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FOREWORD

The Cogeneration Technology Alternatives Study (CTAS) was performed

by the National Aeronautics and Space Administration, Lewis Research

Center, for the Department of Energy, Division of Fossil Fuel Utili-

zation. CTAS was aired at providing inforriation which will assist the

Department of Energy in establishing research and development funding

priorities and emphasis in the area of advanced energy conversion system

technology for advanced industrial cogeneration applications. CTAS

included two Department of Energy-sponsored/NASA-contracted studies con-

ducted in parallel by industrial teams along with analyses and evaluations

by the National Aeronautics and S Na^e Admi},Astration's Lewis Research

Center.

This document describes the work coneucted by the Energy Technology

Operation of the General Electric Company under National Aerorautics and

Space Administration contract DEN3-31.

The General Electric Company contractor report for the CTAS study is

contained in six volumes:

Cogeneration Technology Alternatives Study (CTAS), General Electric
Company Final Report
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Section 1

SUMMARY

Cogeneration systems in industry simultaneously generate electric

power and thermal energy. Conventional nocogeneration installations use

separate boilers or furnaces to produce the required thermal energy and

purchase electric power from a utility which rejects heat to the outside

environment. Cogeneration systems offer significant savings in fuel but

their wide spread implementation by industry has been generally limited

by economics and institutional and regulatory factors. Because of po-

tential savings to the nation, the Department of Energy, Office of Energy

Technology sponsored the Cogeneration Technology Alternatives Study (CTAS).

The National Aeronautics & Space Administration, Lewis Research Center, con-

ducted CTAS for the Department of Energy with the support of Jet Propulsion

Laboratory and stud% contracts with the General Electric Company and the

United Technology.; Corporation.

OBJECTIVES

The objective of the CTAS is to determine if advanced technology

cogeneration systems have significant payoff over current cogeneration

systems which could result in more widespread implementation in industry

and to determine which advanced cogeneration technologies warrant major

research and development efforts.

Specifically, the cbje-tives of CTAS are:

1. Identify and e •l aluate the most attractive advanced energy
conversion systems for implenentation in industrial cogen-
eration systems for the 1985-2000 time period which permit
use of coal and coal-derived fuels.

2. Quantify and assess the advantages of using advanced technology
systems in industrial cogeneration.

i
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SCOPE

The following nine energy conversion system (ECS) types were evaluated in

CTAS:

1. Steam turbine

2. Diesel engines

3. Opeo-cycle gas turbines

4. Combined gas turbine/steam turbine cycles

5. Stirling engines

6. Closed-cycle gas turbines

1. Phosphoric acid fuel cells

8. Molten carbonate fuel cells

9. Thermionics

In the advanced technology systems variations in temperature, pressure

ratio, heat exchanger effectiveness and other changes to a basic cycle

were made to determine desirable parameters for many of the advanced

systems. Since coal and coal-derived fuels were emphasized, atmospheric

and pressurized fluid bed and integrated gasifiers were evaluated.

For comparison, currently available non-condensing steam turbines

with coal-fired boilers and flue gas desulfurization, gas turbines with

heat recovery steam generators burning residual and distillate petroleum

fuel and medium speed diesels burning petroleum distillate fuel were

used as a basis of comparison with the advanced technologies.

In sele:ting the cogeneration energy conversion system configu-

rations to be evaluated, primary emphasis was placed on system concepts

fired by coal and coal-derived fuels. Economic e ,ialuations were based on

industrial ownership of the cogeneration system. Solutions to institu-

tional and regulatcry problems which impact the use of cogeneration were

not addressed in this stud, .

Over fifty industrial processes and a similar number of state-of-

the-art and advanced technology cogeneration systems were matched by

1-2



General Electric to evaluate their comparative performance. The indus-

trial processes were selected as potentially suited to cogeneration pri-

marily from the six largest energy consuming sectors in the nation. Ad-

vanced and current technology cogeneration energy conversion systems,

which could be made commercially available in the 1985 to 2000 year time

frame, were defined on a consistent basis. These processes and systems

were matched to determine their effectiveness in reducing fuel require-

ment, saving petroler:m, cutting the annual costs of supplying energy,

reducing emissions, and improving the industry's return on investment.

Detailed data were gathered on 80 process plants with major emphasis

on the following industry sectors:

1. SIC20 - Food and Kindred Products

2. SIC26 - Pulp and Paper Products

3. SIC28 - Chemicals

4. SIC29 - Petroleum Refineries

5. SIC32 - Stone, Clay and Glass

6. SIC33 - Primary Metals

In addition, four processes were selected from SIC22 . Textile Mill Pro-

ducts and SIC24 - Lumber and Wood Products. The industr y da+.- includes

current fuel types, peak and average process temperature and heat require-

ments, plant operation in hours per year, waste fuel availability,

electric power requirements, projected growti rates to the year 2000,

and other factors needed in evaluating cogeneration systems. From this

data approximately fifty plants were selected on the basis of: energy

consumption, suitability for cogeneration, availability of data, diversity

of types such as temperatures, load factors, etc., and range of ratio of

process power over process heat requirements.

Based on the industrial process requirements and the ECS character-

istics, the performance and capital cost of each cogeneration system and

its annual cost, including fuel and operating costs, were compared with

nocogeneration systems as currently used. The ECS was either sized to

1	 1-3



match the process heat requirements (heat match) and electricity either

bought ^r sold or sized to match the electric power (power match) in

which case an auxiliary boiler is usually required to supply the re-

maining heat needs. Cases where there was excess heat when matching

the power were excluded from the study. With the fuel variations studied

there are 51 ECS/fuel combinations and over 50 processes to be potentially

matched in both heat and power resulting in a total of approximately 5000

matches calculated. Some matches were excluded for various reasons; e.g.,

the ECS out of temperature range or excess heat produced, resulting in

approximately 3100 matches carried through the economic evaluation. Re-

sults from these matches were extrapolated to the national level to pro-

vide additional perspective on the comparison of advanced systems.

RESULTS

A comparison of the results for these specific matches lead to the

following observations on the various conversion technologies:

1. The atmospheric and pressurized fluidized bed steam turbine
systems give payoff compared to conventional boiler with
flue gas desulfurizAtion-steam turbine systems which already
appear attractive in low and medium power over heat ratio
industrial processes.

2. Open-cycle gas turbine and combined gas turbine/steam turbine
systems are well suited to medium and high power over heat ratio
industrial processes based on the fuel prices used in CTAS.
Regenerative and steam injec-ted gas turbines do not appear to
have as much potential as the above systems, based on GE results.
Solving low grade coal-derived fuel and NOx emission problems
should be emphasized. There is payoff in these advanced systems
for increasing firing temperature.

3. The closed-cycle gas turbine systems studied by GE have higher
capital cost and poorer performance than the more promising
technologies.

4. Combined-cycle molten carbonate fuel cell and gas turbine/steam
turbine cycles using integrated gasifier, and heat matched to
medium and high power over heat ratio industrial processes and
exporting surplus power to the utility give high fuel savings.
Because of their high capital cost, 0- o systems may be more
suited to utility or joint utility-industry ownership.
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5. Distillate-fired fuel cells did not appear attractive because
of 'eir poor economics due to the low effectiveness of the cycle
L	 igurations studied by GE and the higher price of distillate
fuel.

6. The very high power ever heat ratio and moderate fuel effective-
ness characteristics of diesel engines limit their industrial
cogeneration applications. Development of an open cycle heat
pump to increase use of jacket water for additional process heat
would increase their range of potential applications.

To determine the effect of the national fuel consumption and growth

rates of the various industrial processes together with their distribution

of power to heat ratios, procesi, steam temperatures and load factors,

each energy conversion system was assumed implemented without competition

and its national fuel, em i ssions, and cost of energy estimated. In this

calculation it was assumed that the total savings possible were due to

implementing the cogeneration systems in new plants added because of needed

growth in capacity or to replace old, unserviceable process boilers in the

period from 1985 to 1990. Also, only those cogeneration systems giving

an energy cost savings compared with nocogeneration were included in esti-

mating the national savings. Observations on these results are:

1. There are significant fuel, emissions, and energy cost savings
realized by pursuing development of some of the advanced tech-
nologies.

2. The greatest payoff when both fuel energy savings and economics
are considered lies in the steam turbine systems using atmospheric
and pressurized fluidized beds. In a comparison of the national
fuel and energy cost savings for heat matched cases, the atmos-
pheric fluidized bed showed an 11" increase in fuel saved and 6V
additional savings in levelized annual energy cost savings over
steam turbine systems using conventional boilers with flue gas
desulfuri?ation whose fuel savings would be, if im plemented. 0.84
quadi/year and cost savings $1.9 billion/year. The same comparison
for the pressurized fluidized bed showed a 73 increase in fuel
savings and a 29'0' increase in enerav cost savings.

3. Open-cycle gas turbines and combined-cycles have less wide appli-
cation but offer significant savings. The advanced residual-
fired open-cycle gas turbine with heat recovery steam generator
and firing temperature of 2200 F were estimated to have a potential
national saving of 39" fuel and 27" energy cost compared to cur-
rently available residual-fired gas turbines whose fuel savings
would be, if implemented, 0.18 quads/year and cost savings $0.33
billions/year.
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4. Fuel and energy cost savings are several times higher when the
cogeneration systems are heat matched and surplus power exported
to the utility than when the systems are power matched.

Other important observations made during the course of performing

CTAS were:

1. Comparison of the cogeneration systems which are heat matched
and usually exporting power to the utility with the power
matched systems shows the systems exporting power ha/e a much
higher energy savings, often reaching two to five times the power
match cases. In the past, with few exceptions, cogeneration sys-
tems have been matched to the industrial process so as not to
export power because of numerous load management, reliability,
r-e3ulatory, economic and institutional reasons. A concerted
effort is now underway by a number of government agencies, in-
dustries, and utilities to overcome these impediments and it
should be encouraged if the nation is to receive the full poten-
tial of industrial cogeneration.

2. The economics of industrially owned cogeneration plants are Viry
sensitive to fuel and electric power costs or revenues. In-

creased price differentials between liquid fuels and coal would
make integrated gasifier fuel cell or combined-cycle systems
attractive for high power over heat industrial processes.

3. Almost 75" of the fuel consumed by industrial processes studied
in CTAS, which are representative of the national industrial
distribution, have power over heat ratios less than 0.25. As a
result energy conversion systems, such as the steam turbine
using the atmospheric or pressurized fluidized bed, which exhibit
good performance and economics when heat matched in the low power
over heat ratio range, give the largest national savings.
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Section 2

INTRODUCTION

BACKGROUND

Cogeneration is broadly defined as the simultaneous production o-:'

electricity or shaft power and useful thermal energy. Industrial cogen-

eration in the context of this study refers specifically to the simul-

taneous production of electricity and process steam or hot water at an

individual industrial plant site. A number of studies addressing

various aspects of cogeneration as applied to industry have been made

in the last few years. Most of th,ise focused on the potential benefits

of the cogeneration concept. CTAS, however, was concerned exclusively

with providing technical, cost, and economic comparisons of advanced

technology systems with each other and with currently available tech-

nologies as applied to industrial processes rather than the merits of

the concept of cogeneration.

While recognizing that institutional and regulatory factors strongly

impact the feasibility of widespread implementation of cogeneration, the

CTAS did not attempL, to investigate, provide solutions, or limit the tech-

nologies evaluated because of these factors. For example, cogeneration

systems which were matched to provide the required industrial process heat

and export excess power to the utilities were evaluated (although this

has usually not been the practice in the past) as well as systems matched

to provide only the amount of over required by the process. Also, no

attempt was made to modify 'nt.:ustrial processes to make them more

suitable for cogeneration. The processes were defined to be represen-

tative of practices to be employed in the 1985 to 2000 time frame.

