16,255 research outputs found

    Cogeneration Technology Alternatives Study (CTAS). Volume 5: Cogeneration systems results

    Get PDF
    The use of various advanced energy conversion systems is examined and compared with each other and with current technology systems for savings in fuel energy, costs, and emissions in individual plants and on a national level. About fifty industrial processes from the largest energy consuming sectors were used as a basis for matching a similar number of energy conversion systems that are considered as candidate which can be made available by the 1985 to 2000 time period. The sectors considered included food, textiles, lumber, paper, chemicals, petroleum, glass, and primary metals. The energy conversion systems included steam and gas turbines, diesels, thermionics, stirling, closed cycle and steam injected gas turbines, and fuel cells. Fuels considered were coal, both coal and petroleum based residual and distillate liquid fuels, and low Btu gas obtained through the on site gasification of coal. The methodology and results of matching the cogeneration energy conversion systems to approximately 50 industrial processes are described. Results include fuel energy saved, levelized annual energy cost saved, return on investment, and operational factors relative to the noncogeneration base cases

    California Methanol Assessment; Volume II, Technical Report

    Get PDF
    A joint effort by the Jet Propulsion Laboratory and the California Institute of Technology Division of Chemistry and Chemical Engineering has brought together sponsors from both the public and private sectors for an analysis of the prospects for methanol use as a fuel in California, primarily for the transportation and stationary application sectors. Increasing optimism in 1982 for a slower rise in oil prices and a more realistic understanding of the costs of methanol production have had a negative effect on methanol viability in the near term (before the year 2000). Methanol was determined to have some promise in the transportation sector, but is not forecasted for large-scale use until beyond the year 2000. Similarly, while alternative use of methanol can have a positive effect on air quality (reducing NOx, SOx, and other emissions), a best case estimate is for less than 4% reduction in peak ozone by 2000 at realistic neat methanol vehicle adoption rates. Methanol is not likely to be a viable fuel in the stationary application sector because it cannot compete economically with conventional fuels except in very limited cases. On the production end, it was determined that methanol produced from natural gas will continue to dominate supply options through the year 2000, and the present and planned industry capacity is somewhat in excess of all projected needs. Nonsubsidized coal-based methanol cannot compete with conventional feedstocks using current technology, but coal-based methanol has promise in the long term (after the year 2000), providing that industry is willing to take the technical and market risks and that government agencies will help facilitate the environment for methanol. Given that the prospects for viable major markets (stationary applications and neat fuel in passenger cars) are unlikely in the 1980s and early 1990s, the next steps for methanol are in further experimentation and research of production and utilization technologies, expanded use as an octane enhancer, and selected fleet implementation. In the view of the study, it is not advantageous at this time to establish policies within California that attempt to expand methanol use rapidly as a neat fuel for passenger cars or to induce electric utility use of methanol on a widespread basis

    Application of Building Typologies for Modelling the Energy Balance of the Residential Building Stock

    Get PDF
    Building typologies can serve as a basis for analysing the national housing sector. During the TABULA project which was introducing or further developing building typologies in thirteen EU countries, six of the European partners have carried out model calculations which aim at imaging the energy consumption and estimating the energy saving potentials of their national residential building stocks (IWU / Germany, NOA / Greece, POLITO / Italy, VITO / Belgium, STU-K / Czech Republic, SBi / Denmark). The results show that the model calculations can provide plausible projections of the energy consumption of the national residential buildings stock. The fit of model calculations and national energy statistics is satisfactory, deviations can often be explained and corrected by adapting standard boundary conditions of the applied calculation models to more realistic values. In general, the analysis shows that building typologies can be a helpful tool for modelling the energy consumption of national building stocks and for carrying out scenario analysis beyond the TABULA project. The consideration of a set of representative buildings makes it possible to have a detailed view on various packages of measures for the complete buildings stock or for its sub-categories. The effects of different insulation measures at the respective construction elements as well as different heat supply measures including renewable energies can be considered in detail. The quality of future model calculations will depend very much on the availability of statistical data. For reliable scenario analysis information is necessary about the current state of the building stock (How many buildings and heating systems have been refurbished until now?) and about the current trends (How many buildings and heating systems are being refurbished every year?). The availability and regular update of the relevant statistical data will be an important basis for the development and evaluation of national climate protection strategies in the building secto

