzt. Ferner wird dieses Framework verwendet um die vorgeschlagenen Scheduling-Algorithmen zu verifizieren. Diese Evaluation wird zudem um analytische Modelle der End-to-End-Kommunikation fĂŒr verschiedene KritikalitĂ€tsstufen ergĂ€nzt.In many domains such as avionics, industrial control, or healthcare there is an increasing trend to mixed-criticality systems, where applications of different importance and criticality are implemented on a shared computing platform. The major requirement of such a system is a modular safety case where each application is certified to the respective assurance level. A mixed-criticality architecture for networked multi-core chips with real-time support, fault isolation and security is missing in the state-of-the-art. In this dissertation, we advance the state-of-the-art by providing solutions to research gaps towards such an architecture for networked multi-core chips, which include the architecture models, selective fault-tolerance concepts, scheduling techniques, and a simulation framework. The foundations for this integration are mechanisms for temporal and spatial partitioning, to ensure that applications of different criticality levels are protected so they cannot influence each other. We establish temporal partitioning using autonomous temporal control based on a time-triggered schedule containing the instants of all message exchanges with respect to a global time base. The predetermined instants of the periodic messages improve predictability and enable rigorous error detection and fault isolation. The time-triggered schedules facilitate managing the complexity of fault-tolerance and analytical dependability models. In addition, we use network bandwidth partitioning to support different timing models (i.e., periodic, sporadic and aperiodic traffic). We introduce an architectural model for mixed-criticality systems based on networked multi-core chips, which describes both the physical system structure as well as a logical system structure of the application. Another contribution of the dissertation is a selective fault-tolerance concept for mixed-criticality systems. One of the key features of existing fault-tolerant communication protocols such as ac{TTEthernet} and ARINC 664 is providing redundant channels for the communication between nodes over multiple independent network components. The data flows between the nodes are protected against the failure of any network component such as a link or a switch. However, the main drawback of replicated networks in large systems is the extra cost, in particular, if the networks provide their services for non safety-critical subsystems alongside with the critical subsystems. We introduce a novel system architecture supporting redundancy in mixed-criticality systems based on a ring topology, which fulfills the requirements of high-critical systems while also being economically suitable for low-critical systems. The main characteristic of the proposed architecture is fault isolation so that a failure of a low-critical subsystem cannot reach subsystems of higher criticality. Moreover, the proposed architecture supports the delivery of messages with bounded delays and bounded jitter. Based on these contributions, we address the scheduling algorithms for large scale mixed-criticality systems where different criticality levels of the subsystem as well as high numbers of nodes and applications lead to a steady increase of the complexity of scheduling the events associated with such systems. The architecture models have also been evaluated using a simulation framework. This simulation framework is established for hierarchical mixed-criticality systems based on networked multi-core chips. Additionally, this framework is used to verify the proposed scheduling algorithms. This evaluation is accompanied by analytical models of end-to-end communication for different criticality levels

    Fractals in the Nervous System: conceptual Implications for Theoretical Neuroscience

    Get PDF
    This essay is presented with two principal objectives in mind: first, to document the prevalence of fractals at all levels of the nervous system, giving credence to the notion of their functional relevance; and second, to draw attention to the as yet still unresolved issues of the detailed relationships among power law scaling, self-similarity, and self-organized criticality. As regards criticality, I will document that it has become a pivotal reference point in Neurodynamics. Furthermore, I will emphasize the not yet fully appreciated significance of allometric control processes. For dynamic fractals, I will assemble reasons for attributing to them the capacity to adapt task execution to contextual changes across a range of scales. The final Section consists of general reflections on the implications of the reviewed data, and identifies what appear to be issues of fundamental importance for future research in the rapidly evolving topic of this review

    A Process Modelling Success Model: Insights from a Case Study

    Get PDF
    Contemporary concepts such as Business Pro cess Re-engineering and Process Innovation emphasize the importance of process-oriented management concepts as a businesses paradigm. Large scaled multimillion-dollar implementations of Enterpri se Systems explicitly and implicitly state the importance of process modeling and its contribution to the success of these project. While there has been much research and publications on alterna tive process modeling techniques and tools, little attention has focused on post-hoc evaluation of actual process modeling activities or on deriving comprehensive guidelines on ‘how-to’ conduct process modeling effectively. This study aims at addressing this gap. A comprehensive a priori pro cess modeling success model has been derived and this paper reports on the results obtained from a detailed case study at a leading Australian logistics service provider, which was conducted with the aim of testing and re-specifying the model
    • 

    corecore