2-1
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The cogeneration concept has been applied in a limited fashion to

power plants since the turn of the century. Their principal advantage

is that they offer a significant saving in fuel over the conventional

method of supplying the energy requirements of an industrial plant by

purchasing power from the utility and obtaining steam from an on-site

process boiler.

The saving in fuel by a cogeneration system can be seen by taking

a simple example of an industrial process requiring 20 units of power and

100 units of process steam _iergy. A steam turbine cogeneration system

(assuming it is perfectly R tched, which is rarely the case) can provide

these energy needs wit:i fuel effectiveness or power plus heat over input

fuel ratio of 0.85 resulting in a fuel input of 141 units. In the con-

ventional nocogeneration system the utility with an efficiency of 33

requires 60 units of fuel to produce the 2U units of power and the pro-

cess boiler with an efficiency of 85' requires 118 units of fuel to oro .

-duce the required steam making a total fuel required of 178 units. Thus

the cogeneration system has a fuel saved ratio of 37 over 178 or 210.

In spite of this advantage of saving significant amounts of fuel,

the percentage of industrial power generated by cogeneration, rather

than being purchased from a utility, has steadily dropped until it is now

less than 5 0") of the total industrial power consumed. Why has this hap-

pened? The answer is primarily one of economics. The utilities with their

mix in ages and capital cost of plants, relative low cost of fuel, steadily

improving efficiency and increasing size of power plants all made it pos-

sible to offer ^idustrial power at rates more attractive than industry

could produce it themselves in new cogeneration plants.

Now with long term prospects of fuel prices increasing more rapidly

than capital costs, the increa_;ed use of waste fuels by industry and the

need to conserve scarce fuels, the fuel savings advantage of cogenerating

will lead to its wider implementation. The CTAS was sponsored by the US

Department -f Energy to obtain the input needed to establish R&D funding

priorities for advanced energy conversion systems which could be used in

industrial cogeneration application,. Many issues, technical, institutional

2-2
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and regulatory, need to be addressed if industrial cogeneration is to

realize its full potential benefits to L"he nation. However, the CTAS

co'=cntrated on ome portion of these issues, namely, to determine from

a technical and economic standpoint the payoff of advanced technologies

compared to currently available equipments in increasing the implemen-

tation of cogeneration by industry.

OBJECTIVE, OVERALL SCOPE, ANr. METHODOLOGY

The objectives of the CTAS effort were to:

1. Identify and evaluate the most attractive advanced conversion
systems for implementation in industrial cogeneration sys±ems
for the 1985-2000 time period which permit increased use of
coal or coal-derived fuels.

2. Quantify and assess the advantages of using advanced tech-
nology systems in industrial cogeneration.

To select the most attractive advanced cogeneration energy con-

version systems incorporating the nine technologies to be studied in the

CTAS, a large number of configurations and cycle variations were identified

and screened for detail Study. The systems selected showed desirable

cogeneration characteristics and the capability of being developed

for commercialization in the 1985 to 2000 year tirr,: frame. The advanced

energy conversion system-fuel combinations selected for study are shown

in Table 2-1 and the currently available systems used as a basis of com-

parison are shown in Table , 	 These energy conversion systems were then

heat matched and power matcried to over 50 specific industrial processes

selected primarily from the six major energy consuming industrial sectors

of food; paper and pulp; chemical;; petroleum refineries; stone, clay and

glass; and primary metals. Several processes were also included from wood

products and textiles.

On each of these matches analyses were performed to evaluate and

compare the advanced technology systems on such factors as:

• Fuel Energy Saved

s Flexibility in Fuel Use
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Table 2-1

GE-CTAS ADVANCED TECHNOLOG v COGENERATION ENERGY CONVERSION SYSTEMS MATCHED
TO FUELS

Coal Derived Liuids
Coal	 Residual	 Dist	 ate

Steam Turbine	 AFB'	 Yes	 ---

Pressu-ized Fluid Bed	 Yes	 ---	 ---

Gas Turbine
Open Cycle-HRSG	 ---	 Yes	 Yes
Regenerative	 ---	 ---	 Yes
Steam Injected	 ---	 Yes	 ---
Combined Gas Turbine/Steam

Turbine Cycle

Liquid Firea

Integrated Gasifier
Combined Cycle

Closed Cycle-Helium Gas Turb;;e

Yhermionic
HRSG
Steam Turbine Bottomed

Stirling

Oiesels
Medium Speed
Heat Pump

Phosphoric Acid Fuel Cell Reformer

Molten Carbonate Fuel CPll

Reformer
Integrated Gasifier

HRSG

Steam Turbine Bottoming

* AFB - Atmospheric Fluidized Bed
FGD - Flue Gas Desulfurization

Table 2-2

GE-CTAS STATE OF ART CCGENF.RATICN ENERGY CONVERSION MATCHED TO FUELS

Petroleum Derived

	

Coal	 ResiduaT	 Disti llate

Steam Turbine	 FGD	 Yes	 ---

Gas Turbi,ie	 --	 Yes	 'yes

Diesel	 ---	 Yes	 Yes

--- Yes ---

Yes--- ---

AFB --- ---

FGD* Yes ---
FGD Yes ---

FGD Yes Yes

--- Yes Yes
--- Yes Yes

--- --- Yes

--- --- Yes

Yes --- ---

Yes --- ---
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• Capital Costs

• Return on Investment and Annual Energy Cost Saved

• Emissions

• Applicability to a Number of Industries.

These matches were evaluated, both on a specific process site basis,

and on a national level where it was assumed that each ECS is applied

without competition nationwide to all new applicable industrial plants.

Because of the many different types of conversion systems studied

and myriad of possible combinations of conversion system and process

options, key features of the study were:

• 'The use of consistent and simplified but realistic characteri-
zations of cogeneration systems

• Use of the computer to match the systems and evaluate the
characteristics of the matches.

A major effort was made to strive for consistency in the performance,

capital cost, emissions, and installation requirements of the many ad-

vanced cogeneration energy conversion systems. This was accomplished first

by NASA-LeRC establishing a uniform set of study groundrules for selection

and characterization of the ECS's and industrial processes, calculation of

fuel and emissions saved and analysis of economic parameters such as level-

ized annual energy cost and return on investment. These groundrules and as-

sumptions are described in Section 3. Second, in organizing the study,

as shown in Figure 2-1, GE made a small group called Cogeneration Systems

Technology responsible for establishing the configuration of all

the ECS's and obtaining consistent performance, cost and emission

characteristics for the advanced components from the GE organizations or

subcontractors developing these components. This team, using a standard

set of models for the remaining subsystems or components, then prepared

the performance, capital costs, and other characteristics of the overall

ECS's. As a result, any component u;° suosystEm, such as fuel storage and

handlinq, heat recovery steam generator or steam turbine, appearing in

2-5



Program	 PR ,u+ AND TECHNICAL MANAGEMENT

Review Board	 G. Energy Technology Operation

Industrial Applications Tech. i
Team Management
GE Thermal Power Systems

Engineering

Cogeneration System Technology
Team Management
GE Corporate Research and

Development

Cogeneration Systems Criteria and
Evaluation

Team Management
GE Energy Technology Operation

Figure 2-1. GE-CTAS Project Organization

more than one type ECS is based on the same model. This method reduces

the area of possible inconsistency to the advanced component which, in

many ECS's, is a small fraction of the total system. The characteri-

zation of the ECS's is described in Sections 5 and 6. The functions of

obtaining consistent data on industrial processes from the industrial

A&E subcontractors was the responsibility of the Industrial Applications

Technology group and is described in Section 4. Matching of the ECS's

and processes and making the overall performance and economic evaluations

and comparisons was the responsibility of Cogeneration Systems Criteria

and Evaluation. The methodology of matching the cogeneration systems is

detailed in Section 8, the results of the performance analysis in Section

9, economic analysis in Section 10, the national savings in Section 11,

and overall results and observations in Section 12.
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Section 8

PERFORMANCE OF ECS-INDUSTRIAL PROCESS MATCHES

8.1 METHODOLOGY

General

The heat and power needs of the industrial processes studied are

described in Secticn 5, Volume III and the ability of various state-of-

the-art and advanced energy conversion systems to provide heat and power

is described in Section 6, Volume IV. The matching of energy conversion

systems and industrial processes refers to the selection of size and

type of energy conversion system to provide all of the heat and/or all

of the power needed by a given industrial process.

Nocogzneration Case

One who plans to put in place and operate an industrial process

must select the means by which heat and power are provided to the process.

One way of providing the process needs is through an on-site process

boiler supplying all of the process heat and power purchased from a utility

to provide all of the process power. This case is called the nocogeneration

case. There is no simultaneous production of power and useful heat occur-

ring. The heat rejected at the utility generating site is not used.

Cogeneration Case

The operator of an industrial process may choose to nruvide for the

process heat and power needs by installing an energy conversion s ,y::^m on-

site that produces both power and useful heat. This case is referrer; to

as the cogeneration c a se because power and useful heat are being produced

simultaneously.
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ECS-Process Matching

The possibilities for matching the ECS's with the processes are

shown in Figures 8.1-1 and 8.1-2. Figure 8.1-1 represents the case

where the ratio of power to heat of the ECS is greater than that re-

quired by the process. The ordinate c=f the figure represents power

and the abscissa represents heat. The circled point at the intersection

of the power required line and heat required line represents the heat

and power required by process. Any point along the sloped line begin-

ning at the origin and moving upward and to the right represents an

energy conversion system of increasing size and fixed configuration such

that the ratio of available power to available heat is constant. The

slope of the line is descriptive of the energy conversion system (power/

heat ratio) characteristic and may be dependent upon the temperature at

which heat it, required by the process. As is readily obser- ,0, when the

size of energy conversion system is selected to match the power required

by the process, the heat output of the ECS in this case is not sufficient

to meet the process needs and an auxiliary ')oiler must be used to make up

the deficiency.

When the size of energy conversion system is selected to meet the

heat needs of the process (no auxiliary boiler), more electric power is

produced than required by the process and the excess power must be sold.

Figure 8.1-2 represents the case where the ratio of power to heat

of the ECS is less than that required by the process. When the ECS is

sized to produce th-- heat required by the process the power output is

less than the process needs and the deficiency must be purchased from the

utility. In the case where the ECS is sized to produce the power required

by the process, more heat is produced than can 'je used by the process and

less than the maximum available heat is recovered. Increasing the ECS size

above that for matching heat i,i this case reduces all the advantages of

cogeneration and was excluded from further study.
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Figure 8.1-1. Matching of Energy Conversion System Output and Industrial
Process Requirements (Power/Heat of ECS Greater Than Required)
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Figure 8.1-2. Hatching of Energy Conversion System Output dnd Industrial
Process Requirements (Power/Heat of ECS Less Than Required)
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The case where the energy conversion system is sized to meet the

power needs of a process is referred to as a power match. Similarly,

the case where the energy conversion system is sized to meet the heat 	 .E

needs of a process is referred to as a heat match.

The energy conversion system characteristics and the costs des-

cribed in Sections 6 and 7, Volume IV, and the process parameters des-

cribed in Sectio; 5, Volume III were entered into a computer data bank.

A computer program was written to match up the heat and power needs of

each process with the appropriate size of each type of energy conversion

system. The computer data bank and computer program are described in

Section 4, Volume II.

In summary, each match of energy conversion system and process

(cogeneration case) yielded many calculated parameters of technical and

economic interest. Each cogeneration case is compared to the nocogen-

eration case tec)nically and economically and the results are Neported

in Sections 8 anc 9, Volume V (comp'ete computer printouts of the re-

sults are riven in Volume VI).
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8.2 ASSUMPTIONS/GROUNDRULES

The overall study assumptions and groundrules are given in Volume II.