    Applications of aerospace technology in the electric power industry

    Get PDF
    An overview of the electric power industry, selected NASA contributions to progress in the industry, linkages affecting the transfer and diffusion of technology, and, finally, a perspective on technology transfer issues are presented

    Lessons from the submission and approval process of energy-efficiency CDM baseline and monitoring methodologies

    Get PDF
    Energy efficiency is a CDM project type that suffers from high methodology rejection rates. 43 baseline and monitoring methodologies for CDM energy efficiency projects are analyzed with respect to reasons for approval / rejection by the CDM Executive Board. Most methodologies have been rejected because they did not comply with implicit quality standards regarding presentation and conservativeness. Also, tools to select the baseline scenario and to prove additionality were frequently lacking. If the level or the quality of production in the baseline or the project scenario changes, a simple before-after-comparison is not valid. Black box models are not accepted and methodologies should be sufficiently differentiated to account for specific (technical) circumstances. The remaining lifetime of equipment has to be taken into account. Often, elements of small-scale methodologies have been retained in approvals of large-scale methodologies. --

    Thermal improvement of existing dwellings

    Get PDF
    This report describes the outcome from a study to determine the impact of energy efficiency measures applied to the Scottish housing stock. Assuming conventional property type classifications, the present performance of the housing stock is quantified using available survey data. Building simulation techniques were then employed to generate a Web-based, decision-support tool for use by policy makers to estimate the impact of deploying energy efficiency measures in different combinations over time. The process of tool formulation is described and an example is given of tool use to identify best-value retrofitting options while taking factors such as future climate change and improved standard of living into account

    Desalination Processesā€™ Efficiency and Future Roadmap

    Get PDF
    For future sustainable seawater desalination, the importance of achieving better energy efficiency of the existing 19,500 commercial-scale desalination plants cannot be over emphasized. The major concern of the desalination industry is the inadequate approach to energy efficiency evaluation of diverse seawater desalination processes by omitting the grade of energy supplied. These conventional approaches would suffice if the efficacy comparison were to be conducted for the same energy input processes. The misconception of considering all derived energies as equivalent in the desalination industry has severe economic and environmental consequences. In the realms of the energy and desalination system planners, serious judgmental errors in the process selection of green installations are made unconsciously as the efficacy data are either flawed or inaccurate. Inferior efficacy technologies' implementation decisions were observed in many water-stressed countries that can burden a country's economy immediately with higher unit energy cost as well as cause more undesirable environmental effects on the surroundings. In this article, a standard primary energy-based thermodynamic framework is presented that addresses energy efficacy fairly and accurately. It shows clearly that a thermally driven process consumes 2.5-3% of standard primary energy (SPE) when combined with power plants. A standard universal performance ratio-based evaluation method has been proposed that showed all desalination processes performance varies from 10-14% of the thermodynamic limit. To achieve 2030 sustainability goals, innovative processes are required to meet 25-30% of the thermodynamic limit

    Desalination Processesā€™ Efficiency and Future Roadmap

    Get PDF
    For future sustainable seawater desalination, the importance of achieving better energy efficiency of the existing 19,500 commercial-scale desalination plants cannot be over emphasized. The major concern of the desalination industry is the inadequate approach to energy efficiency evaluation of diverse seawater desalination processes by omitting the grade of energy supplied. These conventional approaches would suffice if the efficacy comparison were to be conducted for the same energy input processes. The misconception of considering all derived energies as equivalent in the desalination industry has severe economic and environmental consequences. In the realms of the energy and desalination system planners, serious judgmental errors in the process selection of green installations are made unconsciously as the efficacy data are either flawed or inaccurate. Inferior efficacy technologies' implementation decisions were observed in many water-stressed countries that can burden a country's economy immediately with higher unit energy cost as well as cause more undesirable environmental effects on the surroundings. In this article, a standard primary energy-based thermodynamic framework is presented that addresses energy efficacy fairly and accurately. It shows clearly that a thermally driven process consumes 2.5-3% of standard primary energy (SPE) when combined with power plants. A standard universal performance ratio-based evaluation method has been proposed that showed all desalination processes performance varies from 10-14% of the thermodynamic limit. To achieve 2030 sustainability goals, innovative processes are required to meet 25-30% of the thermodynamic limit
    • ā€¦
    corecore