In establishing many if these groundrules NASA-LeRC obtained recommendations

from DOE and the contractors. In addition to the common groundru-Tes speci-

fied by NASA-LeRC, assumptions were made by the GE contractor. These are

identified by (GE). The groundrules and assumptions pertaining to the cal-

culation of fuel energy savings and emissions savings for each plant are:

1. Match the ECS in two ways, (1) match the power requirements of
the process, and (2) match the process heat requirements of the

process. In the power match, if additional heat is required, an
auxiliary boiler is added or, if excess process heat is produced
by the ECS, the match is dropped from further consideration (GE).
In the ECS heat match, if the ECS cannot supply the process power
requirements, the needed power is purchased from the utility. If
excess power is generated by the ECS, it is exported to the
utility for revenue.

2. Nocogeneration case assumptions:

• Place principal emphasis on a coal-fired nocogeneration process

boiler. (GE)

• Process boiler type and fuel sized as follows: (GE)

<30 x 106 Btu/yr heat output, petroleum or coal residual

30 x 106 to 100 x 106 Btu/hr heat output, coal AFB

>100 x 106 Btu/hr heat output, coal, flue gas desulfurization

• Waste or by-product fuels converted to hcat at various ef-
ficiencies depending on type of waste fuel. Fossil fuel and
by-product fuel assumed to be fired in same boiler. (GE)

• Utility fuel-electric efficiency - 32% '- luding transmission

and distribution losses.

• Process boiler emissions are: 	 lb/106 Btu Fired
NO 	

--• S02	
bar`.

petroleum residual-fired boiler 	 0.22	 x).75	 0.01:6

coal-derived residual-fired boiler	 G.5	 0.8	 0.1

AFB coal	 0.27	 1.2	 0.1

• Emissions due to burning waste or uy-N oduct fuels are not

included.	 (GE)
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3. Cogeneration case assumptions:

* Approximate the process steam saturation temperature used to
determine the performance parameters of a cogeneration system
by using the peak temperature in systems consisting of a heat
recovery steam-generator to supply process steam. When the

process steam is extracted from a steam turbine, the weighted
average temperature of multiple process steam conditions is
used.

• In the fuel saved by type calculations, assume that the mix of
utility fuel displaced by cogenerated power is 23% gas and oil
and 77% coal. Utility emissions are set equal to specifications
showr. in Table 8.2-1.

* Auxiliary boiler efficiency - 85%. (GE)

• Waste or by-product fuels combustible in all systems that use
coal except for systems with coal gasifier.

s Emissions due to burning waste or by-product fuels are not
included.	 (GE)

• Minimum size of energy conversion system not observed when
calculating fuel energy or emissions savings. (GE)
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Table 8.2-1

EMISSION LIMITP ION GUIDELINES

Emissions from energy conversion systems or auxiliary furnaces shall
not exceed the values shown below:

(All units in lbs/10 6 Btu Heat Input)

Fuel Type

Pollutant	 Solid	 Liquid	 Gaseous(a)

NO 	 0.1	 (b)	 0.2

SOX	1.2	 0.8	 0.2

Particulates	 0.1	 0.1	 0.1

Smoke	 20 SAE number 20 SAE number 20 SAE number

(a) For systems or auxiliary furnaces using LBtu gas produced on-si` , from

coal, the solid fuel limitation shall apply.

(b) The NOx limitations for the various liquid fuels is keyed to the

nitrogen content in the fuel as follows:

Liquid Fuel

Petroleum Distillate

Petroleum Residual Fuel

Coal-Derived Distillate

Coal-Derived Residual Fuel

NO 

0.4 lbs/106 Btu heat input

0.5

0.5

0.5
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8.3 FUEL ENERGY SAVINGS POTENTIAL OF COGFNE,^,ATICt1

A derivation of the potential fuel energy savings possible through

cogeneration is presented. The functional relationships of energy con-

version system efficiency, fuel utilization effectiveness, utility sys-

tem efficiency, process boiler efficiency and process heat and power de-

mands are described as pertains to potential fuel energy savings. The

possible constraint of not allowing export power is shown to have a

significant effect on possible fuel energy savings. For some energy

conversion systems the temperature at which heat is required has a sig-

nificant effect on potential fuel energy savings.

Nocogeneration Fuel Energy

The bar shown in Figure 8.3-1 represents the total rate of energy

required by an industrial process and is divided in proportion to the

thermal power demand rate and electrical or mechanical power demand rate.

Both energy demand rates are expressed in the same units (Btu/hr) where

P = Power (electric or shaft) required in Btu/hr (Btu/hr =

kilowatts x 3413).

H = Heat (thermal power) required in Btu/hr

P	 H	 Total Process Power Requirements

unit	 units

Figure 8.3-1. Representation of Industrial Heat and Power Requirements

The length of the bar is representative of the total energy required by

the process. For exemplary purposes assume that the process requires

one unit of power and four units of heat. Given the CTAS groundrules

and assumptions concerning the process boiler efficiency and the utility

conversion efficiency of fuel energy to electric power, it is possible to

calculate the fuel energy required to provide the process energy demands
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in this nocogeneration case. The process boiler converts fuel energy

(based on higher heating value) to heat energy with an 85% efficiency.

The electric utility converts fuel energy (based on higher heating

vz.iue) to electric energy delivered to the process site with an efficiency

of 32%. This is typical of coal-fired generating plants using flue gas

desulfurization.

The bar shown in Figure 8.3-2 represents the fuel consumption rate

required by a process boiler to provide the process with its thermal

power where:

H is the heat required by the process, Btu/hr

L b is the total losses ( auxiliaries and Unrecoverable heat) Btu/hr

F  is the fuel energy required ( based on higher heating value) to
produce H, Btu/hr

^F b

H b

4	 .706
units	 unit

Figure 8.3-2. Representation of Process Boiler Fuel Input

The conversion efficiency of fuel energy to usefui ;seat is

_ H
'I b	

F 

and for this study r)b = 0.85. To provide 4 units of heat energy requires

4.706 units of fuel energy.

The bar shown in Figure 8.3-3 represents the fuel consumption rate

required by a utility to provide the electric power P required by the

process where:
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P	 is the electric power required by the process, Btu/hr

LUTIL 
is the lost or unrecoverable energy, Btu/hr

FUTIL is the fuel energy consumption rate (based on higher heating
value) required by the utility to provide the electric power,
P, required, Btu/hr

^F UT Imo..,

P I 

LUTIL

1	 2.125
unit	 units

Figure 8.3-3. Representation of Utility Fuel Input

The electric utility conversion efficiency of fuel to electric

power delivered is

_	 P
nUTIL	

FUTIL

and is assumed to be 0.32 for this study. Consequently, it requires 3.125

units of fuel energy to produce one unit of electric energy.

The total amount of fuel energy required to provide the industrial

process with the required heat and power is represented by the bar in

Figure 8.3-4.

FUTIL F 

LUTIL
P H Ln

P H

2.125	 1 4 .706
units	 unit units unit

Total Nocogeneration Fuel Input

Process energy rate required

Figure 8.3-4. Representation of Total Fuel Input for Nocogeneration
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The total consumption of fuel energy to provide the process with

heat and power is:

FNOCOGEN - F  + FUTIL

= 3.125 + 4.706

= 7.831 units fuel energy

In terms of the Power, P, and the heat, H, required by the process,

the total fuel required is

F	 P	 +NOCOGEN	
(P/FUTIL	

H/F b

	

P	 + H

'1 UTIL	 Tlb

It is also observed that the maximum amount c,f fue; that could be

saved is equal to the losses or(L
UTIL + L b ) 

= 2.831 units.

Cogeneration Fuel E ► er9Y

In cogeneration, fuel is converted to power and useful heat in an

energy conversion system and supplied to an industrial process. The

bar shown in Figure 8.3-5 represents the total fuel energy supplied to

an energy conversion system and the proportions of fuel energy that are

converted Lo power, useful heat, and unrecoverable losses

where:

PECS	
ECS power output, Btu/hr

H
ECS = ECS useful heat output, Btu/hr

L ECS = Unrecoverable losses

F
ECS = ECS fuel consumption (based on fuL 1, higher heati;,y value) to

produce P
ECS 

and 
HECS' 

Btu/hr
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FECS

KCS1	 HECS	 EEC

1	 4	 0.882	
FECS	

5.882 units

unit	 units	 unit

Figure 8.3-5. Representative of Cogeneration ECS Fuel Input

In this case where the cogeneration system is assumed to b:; ideally matched

to the energy requirements of the industrial process

FCOaEN	
5.882

compared to the

FNOCOGEN	 FUTIL + F  
= 7.831 units

The fuel saved by cogeneration is

Fuel Saved = 1.949 units

The efficiency of the energy conversion system in converting ".+el to

electric power is

_ PFCS

rp	 FECS

The electrical conversion efficiency has always been the primary measur° of

the performance of an energy conversion system because they have been pri-

marily used for their ability to convert fuel to electricity. The heat

rejected from an energy conversion system has always been of secondary con-

cern. In cogeneration applications both power and heat (supplied at the

desired temperature) are of interest. It is convenient to define another

efficiency term for the energy conversion system - the heat conversion ef-

ficiency. The heat conversion efficiency of an energy conversion system is

the ratio of useful thermal output to fuel input
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_ HECS
r^,.	 F

ECS

Useful therms output re^a •rs to the amount of heat that can be supplied

at a specified (required) temperature. For instance, if an energy con-

version systeri could supp l y 10 million btu/hr at 2000 F and 0 Btu/hr at

4000 F, and the a t wai actually required at 4000 F, then the useful

heut supplied h ,, ch a ' '.S would be 0 and n h would be 0.

The electrical and thermal conversion efficiencies of the exemplary

energy conversion system are

r p	 5. 1
	= 0.170

_

n h	 5 
4
.882 = 0.680

Another parameter of importance when considering energy conversion

systems for cogeneration applications is the total fuel utilization or

effectiveness of the energy conversion system. The effectiveness is

simply the s!m of the electrical ana thermal conversion efficiencies and

represents the ratio of total useful energy output of the ECS to fuel

energy input (based on higher heating value). The effectiveness for a

process boiler is 0.85 because the useful energy output is 0.85 of the

fuel energy input. The effectiveness of the exemplary energy conversion

system is 0.85 (re ef = rip + n h = 0.170 + 0.680 = 0.85). A review of the

erergy conversion system characteristics given in Section 6 of Volume IV

shows that the effectiveness of some energy conversion systems varies

with the temperature at which it supplies the heat.

All further examples used in this section for illustrative purposes

will assume an energy conversions system effectiveness of 0.85.

8-13



As an example, the power and heat outputs of the energy conversion

system have been arbitrarily selected to ideally match the power and heat

required of the exemplary process. If the energy conversion system des-

cribed above is used to provide the heat and power needs of the process,

then the fuel energy required would be 5.882 units as opposed to 7.831

units in the nocogeneration case (Figure 8.3-6) and the fuel energy saved

relative to the nocogeneration fuel (called the Fuel Energy Saved Ratio)

is

Fuel Energy Saved Ratio = 7_.
831 - 5.882 = 0.249

7.831

	

F ECS	 FCOGEN	
5.882

	

EC	 _ HECS _	 C^	
Cogeneration

	

P	 H	 Process Energy Requiremen ts

	

L
UTILUT	 H	 Lb	 Nocogenerationi

FUTI!	 F 	
FNOCOGEN = 7.831

Figure 8.3-6. Cogeneration Vs. Nocogeneration Representation of Fuel Inputs

Power Match

The ease where the power and heat needs of a process can be exactly

matched by the output of an energy conversion system is not often found in

practice. If the energy conversion system were more efficient (that is,

if the electrical conversion efficiency were higher) and the power demands

of the process were being matched by the ECS, then the heat output if the

ECS would be less than that required by the process. In this case, an

auxiliary boiler would be used to make up the deficiency. This situation

is depicted in Figure 8.3-7.

_7
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FECS	

—	
Fa	 .176

	

706 1	 _ 3	 N 1

L6 ECS	 H E C S v Ha L b

	

P	 H	 -

Cogeneration with Auxiliary Boiler

Process Energy Requirements

Figure 8.3-7. Represent:,tion of Fuel Inputs with Auxiliary Boiler
(Power Match)

The efficiency of the auxiliary boiler is assumed the same as that of the

process boiler (85`t). The energy conversion system is assumed to be more

efficient in this example, its electrical conversion efficiency is

TIP. 1	
= 0.2125

as compared to 0.170 in the previous example.

In this case a larger portion of the fuel is converted to power and

less to useful heat than previously. The thermal conversion efficiency of

the energy conversion system in this case is then

TI h	 -.7-6 = 0.6375

or

11 	 TIef - Tlp = 0.85 - Q.2125 = 0.6375

The total fuel required in this cogeneration case is 5.882 units and the

fuel energy saved ratio is 0.249 which is the same as the previous cogen-

eration case. It is interesting to note that even though a more efficient

eneray conversion system was used to cogenerate, the tot a l fuel required

to prcvide the process with heat and power is the same as would be required

by the "less efficient" energy conversion system. It will be shown in

this section that the potential fuel savings due to cogeneration may be
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limited when the power requirements of an industrial proses: are met by

an energy conversion system (power match) as opposed to meeting the process

heat requirements with reject heat from an energy conversion system (heat

match) .

Heat Match

If the heat needs of the process were matched with the more efficient

energy conversion system, the power produced by the energy conversion sys-

tem would exceed that required by the process and power would have to be

exported. The fuel required in the nocogeneration case to produce the

	

same amount of useful heat and power as in t ry	 ;.generation case is de-

picted in Figure 8.3-8.

F
ECS = 6.275 units

	

.942 1.333	 4

	

EC4 PECS	 H

	
Cogeneration System

	

P I	 H
	

.-#,— Process Power Requirements

LUTIL
	

PUTIL	 _ H 
	

Lb l Mocogeneration System

2.833
	

1 . 3 3 VS.,	 4
	

706

FUTIL = n'166

	
F  = 4.706

Figure 8.3-8. Representation of Fuel Inputs when Exporting Power (Heat Match)

The utility in this nocogeneration case is assumed to produce the same power

as the ECS (which is more than that required by the industry) so that

FNOCOGEN	 F 
UTIL + F  = 8.872 units

also,

FCOGEN	
= 6.275 units
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or the fuel saved by cogeneration is

Fuel Saved = 2.597 units

and Fuel Energy Saved Ratio = 8.872
	 6.275 = 0.293
8.87

If the case where the energy conversion system was sized to meet the power

needs of the process is compared to the case where the energy conversion

system is sized to match the heat needs of the process, it is seen that

0.333 units of additional power were produced for an additional fuel con-

sumption of (6.275 - 5.882) or only 0.393 units of fuel. Thus an incre-

mental fuel - electric power conversion efficiency of 85",. The incremental

fuel-electric power conversion efficiency is equal to the effectiveness of

the ECS in this instance.

When the ECS is less efficient than the one Oct can exactly meet the

heat and power requirements of the process, the following example illustrates

the situation when matching the power needs of the process (power match).

In this case assume the electrical conversion efficiency of the ECS

is 15`x, then

rip=.15

and

n h = Tje 
f - r' p = 0.85 - 0.15 = 0.70

The fuel energy requirements are represented by Figure 8.3-9.
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Cogeneration Case

r,ocess Electrical & Thermal Power

Requirements

Nocogeneration Case

6.667 units

3.125	 4.70E
units	 units

Figure 8.3-9. Representation of Fuel Inputs with Less Efficient ECS with

Power Match

In this example, the cogeneration fuel is

FCOGEN	 = 6.667 units

also,

F NO COGEN	
= 7.831

Fuel Energy Saved	 = 1.164 units

and

Fuel Energy Saved Ratio = 7.831 - 6.667 = 0.149
7.831

More heat is provided by the energy conversion system in the cogen-

eration case than is required by the process; however, fuel energy is

saved in comparison to the nocogeneration case. Heat rejection equipment

may have to be installed to dissipate the excess heat. This case was
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not considered in the CTAS study because heat was being wasted, although

it is a possible and practical situation.

If this same "less efficient" ECS is sized to meet the process heat

needs (heat match), the fuel savings displayed in Figure 8.3-10 result.

.857 F
ECS + FUTIL = 6.161

	

L EC	 Cogeneration

Process Electrical and Thermal Power
Requirements

	

L bl	 Nocogeneration

	

PUTIL =0.143

	

FECS = 5.714

	

FUTIL = 0.447
	

57	 4 units

LUTIL
	

EC	 HFCS

.304
	

P	 H

LUTIL	 UfI
	

Hb

	

3.125
	

4.706

	

units
	

units

Figure 8.3-10. Representation of Fuel Inputs with Less Efficient ECS with

Heat Match

In this example, the cogeneration fuel is

FCOGEN	 = 6.161

also,

F NOCOGEN	
= 7.831

Fuel Energy Saved	 = 1.670

Fuel Energy Saved Ratio = 
7.831

831

6.161 
= 0.213

The fuel energy saved in this case is larger than in the previous case

where excess heat from the ECS had to be dissipated.
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From the previous example of fuel energy savings potential of

various exemplary energy conversion systems used in cogeneration appli-

cations it is observed that the factors influencin g the amount of fuel

energy savings are the power and heat required by the process and the

power and useful heat output of the ECS. Under some conditions a "more

efficient" ECS cannot save any more fuel than a less efficient one.

All of the previous examples assumed that the effectiveness of the ECS

was 0.85. For the ECS's studied in CTAS the effectiveness varied from

0.49 to 0.85 at a process steam saturation temperature of 350
0
F. The

system effectiveness and ECS power to heat ratio have a significant

impact on the potential fuel energy savings.

Process-ECS Fuel Savings Functional Relationships

Using the definition of fuel energy saved ratio and the definition of

ECS effectiveness, equations can be developed to describe the functional

relationships between fuel energy saved ratio and process power/heat ratio,

ECS power/heat ratio, ECS effectiveness and ECS electrical conversion

efficiency.

The fuel energy saved ratio (FESR) is given by

(Fuel Used) Noco en - (Fuel Used) Co en
FESR = --	

Fuel Used	
(8.3-1)

Nocogen

Nocogeneration Fuel Required

If power is not exported in the cogeneration case, then the fuel

required in the noccgeneration case is

I

_	 P	 H
F	

+
Nocogen	

nUTIL	 rib
(8.3-2)

If power is exported in the cogeneration case, then the nocogeneration

case must be re-defined as that to produce the same amount of electric

power as was produced in the cogeneration case. Power export ran only
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occur when the ECS is sized to meet the process thermal needs and the

power to heat ratio of the ECS is greater than the power to heat ratio

of the process. In this instance, the fuel required in the nocogeneration

case would be

F	 = 'ECS + H

Nocogen	
($•3-3)

"UTIL	 nb 

Fuel Energy Saved Ratio For Power Match

The fuel energy required by an ECS sized to meet the power required

by a process is

_	 P	 _ P

FECS	 P/F ECS
	 np

(8.3-4)

The total cogeneration fuel energy required is the sum of the ECS fuel

energy requirement and that of an auxiliary boiler (if required) to meet

the heat demand of the process. The auxiliary boiler would be required

if the heat output of the ECS is less than that required by the process,

or

(P/H)
ECS >(P/H)process

The auxiliary boiler fuel is

Fab = CH - P/F	 (F)
/nab	

(8.3-5)

	

ECS	 ECS

The total cogeneration fue l required is

FCOGEN	 F ECS + F
ab	 (8.3-6)

for (P/H)
ECS j (P/H)process
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From equations 8.3-4, 8.3-5 and 8.3-6,

_ _	

r(.1r)ECS]

 
FCOGEN	

P
^/

^CS + CH	
P

- - P/ ECS 	
nab	

(8.3-7)

When the P/H of the ECS is lest than that required by the process,

(P/H)ECS -!^(P/H)process' the heat output of the ECS would be greater

than that required by the process when the ECS is sized to meet the

process power needs ( power match) The total cogeneration fuel required

is then

FCOGEN	 FECS	
P/(P/F)ECS	

(8.3-8)

Combining the equations given previously and the definition of fuel

energy saved ratio gives for (P/H)
ECS !(P/H)process'

r(P/H)process

+	 1	 /n
(P/H) rocess

-
(P/F)ECS
	

F/H 
ECS	

ab

FESR = 1 -

	

	 (8.3-9)
P/H process + 1

n IJT I L	 n 

For the case where (P/H)
ECS 5(P/H)process,

(P/H) 
process

FESR = 1 -	
(P/ F

ECS

process + 1

nUTIL	
nb

Inspection of the fuel energy saved ratio Equations 8.3-9 and 8.3-10

reveals that maximum fuel energy savings are achieved when the ratio of

power to heat of the energy conversion system is equal to the power to heat

ratio of the process. The output of energy conversion system in that case

would exactly match the process power and heat demands.

8-22



P/F =nef
1 + 1/P/H

(8.3-12)

Reviewing the energy conversion system performance characteristics pre-

sented in Section 6, Volume IV, reveals that P/F, H/F and n ef are functions

of temperature at which heat is required by the process.

The equation relating these three terms is

F + F = r)	
(8.3-11)

The equation may be manipulated to give

Since in the case of a power match, the energy conversion s ystem ratio of

power to heat must equal or be greater than that of the process to achieve

maximum fuel energy savings, Equation 8.3-12 represents the minimum energy

conversion system efficiency required to give maximum fuel energy savings

for a given process power to heat ratio and energy conversion system ef••

fectiveness.

Figure 8.3-11 graphically displays the relationsnip between the pro-

cess power to heat ratio, the energy conversion systei,. cr^'ectiveness and

minimum energy conversion system efficiency to achieve maximum fuel savings

for a power match. An upper bound on energy conversion system effectiveness

of 0.85 was arbitrarily selected because it is the maximum achieved by any

energy conversion system studied (with the given assumptions) and which also

matches the process boiler efficiency. As expected, the effectiveness of

the energy conversion system has a pronounced effect on the electrical

power conversion efficiency required to achieve the maximum fuel savings.
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Using Equations 8.3-10 and 8.3-12 for the rase where the P/H of the

ECS matches the P/H of the process and the implied assumption of an ECS

effectiveness of 0.85 gives the results displayed in Figure 8.3-12 of

maximum fuel energy savings possible vs. ECS electric power conversion

efficiency for various process power to heat ratios.

l

FESR	 = 
1 - (P/H) process +1 l /nef	

(8.3-13)
max	

P/H process + 1

rUTIL	 nb

It is also possible to achieve maximum fuel Energy savings for the

power match when the energy conversion system has the mar.imum effective-

ness of 0.85 and a power to heat ratio greater than that of the process.

In this case an auxiliary boiler with an efficiency (effectiveness) of

0.85 is used to supply the shortfall of heat giving a cogeneration system

overall effectiveness of 0.85.

Using Equation 8.3-13 and varying the energy conversion system ef-

fectiveness and Equation 8.3-12 to define the minimum ECS electrical c,)n-

versinn efficiency (P/F)ECS yields the results shown in Figure 8.3-13.

As expected, the effectiveness of the energy conversion system has a pro-

nounced effect on the maximum fuel savings and the electrical power con-

version efficiency required to achieve the maximum fuel savings.

Fuel Energy Saved Ratio for Heat Match

Equations for the fuel energy saved ratio of heat match casEs are

derived below.

The fuel erP;gy required by an energy conversion system sized to

satisfy the t^,ermal power requirements of an industrial process is

FECS - H/(H/F)ECS
	

(8.3-14)
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or

P - H(P/H)ECS

"UTIL
(8.3-17)

FCOGEN = H/(H/F)ECS +

If the electric power output of the ECS in this situation is not

large enough to satisfy the process demands, then utility power must

be purchased to make up the shortfall. The fuel energy required at

the utility to provide the makeup power required is

F	 = P - FECS F ECS _ P - H(P/H)ECS 	 (8.3-16)
UTIL	

"UTIL	 "UTIL

The total fuel required in the cogeneration case for (P/H)ECS

L (P/H)process is then

FCOGEN	 F ECS +FUTIL
	

(8.3-17)

The fuel energy saved ratio for (P/H)ECS < (P/H) ,^r 	is then
ocess

1	 + (P/H)
process	 (P/H)ECSl

H/F ECS
	 nUTIL

FESR = 1 -	 (P/H)
process + 1

"UTIL	
nb

(8.3-18)

For the situation where the power output of the energy conversion sys-

tem (when sized to match the heat needs of a proses,) is greater than the

power rec;3ired by the process and the excess power can be exported to the

utility, then the nocogeneration case must be redefined such that the

utility power produce ,4 is the same as that of the ECS in the cogeneration

case.

__ P ECS	 + H

FNOCOGEN	
"UTIL	 "b

(8.3-19)
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The fuel energy required by the energy conversion system in the cogen-

eration case is simply governed by the process heat requirement.

FCOGEN	
H /( H/ F )

ECS
	(8.3-20)

The fuel energy savings ratio for (P/H)ECS 
2 (P/H) process is,

1/fH/

FESR = 1 -	
)ECS

P/H	
(8.3-21)

ECS + 1

"UTIL	 nb

Combining Equation 8.3-i1 which relates the H/F of the ECS to the effective-

ness (rjef ) and the (P/H) with Equation 8.3-18 for (P/H)ECS < (P/H)process

qives

rl + (P/ ' )
ECS + 

(P/H)
process - (P/H)ECS

FESR = 1 -	
`ref	 "UTIL

P/H process + 1

nUTIL	
TI b

or for (P/H)ECS > (P/H)process gives,

1 + (P/H)

ECS_

FESR = 1 - ^ 11 e
/H ECS	 1

nUT I L	 11b

(8.3-22)

(8.3-23)
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Incremental Efficiency of Generating Export Power

It is observed by comparing Figures 8.3-7 with 8.3-8 that the

fuel energy savings possible for energy conversion systems having a

(P/H) greater than the process (P/H) when matching the heat required

by the process are potentially much greater than those savings pos-

sible when constrained to matching process power. The following com-

pares the fuel required for both cogeneration cases and shows that the

exported power is produced at a very attractive efficiency.

Rearranging Equation 8.3-i1 gives

H
(8.3-24)

'ref	 ref

which simply states that the power output of the ECS divided by the ef-

fectivensss and the heat output of the ECS divided by the effectiveness

is equal to the fuel energy input.

Using this relationship, we may simply express the difference in fuel

energy requirements between the cogeneration case of rr:cching process heat

needs and exporting power and the cogeneration case of matching process

power needs and using an auxiliary boiler to provide for the deficiency of

process heat.

For the power match case,

H	 (N - H
F	 =	 + ECS + -- -	 EC S)_	 (8.3-25)
power	 ' ief	 ').ef	 Tab

where HECS is the useful heat output of the energy conversion system for

the power mat=h which is less than the process heat required (H).
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i

t

r(8.3-26)

where PECS is greater than the process power required (P) for the heat match

case.

The incremental fuel energy required between the heat match case and

the power match case is AF = 
Fheat	 Fpower.

From equations 8.3-25 and 8.3-26

AF = (?ECTi

e
 - P) + (H - HECS) ( nom - n̂  )
f	 of	 ab

The difference in power generated between the heat match and power match

is

AP = PECS - P

	
(8.3-28)

The inc remental efficiency of generating the power that is exported is

For the heat match case,

F	 = PECS + H
heat	

nef	 nef

-27)

_ AP _	 PECS	 P

nPex	
AF	

PECS	 P + (H - H
ECS ) ( 1	 1 )

nef	 nef	 nab
(8.3-29)
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I
It is seen that when the ECS has the same effectiveness as the auxiliary

boiler efficiency that the incremental efficiency of generating export

power is equal to the ECS effectiveness. For this study the auxiliary

boiler efficiency is 0.85 and several energy conversion systems have an

effectiveness of 0.85; therefore, the efficiency of generating export

power is a: high as 0.85%.

nP
ex = nef for 

nef	 nab

This high efficiency underscores the importance of the need for freedom

to export power in cogeneration applications.
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8.4 PARAMETRIC FUEL ENERGY SAVINGS OF SELECTED ENERGY CONVERSION SYSTEMS

From the previous discussion it is observed that fuel energy savings

depend upon whether export power is allowed or not, the ratio of power to

heat required by the process, the ECS ratio of power to heat, and the

effectiveness of the ECS. The ECS parameters are often functions of the

temperature at which heat is supplied. Figures 8.4-1 through 8.4-6 dis-

play the range of fuel energy savings ratio with selected ECS's for heat

matches and power matches for process power to heat ratios of 0.1, 0.25

and 1.0. For most ECS's the fuel energy savings vary from a minimum, shown

as 0, corresponding to a low temperature at which heat is supplied to pro-

cess to a maximum, shown as "e", corresponding to a high temperatue at which

heat is supplied to process. The variations in fuel energy savings with

temperature are due to the variation of energy conversion system power to

heat ratio and effectiveness with the temperature at which heat must be

supplied to process. There are three ECS's whose characteristics do not

vary with temperature. These are the steam injected gas turbine burning

residual fuel, and the distSllate-fired fuel cells. These ECS's show up

only as a point on the plots.

The line identified as the maximum theoretical fuel energy saving is

the fuel energy savings possible only when utilizing a system with an

85% effectiveness and the appropriate power/heat ratio. For heat matches

the maximum theoretical fuel energy savings line would be calculated from

Equation 8.3-22 for an ECS P/1f lcs.; than the process P/H or from Equation

8.3-23 for an ECS P/H greater than the process P/H. For power matches,

Equation 8.3-13 gives '.he maximum fuel energy savings possible as a

function of process P/H. The maximum fuel energy savings for power match:.-s

is given in Figure 8.3-12 for selected process P/H values.

The horizontal axis of the curve. are actually the parameter (P/H)ECS/

(P/H)process- For a heat match, the heat output of the ECS and the heat

required by the process are the same and the term (P/H) ECS /(P/H)process

becomes P ECS /Pprocess' Similarly, for the power match ca —., th° ratio of

ECS to process power to heat ratio becomes H	 /H
process EC,'
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The high power/heat ECS's are missing from the figures corresponding to

the process power/heat of 0.1 (Figures 8.4-1 and 8.4-2) because they

are off scale.

Low Process Power to Heat Ratio

Focusing on Figure 8.4-1, the heat match for a process power to heat

ratio of 0.1 shows than power would have to be exported in all cases.

The power produced by the ECS when sized to match the process heat require-

ments exceeds the process power needs for all cases. For example, if it

were desired to use a stirling engine in a cogeneration application for a

process having a power to heat ratio of 0.1 and the stirling engine was

sized to meet the heat needs of the process, then the power produced will

be from four to six times what is required by the process depending on

the process temperature required.

It is unlikely that the industrial process owner would want to pur-

chase a system that could cost as much as four times what he needs to pay

(its output is 4 times the requirement) to satisfy his minimum needs. In

this situation, if a stirling engine were desired, then he more likely

would select an engine size to meet the process power requirement. This

situation is displayed in Figure 8.4-2 for the power match for a process

power to heat ratio of 0.1. Looking at the stirling engine reveals that

when it is sized to meet the power needs of the process, that it can only

meet from 16 to 25% of the process heat needs (the exact amount depends

on the temperature that process heat is required). An auxiliary boiler

would have to be purchased to provide the remaining 75 to 84% of the

process heat needs.

Intermediate Power to Heat Ratio

Figure 8.4-3 represents the heat match case for a process power to heat

ratio of 0.25. It is interesting that most of the energy conversion systems

here would still be exporting power even at this higher process rower to

heat ratio.
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Figure 8.4-4 is the power match case for a process power to heat

ratio of 0.25. Note that the maximum fuel savings possible has increased

from 13.8% for the 0.1 process power to heat ratio to 24.8%. Also, with

the exception of the PFB and steam turbine at most temperatures, supple-

mentary boiler capacity must be added to provide the shortfall between

energy conversion system heat output and process requirements.

High Power to Heat Ratio

Figure 8.4-5 is the heat match case for a process power to heat ratio

1	
of 1. Only a few of the cogenerating systems in this case would be ex-

1	 porting power.

IFigure 8.4-6 is the power match case for a process power to heat ratio

I	 of 1. It is observed here that most systems would provide more heat than

was needed by the process (Process Heat Required/ECS Heat < 1). The

greatest fuel energy savings are obtainable with an integrated gasifier

molten carbonate fuel cell with steam turbine bottoming followed closely

by the combined cycle.

1
Comparison of Fuel inerg_v Saved Rati., at a Fixed Process Temperature

IFigure 8.4- 7 provides a summary of the fuel energy savings ratio of

the selected energy conversion systems when providing heat to an industrial

j
process at 4000 F for process power to heat ratios of 0.1, 0.25 and 1. The

export power allowed case is the heat match case. If more power is produced

than required by the process, it is assumed to be exported. Any shortfall

in power required versus that produced is assumed to be purchased from the

•	 utility.

j`	 For each bar chart in the figure the results for state-of-the-art

ECS's are shown on the left and fifteen selected advanced ECS's are shown

on the right. These fifteen have been selected as representative of the

various types of ECS's studied. A complete l i sting of the ECS's studied

is given in Table 8.4-1 (taken from Volume II, lable 4-5). The four state-

of-the-art systems and fifteen advanced systwns select PA for Figure 8.4-7

I
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arc identif "^ by the asterisks (*). Several gas turbines with heat re-

covery ste&, generators of various pressure ratius and firing temperatures

were conside., ed but only one o- these was selected for this comparison.

For hoth the state-of-the-art and advanced systems, those utilizing coal

are on the left; tFer those utilizing residual fuel are next followed by

those that can only use distillate fuel.

Several conclusions can be drawn from this figure. The most ob-

vious one is that the restriction of power export would significantly

affect the potential fuel energy savings in the low to intermediate power

to heat ratio process range. The reduction in fuel energy savings be-

tween the no export and export power cases diminishes with increasing

process power to heat ratio.

The electrical conversion efficiency of each system is given at the

bottom of the figure. Note that respectable values of fuel energy savings

can be achieved at low process power to heat ratios even at low ECS elect-

rical generating efficiencies (11 - 18%).
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8.5 BY-PRODUCT OR WASTE FUEL

Several processes have by-product or waste fuel available. Assumptions

on the utilization of waste fuel are reported in Section 3, Volume II. In

performing fuel usage calculations where by-n--.uct fuel was available,

the requirement for fuel energy was always first met with the by-product

or waste fuel where technically feasible for both the nocogeneration and

cogeneration cases. Waste or by-product fuel was utilized in the process

boiler in the nocogeneration case to produce a part or all of the heat

required by the process. All energy conversion systems capable of burning

coal were assumed to be able to utilize waste or by-product fuel with the

exception of	 systems with coai gasifiers. Table 8.5-1 summarizes the

possible utilization of waste or by-product fuels.
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8.6 ENERGY AND EMISSIONS SAVINGS RESULTS FOR REPRESENTATIVE MATCHES OF

ECS's AND INDUSTRIAL PROCESSES

Fuel Energy Saved Ratio Results

Fuel energy saved ratios were computed for all energy conversion

systems (described in Vol,ime IV) matched up with all processes studied

(described in Volume III). The computer-generated results are pre-

sented in Volume VI. A representative sampling of fuel energy saved

ratio results for selected plants and selected energy conversion :,ys-

tems are presented in Table 8.6-1 for power matches and Table 8.6-2

for heat matches. Waste and by-product fuels were utilized where

available and feasible, as specified in the assumptions (Volume II).

By-product or waste fuel increases the fuel energy saved ratio when

used and decreases the fuel energy saved ratio when notused.

For thesc- selected results, the highest fuel energy saved ratio

for state-of-the-art systems is achieved by both the gas turbine and

diesel in both heat and power matches. The highest fuel energy saved

ratio for advanced systems is achieved by the integrated coal gasifier

molten carbonate fuel cell in the heat match case and by the distil-

late-fired molten carbonate fuel cell. Comparing advanced residual

fueled systems, the air-cooled gas turbine and combined-cycle have the

best fuel energy saved ratio. There is no single system that consis-

tently has fuel energy savings higher than all others. Each system

alone performs well in some specific application, but not necessarily

better than all others in that application.

Emissions Saved Ratio Results

The emissions saved ratio is calculated in a manner analogous to

the fuel energy saved ratio. It is simply the rate of pollutant emis-

sions (NO X , SOX , and particulates) for the nocogeneration case minus

the emissions rate for the cogeneration case divided by the nocogeneration

emissions rate. Pollutants resulting from combustion of h — product or

waste fuels were ignored. The emissions saved ratio and emissions saved

by type for each ECS-industrial process matchup are given in Volume V.
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Table 8.;i-1
FUEL ENERGY SAVED RA11O OF COGENERATION SYSTEMS FD : SE-E: - E	 :N'? %T--',Ai

PROCISSES

POWER MATCH

^l	 h	 tD	 O
^-"7

	 w	 au	 t.,
N V
	 ẁ

	V	 V	 h	 4	 4	 i	 ,

FFAT PACKING .26 .261.21 1.19	 .26 1 .26 1	 .19 .24 .21 .12 .26 .Z3	 1.21 1 .10 .19 .24 1	 .21 .19 .18

WALT BEVERAGES .24 .241.19 1.20	 .24 .24 1 .18 1	 .22 .20 .11 .24 .21 .19 1 .10 .20 .22 .19 .20 .17

BLEACHED KRAFT PAPER -- -- 1.22 1.14	 -- .30 .11 .05 .22 .I1 .30 .25 .21 1	 .12 .17 .25 .23 .16 .11

THERM-MECH PULPING -- -- 27 .18	 -- -- .26 .34 -- -- -- .32 .30 .15 .21 31 .29 .20 .27

1NTEGRATED CHEMICAL -- -- .22 .14-- -- .21 .27 .21 .11 .301.2S .23 .12 .17 .25 .23 .16 .21

CHLORINE -- -- -- .2/	 -- -- -- -- -- -- -- -- -- N .29 -- -- .26 1.35
NYLON -- -- -- 27	 -- -- -- -- -- -- -- -- -- .23 -- -- -- .27 1.35

PETRO-REFINING .16 .161.11 --	 .16 .16 .11 .14 .11 .05 .16 .14 .13 -- -- .11 .12 .09 .11

INTEGRATED STEEL -- -- -- .22	 -- -- -- -- -- -- -- -- - 1 -- .26 -- -- .28 .34

COPPER -- -- -- .20	 -- -_ -- 38 - -- -- -- -34	 .11 .2/ -- -- .23 .30

ALUMINA 14 .1/ .09 --	 11 .13 .09 .12 .D9 .04 .13 .11 7 Oj -- - 09 .09 .07

Note	 Matches producimi e • iess heat. or match not Possible because P rocess tercera t u'v rr:uirod exceeds ECS capability.are shorn by

W-

I

1

Table 8.6-2
FUEL ENERGY SAVED RATIO OF COGENERATION SYSTEMS Fa. SEEEL -10	 :N1-ST7'IAL

PROCESSES

HEAT MATCH

STATE-OF-11t Nit

tJ
V LCh I y	 1r C	 'rW a^i h ^W	 V	 i	 h `^

AQ
O	 n i

i
^j /

1
N

y
`

~

a
^^ ^ ,^	 V

O
?- I

W y
Lam..	 l^ ^'+

=

IA. H'sn

I N	
^pyq

Q
o; h

I.'-I ^J

o

a ^

q z	 I

y

4 ` ^n u in y^

FAT PACKING .281.28 .31 .33	 .28 .33 .31 .42 .32 .14 .37 .34 .38 .22 .33 .40 .341.3S I
.36

HALT BEVERAGES Z81.28 .31 .37	 .28 .33 .31 .42

.33

.34 .14 .37 .34 738 .22 .27 .40 .31 .33 .36

BLEACHEC KRAFT PAPER .29 .29 .29 .25	 .21 .36 .17 .31 .14 .4, .31 .36 .22 .29 .34 .33 .28 .36

THERM-MELn PULPING .12 .12 .29 .2S	 .12 .2 Z7 .39 .24 .09 .27 .33 .36 .22 .29 .31 .33 .28 .36

INTEGRATED CHEMICAL rF .io 29 .25	 .Do .26 27 .39 .26 .11 .32 .33 .36 .22 .29 .34 .33 .28 .36

CHLORINE .081.08 1.16 .26	 .08 .i2 .11 .30 .13 .04 .15 .18 .Z9 .21 .29 .22 .21 .28 .36

NYLON .091.09 .15 .27	 .09 .13 .17 .30 .14 .05 .16 .17 .30 .22 29 .23

-

.20_,28 .36

PET RO-REFINI NG 1.27 --	 .18 .26 .26 .39 .23 .09 .31 1.33 .3S -- 28 .31 .28 .36

INTEGRATED S TEEL .06 .06 .12 .22	 .06 .11 .03 .21 .16 .06 .16 .14 .18 ! -26 .13 .17 .28 .32

COPPER -^ 09 .09 .25 1 .25 1 .09 1	 15 .23 .39 .19 .07 .21 .28 .36 .22 .29 .32 .32

ALUMINA - - -' 15 .15 ?6 -_-_L 15 .23 .25 .38 .22 .09 .29 ]3 .31 -- -- .26 .31 .28 .36

hate	 watches	 p rr oduCinV excess	 h e.,:,	 or mAt,"	 nM	 possible because p rocess	 terveretu- re;u l red e n ceeds	 ECC CapabIlItY.
Are	 .hc7	 n	 by	 ---
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A representative sampling of emissions saved ratio resu l ts for selected

ECS's and selected plants are presented in Tables 8.5-3 through 8.6-6.

Tables 8.6-3 and 8.6-4 assume a coal-fired nocogeneration system. Tables

8.6-5 and 8.6-6 assume residual fuel is used as the nocogeneration fuel.

The lower emissions saved ratio, when the residual fuel nocogeneration

case is assumed, results from the fact that the nocogeneration emissions

are reduced significantly in most cases. All systems with the exception

of the diesel save emissions over the nocogeneration case. Of the ad-

vanced coal burning systems, the integrated coal gasifier molten carbo-

nate fuel cell has the best emissions saved ratio of the advanced liquid

fueled systems.



Table 8.6-3

EMISSIONS SAVED RATIO FOR COGENERATION SYSTEMS FOR SELECTED INDUSTRIAL PROCESSES

POWER MATCH

COAL NOCOGENERATION BASE

STATE-OF-TIE ART ADVAMCED

C
yy^	 l..l	 {.^

^	 q°^
V

h O
v

ti
ti

y	 ' y y Q	 '

v
^Kn	 v S y b	 i ^

2
t
{a
u^
	 y	 ^ ^	 ^	 =

Z y	 ^

A = ^,	 { 1	 LJ	 ^	 J ^	 ^	 ^	 U
In tit	 V =	 '^	 W

tp^l	 b	 O	 y	 y	 y y V	 I ~	 r	 W, J

MEAT PACKING .18 .28 .32 1.8 1 .36 .41	 1.12 1.51 .13	 1 .19 1 .18 .111.13 1.03 -.03 .00 1.46 1 .66 .43

HALT BEVERAGES .10 .21 .45 1.1	 .29 .35 .04 .43 .05 .13 .09 .04 .06 -.041-.08 -.06 .42 .63 .39

BLEACHED KRAFT PAPER - - 57 .12	 -- .47 -.121.33 .19 .25 .27 .27 .28 .17 .18 .22 .35 .57 .SS

THERM-MECH PULPING -- -- .53 1.7	 -- -- .26 .84 -- -- -- .19 .20 .09 -.07 -.02 .50 .74 .47

CHLORINE -- -- -- 2.4	 -- -- -- -- -- -- -- -- -- .08 -.13 -- -- .83 .47

NYLON -- -- -- 2.8	 -- -- -- -- -- -- -- -- -- .06 -- -- -- .83 .46

PETRO-REFINING .15 .25 .51 --	 .33 .37 .11 .36 .09 -- .14 .15 .15 -- -- .02 .48 .58 .47

INTEGRATED STEEL -- -- -- -1.91 -- -- -- -- -- -- -- -- -- -- -.08 -- -- .79

COPPER --

^im

2.2 -- -- -- .97 -- -- -- -- .16 :0:2:r-18 -- -- .76 .44

ALUMINA 12 --	 31 .35 .091.31 .08 .21 .12 .15 .15 -- .02 .48 .56 1	 .47

Note:	 Matc her s producing excess heat, or match not possible because process temperature required exceeds ECS capability.
are shown by --.

Table 8.6-4
EMISSIONS SAVED RATIO FOR COGENERATION SYSTEMS FOR SELECTED INDUSTRIAL PROCESSES

HEAT MATCH

COAL NDCOGENERATION BASE

AMC ED77AII -OF, T'll

l^
 ^	 d ^	 ^	 y U	 ~ V	 V h O O 4` ^ t^

HEAT PACKING .20 .29 .43 2.6 .37 .49	 1 ,28 1,0	 1,26 1.20 1 30 .16 .22 .06 -,Obi011,49 ,86 .46

MALT BEVERAGES .15 .25 .50 2.2 .33 .46 .26 1,0 ,25 .16	 1 ,27 ,13 ,21 .05 -,061-,031,48 .86 ,45

BLEACHED KRAFT PAPER .26 .35 .56 2.2 .41 .54 .16 1,0 .27 .25 37 .26 .27 ,09 x,07 .10 .54 .82 1.50

IMITIE -KCH PULPING 11 .17 .53 2.6 21 35 27 1	 0 2 18 25 19 22 07 1 S

CHLORI NE .10 .29 2.S .13 .20 .17 .73 .11 .09 .14 .11 .13 .07 -.13 -.01 .32 .85 .47

NYLON .09 .20 2.8 .11 .18 ,15 ,72 .10 ,07 ,13 .08 .17 .06 ,13 -.O1 ,29 .85 .46

PETRO-REFINING .27 .51 -- 34 .47 .26 1,0 .20 .21 28 .19 .21 -- -- -.14 .49 .85 .47

INTEGRATED STEEL

107

.08 .26 2.2 .07 .18 .03 .82 .11 .11 .15 .13 .15 -- -.D8 .OS 29 80 .46

COPPER .07 .41 2.7 .11 .22 .1I 1.0 .11 .08 .13 .10 .17 .OS -.19 -.11 .46 .85 .45

ALUMINA .24 .51 -- .32 .36 1	 .25 1.0 .19 .21 .21 .19 .20 -- -- -.11 .49 .85 .47

Note	 Matches p roducing excess heat, or match not Possible because process temperature require exceeds ECS capability.
are shorn by - -.
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Table 8.6-5
EMISSIONS SAVED RATIO FOR COGENERATION SYSTEMS FOR SELECTED INDLSTR:AL 3ROCESSES

POWER MATCH

RESIDUAL NOCOGENERATION BASE

STATE-OF-TIE AST

-.A

r 

	
AV

O

y

v 
q a ^ W ^	 ^	 j	 ^V	 ^	 W	 vUl	 v	 t.., ^	 ~	 ^

^

rr	 O^	 ^Nyr ^y?Q A ,	 r•fO O
r y	

y	
^	 r	 ^ ^	 C1 0 ^ yr	 ^	 `^	 ^ =	 Q 

Note:	 Matches producing excess heat, or match not possible because process tem perature requ' red exceeds ECS capability,
are shown by

Table 8.6-6

EMISSIONS SAVED RATIO FOR COGENERATION SYSTEMS FOR SELECTED INOCSTK;AL DRO=ESSES

NEAT MATCH

RESIDUAL NOCOGENERATION BASE

SiRTF-QF•TIE AR7

	

aoT	 C

V	 a	 Q ^ C	 v U	 ^	 O	 ^	 Q	 4 y ^	 ^ C*
^ 	 4-5	 ^	

v	
I ^ ti^	 ^ 	 w  

Q ^	 ^	 O O
U	 ^	 ^ 4	 y	

QOWC	 l r 	 i^	 ^	 w	 v^ h	 w	 V	 ^	 h ^	 ^	
4

Cat

r	 cp	 ^	 ^ rn	 y a = V^^^	 v	 '	 r	 ti	 ti W
y	 ^	 a W y	 H ^N17	 ^ H J̀ ^^ ^ 

r
V ^	 ru y	 =	 V	 U

V,	 h	 L	 O	 4	 H v	 ti	 ^	 V	 y	 O C	 4^	 kW4 	 W W

MEAT PACKI%	 .20	 .29	 .43	 2.6	 .37	 .49	 .28	 1.00	.16	 . 2 21 . 1 5	 1-.06	 as

MALT BEVERAGES	 .20 i .29	 .43 -2.52	 .31	 .49	 .28	 1,00	 .28	 .20	 .30	 16 1	.22	 .Co	 -.03	 .01	 .49	 .87	 .46

BLEACHED KRAFT PAPER	 .21	 .30	 .46	 -2.4e	.37	 .51	 .13 1.00	 .24	 .21	 .35	 .22	 .25	 . 12	 .OS	 .06	 .52	 .81	 .09

T:':ERN-MECH PULPING	 .06	 .13	 .42	 -2.8 5	.17	 .32	 .24	 1.00	 .17	 .ld	 21	 .15	 .19 .16	 -.17	 -.08 1 .48	 .85	 .46

CHLORINE	 .05	 . P 3	 .21 r-2.85	 .10	 .18	 .15	 .72	 .09 1	.07	 .12	 .08	 .16 1 .C5	 -.16	 -.03	 .31	 .85	 .46

NYLON	
.06	 .09	 .20	 279	 .11	 .18	 .15	 .72 1	.10	 .07	 .13	 .OB

	

.17 1 .;5	 1-12 1 -01	 .29

PETRO-RE,	 u	 .03	 .19	 .41	 -	 .28	 .43	 .23	 1.00 1	.15	 .16	 .24	 .IS	 .lE	 -	 -	 -.19	 .47	 .85	 .46

INTEGRATED	 STEEL	 .03	 .06	 .19	 2.39	 .OR	 .16	 01	 .81	 .12	 .0"	 14	 .11	 .13	 -	 -.10	 .03	 .27	 .80	 .44

COPPER	 .OS
	

1,10	 .35	 -2.87 	 .13	 .24	 .10	 1.00	 .13	 .11	 .16	 .13	 .19 	 -.11	 -.U1	 .48	 .85	 .46

ALUMINA	 .OS	 .16	 .40	 -	 .25	 .41	 .21	 1.00	 .14	 .16	 .21-.23	 .47	 .95	 .46

Note:	 Matches p roducing excess heat, or match not possible because process	 temDerature rtquired exceeds ECS capability,
are shown by	 -	 .

y4 ^	 yr	 y+ 	 ^02	 2r

b ^ ^ W ^K y	 l'1	 O

^̂ ^	 r?^/ y W	 V	 r	 H ^4	 w	 ^	
4 C5

C	 4 i
rJ

N. ^	 V lJy
^S?./

^ Oy J = ^ ^ ^ r
my{l	 Z! ^' H V V'	 LJ V1	 Q 0 ^ kcL ^ ^

NEAT PACKING .18 .28	 .32	 1.77 .36 .41	 .12 .51 .13 .19 .18 1 .11 .13 .03 1 -.03 1 0 .66 .46 .43

MALTLT •16 .26	 .30	 1.65 .34 .39	 .10 -46 1 .11 .19 .15 .10 1 .12 45 .65 .43

BLEACHEDKRAFTPAPER - -.41 011 - .43-- .13 .20 .22 .221 .23 52 .54 .52

TNERFt-!'ECHPULPING 402.34 - .22 .83 1: .lE ,47 .72 .45

CHLORINE .82 .46

NYLON 2.7L _ _ -

fli

- .83 .46

PETRO-REFINING .06 .18.21- .26 .31.02 .29 .0 .14 .06 06 .07 .d3 .54 .42

INTEGRATEDSTEEL - - z.t9 - -- - - .79 .a8

COPPER -55 '-.97-.77.45

ALl91NA .03.15.24.26.O1.23-.02.13.03 	 .42	 .52	 .42



Section 9

ECONOMIC EVALUATION OF COGENERATION SYSTEMS

9.1 INTRODUCTION

One of the most important considerations effecting an industry's

decision as to which type of cogeneration system to install, or whether

to put in a cogeneration system at all, is the relative economics of

the alternatives. Since World War II there has been a steady decline

in the amount of power that industry has generated in-plant. In 1978

it was approximately 10%. One of the primar y reasons for the Jecline is

that the utilities offer power at a lower price than what it would cost

industry to generate it. For instance, the national average price for

purchased power to industry in 1978 was 25.9 mills per kWh even though

the cost of power from a new utility base loaded plant is approximately

40 mills per kWh. This lower price results from the fact that the

utility costs are based on its entire system consisting of a mixture of

plants, many of which were built at much lower capital cost than new

plants. Industry, on the other hand, considering a new cogeneration

plar,; at high capital cost, has often found that they could not save

enough in energy costs to justify the additional capital cost over in-

stalling a process boiler and purchasing power from the utility. As a

result cogeneration plants were installed only in those industries which

had several characteristics favoring their economics such as large

quantities of waste fuel (as in the case in many pulp paper plants),

steam requirements of over 100,000 pounds per hour and continuous op-

eration (so the utilization of the power plant equipment was high).

In the future with the prospects of fuel costs rising more rapidly

tr.an capital costs, the significantly better fuel efficiency and resulting

lower fuel cost of the cogeneration type power plants will make their

9-1



relative economics more attractive than in the past. Th.s rapidly

rising energy cost is increasing the energy portion of the costs of

production so that capital expenditures to reduce the cost of energy

will receive much higher industrial management priority than in the

past. The economic criteria typically used by industrial management

in deciding bE'tween alternate methods of satisfying their power and

process heat requirements are:

1. Minimum capital cost

2. Rate of return on investment (ROI). The rate of return (de-
crease in energy cost) on the investment (increase in capital

cost) must exceed a "hurdle rate" for that industry

3. Minimum cost of energy.

Until recently industrial management tended to weigh criteria 1 and 2

most heavily in their choice which emphasizes the short term effects.

Now more consideration is being given to the longer term trends in fuel

and power availability and the resulting increasing energy costs.

Since industrial ownership is primarily emphasized in this study,

these selection criteria establish the type of economic parameters that

are used in comparing the relative merits of the state-of-the-art and

auvanced technology cogeneration systems for a particular industrial pro-

cess application. The first economic parameter is total capital cost

including interest during construction of the power plant. Second is the

discounted cash flow return on investment called ROI. ROI is the discount

rate which makes the difference, in discounted after tax cash flows, of

two alternate power plants over their economic life equal to their dif-

ference in capital costs. It is also analogous to tne interest rate

which would be obtained if the capital were loaned as an investment. So

ROI is a measure of the profitaoility of the investment and takes into

account the time value of money, taxes, depreciation and the escalation

of operating expenses such as fuel and revenue from the export of surplus;

power. A good indicator of criteria 3 is the levelized annual energy cost

(LAEC) of the power plant. LAEC is the constant total cost of energy each

year over the economic life of the power plant and includes the cost of capi-

tal and the recovery of the initial investment including all expenses,
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operation and maintenance, taxes and insurance, fuel and purchased power

or revenue from export power. It is analogous to the utility method or

calculating the cost of electricity in dollars per kWh except here it is

in total cost per year for the power plant. The term "levelized" means

that the escalation of expenses like fuel is taken into account by finding

the total "present worth" (1) of the expense over the economic life of the

plant and then finding the annual payment required to pay off this total

expense at cost of money (interest rate; for the project.

A more detailed explanation of the .oncepts behind ROI and LAEC is

given in the fallowing sections. The detailed equations and basic

economic groundrules; e.g., cost of money, years of economic life, fuel

and power costs, etc. were established by NASA-LeRC after consultation

with the CTAS contractors. One important groundrule laid down was that

the ROI and LAEC are calculated in constant 1978 dollars with zero in-

flation. This means that the cost of money (interest) rates, discount

factors and expenses do not include the effect of inflation; e.g., the

cost of debt used in the calculations is 3" and not the 9" interest rate

prevalent when the inflation rate was about 6". The following equation

converts the ROI calculated in this study to the ROI i normally used that

includes the effect of inflation:

ROI i = (1+ROI)(1+i) - 1

(1) The "present worth" or sometimes called "discounted" value of $1 re-

ceived 10 years from now in 1978 dollars at an inflation rate of 7

and a cost of capital (interest rate) above inflation of 5" for a

total discount rate of (1+.07)(1+.05) -1 = 0.124 is

Present Worth of $1 = — 1 10 = $.31
(1.124)

in 1978 dollars.	 In this study all calculations are done in 1978
dollars, which is another way of saying that the inflation rata is
set equal to zero in all calculations unless specifically noted.

9-3



where

ROI i includes inflation

ROI is calculated with inflation set to zero as in this study

and

i - rate of inflation per year over the economic life

Escalation of expenses above inflation such as feel and power is included

in the calculations.

During the study a simple method of plotting the LAEC, capital cost

and ROI of the atlernate power plants for a specified industrial process

was developed which gives an excellent graphic understanding of the re-

lation betweec. these parameters and how they would affect the selection

of the best alternative energy conversion system based on the above economic

criteria.

In the followink- subsections the uroundrules and

costs, analytical methodology and economi ,_ results of

matches of the various powe r plant/fuel types with app

ferent industrial processes will be discussed. Also,

of capital cost, fuel and purchased power cost on ROI

described.

fuel and power

the power and heat

)roximately 50 dif-

the sensitivities

and LAEC will be

O- I



9.2 METHODOLOGY AND GROUNDRULES

The work flow diagram shown in Figure 9.2-1 shows ir-put data re-

quired and the economic groundrule factors used for each particular.

cogeneration ECS-industrial process match in the analyses of the economic

evaluation. Because of the very large number of matches to be evaluated,

nearly all the analyses were performed by computer usin g the CTAS Cogen-

eration Evaluation Data System.

The economic analysis of a given cogeneration system matched to

an industrial process in this study is always made by comparing the

matched cogeneration system to the nocogeneration system base case.

Two types of nocogeneration base cases were studied; namely,

1. Coal-fired nocogeneration boiler base case used fQr comparison
with all heat and power matches larger than 30x10 6 Btu/hr
process heat requirements. For less than 30x10 6 Btu/hr, a
residual oil-fired boiler is used.

2. Residual oil-fired nocogeneration boiler base case used for
comparison in all heat and power matches.

Primary emphasis is placed on the matches using a coal-fired nocogen-

eration process boiler because we belie ,T e the majority of medium and

large industrial plants putting in new power plants iii the 1985 to 2000

year time frame would be required to consider only coal-fired boilers.

As will be seen, the use of coal or residual-fired boilers as the nocogen-

eration base case has a significant effect on the ROI and levelized annual

energy cost savings (LAECS) of the various cogeneration systems.

After consultation with the CTAS contractors and DOE, NASA-LeRC

established the detailed methodology to be utilized in calculating the

ROI and LAEC (1) and the specific values of parameters such as Lost o'r

capital, tax depreciation life and fuel costs which were held constant

in the calcule.tion of all of the matches. These parameters and the

values used are shown in Table 9.2-1.

(1) "Groundrules for CTAS Economic Analysis"; August 1978; NASA-LeRC
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Notice that the first item in the table, the annum inflation rate is

set- equal- to zero. This is very important to remember in comparing

the results of CTAS with other economic studies. For instance, a value

of 9"' ROI calculated in CTAS is equivalent to an ROIi of 15.5"; 1(1 +.09)

(1+.06) - 1 = .155 or 15.5°] because the cash flow included 6"', inflation

(sometimes call current dollars). Also, an expense item in CTAS such as

cost of coal, is given as its cost in 1985 in 1978 dollars of $1.80

(sometimes called constant dollars) with an escalation above inflation

of 1".	 In a study where inflation at 6": is included, the cost of coal

in 1985 (sometimes called current dollars) is 1.80 (1+.06) 7 = $2.71 where

the exponent 7 = 1985 - 1978.	 In our opinion, economic analysis is more

realistic when the inflation rate is set equal to zero because when in-

flation is included, the calculated ROIi is misleadingly high since future

inflated savings or cash flows have less purchasing power than constant

non-inflated dollars. Finally, inflation rates are changing rapidly so

that comparison of the results of studies done at different inflation

rates are difficult to compare and "rules of thumb" cannot be deduced.

This whole problem is eli-nnated if the analysis is performed in constant

dollars with zero inflation and, if desired, the results converted to cur-

rent dollars with inflation.

Referring to the values of cost of debt equal to 3` and equity capital

of 7 in Table 9.2-1, they seem very low. Again, this is because these do

not include inflatirn and are the values commonly used by investment

analysts. The 30 to 70' split in debt to equity fur capital investments

is typical of many in d_ustries. A change from current IRS re q ulations is

the use of a 15-year tax depreciation life. Currently industrial power

plants gene rati,iq over 500 kW or 12,500 pounds per hour steam are classed

;r, ''IndL.-Arial Steam and Electric Generation Systems" with a "quideline"

de[ , rociation -life o f 2R years.	 Prior to several years a(io, industrial

;)ower plants were clas sed the sane as process equipment with a reqPre-

,,cntrrtive tax depreciation life of 15 years and in our o,>inion the IRS

will roduce power plant de p reciation in the future to its former level.

rT
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i	 Table 9.1-1

ECONOMIC ANALYSIS GROUNDRULES

(All Costs are in 197P Constant Dollars),

Factor

Annual Inflation Rate

Cost of Debt (before taxes) Above Inflation

Fraction of Debt in Capital
Cost of Preferred Equity Above Inflation
Fraction of Preferred ^quity in Capital
Co p t of Comr.-,on Equity Above Inflation
Federal E State Income Tax Rate

Tax Depre2iation Meth2

Tax Depreciztion Life

Salvage Value
Investment Tax Credit
Local Real Estate Taxes ar.d Insurance
Useful Life of Investment

First Full Ye;,r of Operation

Ca p ital Cost Escalation Rate Move Inflation

Value

0

3,

30Z

0
1

50'

S::- of Years D i
15 years

0
10 °-.
3

30 Years
1990

0

Cost of Fuels, Power 8 Expenda'les for 1935 in IG7S S's

i	 Coa'

Distillate Oil ;Petroleum or Coal - Derived`,

Residual Oil (Petroleum 	 Coal-Derived)

Natural Gas

Purchased Power

Exported Power

LirK-^tone

Dolomite

Escalation of Fuels & Power Above Inflation

Coa l

Distillat-_ O i l (retroleu or Coal -Derived`
i	 Residual Oil (Petroleum or roal-Derived)

Natural Gas

rirchased S Exported Power

L1 s tone
Doi nr-,j to

i
I
i
I

S 1.80!106 ..0

S 3.10;'106
S 2.^0'lD	 _'u
S 0.033/ k'W.'
0.5 x purc^a,e

7 e  r3,e

Slu.0C/Ton

51-7.50/ion



All power plants for the purpose of the economic comparison were

assumed to begin their first year of operation January 1, 1990.

Actually, some types of advanced cogeneration systems; e.g., thermionics,

could not be developed to a commercial state by 1990 but the same date

was assumed for this system for ease of economic comparison.

Of the groundrules specified, the fuel and power costs are prc-

bably the most controversial. The fuel and power costs in Table 9.2-1

ire the base values used in the study but sensitivities of ROI and LAEC

to wide variations in nocogeneration and cogenerratica fuel and power

rests were calculated to stud y the effect of various differentials be-

tween coal, oil and coal-derived liquids. The results of this sensi-

tivity analysis are presented later in this section.

0



9.3 RETURN ON INVESTMENT (ROI) ANALYSIS

ROI is the discount rate which makes the difference in discounted,

after tax cash flows for two alternative power plants over their economic

life equal their difference in capital cost. The term "discounted" refers

to t::c% fact that $1 received ten years from now has a discounted value of

S.31 today if during these 10 years the inflation rate is 7A and the cost

of capital (interest) above inflation is 5%. The reason is, it only re-

quires that 1 1.00	 = $.61 be invested today to be paid $1 ten years

1from now at 5% interest, but the $1 received is only worth  
( 1 +.07) 10 = $.51

in purchasing Power. So the combined effect of interest and inflation is

1 = S.31 and the quantity (1+.07) (1+.05) -1 = .124 is
F 1+.07)x l +.T-5T 0

called the discount factor and the S.31 is called the "discounted" value

or ' p resent worth".

dash Flow Calculations

.n this study cash flow, S., is calculated `or each yea- of operation

aver the economic life, n, of the plant and s definec as:

	

= Cash Flow - Kevenues - -ash Cpera t in q Expenses - income lax 	 (9-1)

6r^ere .re i rcc ne --ax, 7, i s :

	

:ncome "ax = :nccme Tax =sate Revenues - Cas- Cpera.inc Ex penses	 (9-2)

- 'ax Cepreci a `ion) - :nves t:ne n L 'ax Credit

;i^ lified exar'p ie of the calculation of the R01 of a case case no-

-.n,Pnera*_ion and a --eneraticn alternate investments whose paramC.,ers

arp shown in Ta le 9.3-1 will assist in understand na the R01 concept.

9-10



Table 9.3-1

SIMPLIFIED ROI CALCULATION

Nocogeneration	 Cogeneration

Case	 Case

Capital Cost, C, $	 1000	 2000

Revenue, Q
j,EE

, $/yr	 0	 50

Cost of Purchased Power, Q.,
,J ,EP , 

$/yr	 500	 0

Cash Operating Expense, Qj,F, $/yr	 100	 200

Depreciation, Qj,DEP' $/ yr	 100	 200

Income Tax Rate, t, fraction	 0.5	 0.5

Investment Tax Credit, c, fraction 	 0	 0.1

Economic Life, n, years	 5.0	 5.0

Escalation of Expenses, e, q	 0	 0

Income tax and cash flow for base case using equation ( 9-1) and ( 9-2) are:

Co g eneration Case

Income Tax 
BASE= 

0.5 (50 - 200 - 200) - 0.42000 = -$375 (1st year)

= 0.5 (50 - 200 - 200) - 0x2000 = -5175 (2,3,4&5th year)

Cash Flow	 =(S 6 GEN = 50 - 200 - (-375) = $225 (for 1st year)

50 - 200 - (-175) = $25 (for 2,3,4&5th year)

Noco eneration Cas e

income Tax 
NOCOGEN= 

0.5 (-500 - 100 - 100) - 0x1000 = -$350 (1,2,3,4&5th yr)

Cash Flow 
=(S

j6COGEN - -500 - 100 - (-350) _ -$250 (1,2,3,4&5th years)

The definition of ROT defined above can be expressed algebraically as the

,clue of ROI wi;ic^' satisfies the equation:

_	 _	 Ii ) CO GEN	 (Sj)NOCOGEN

` OOGEN	 CNOCOGEN	
(1 + ROI 3	 (^-3)

^T	 )

9-11



Table 9.3-2 shows the difference in cash flows and present worth of the

cash flows when the final calculated ROI is used as the discount factrr

so that the sum of the present worth equals the difference in capital

costs of the cogeneration alternative and nocogener? p ion base case. The

actual calculation of the value of the ROI is iterative until the value

of ROI is found which satisfies equation (9-3) as shown at the bottom of

Table 9.3-2.

T;b;e 9.3-2

EXAMPLE ROI SOUITION

Present Worth	 Present Worth
Year	 A Cash Flow	 Factor	 of A Cash Flow

j	 (S j ) COGEN	 ( S j ) NOCOGEN	 ---	
( S . )	 - (S . )

COGEN3	 3 NOCOGEN

(1+ROI)j

ROI = 0.1944	
(1+ROI)J

1	 225 - (-250) = 475 .837 397.67

2	 25 - (-250) = 275 .'Jl 192.75

3	 25 - (-250) = 275 .587 161.37

4	 25 - (-250) = 275 .491 135.10

5	 25 - (-250` = 275 .411 '113.11

$1575 $1000.00

5

C	 - C	 = 2000 - 1000 =	
(Sj)COGEN	 (Sj)NOCOGEN 

= 1000.00
COGEN	 NOCOGEN	 L	 (1+ROI)'

j=T

For RCI = 0.194 or 1 9.4`-	 — A
In this simplified example the economic life was taken as 5 years and as a

result the RGI is 19.4" sirice the sum of the five years' cash flow is only

$1575 or $575 more than the difference in capital cost. Had the economic

9-12



life been 10 years with a continuing cash flow of $275 per year the ROI =

30.2; for 15 years 31.9% and 20 years 32.3%. In the actual ROI calcu-

lations in CTAS the economic life is 30 years and in all matches but

those having a low ROI, the ROI does not increase much beyond 15 years.

The detailed calculations used to compare the ROI of the various

cogeneration systen-industrial process matches will be discussed in the

following paragraphs, each of the parameters used will be defined and the

values of the economic groundrule factors shown to aid in understanding

their impact.

Caul Investment

The ca p ital cost, K, without interest and escalation above inflation

during construction was described in Section 7. In the ROI and LAEC

calculations a total capital investment, C, is used which includes these

additional costs and it is calculated by using the groundrule parameters

shown in Table 9.2-1 and the equation:

(9-4)C	 k. k	
K(i+e.)('N*-1978-C.5)-L

m e	 K

Where

v	 Capital investr-*nt including cost of capital and escalation
during construction

km	Cost of ca i tal factor - 0•418mL

k = Escalation factor	 _ J52`L - 1.0e

K = Capital cost in !Q70 S's 'wi thout constr u ction cost

e^ - Capital most escaia±ion i? Ius inf1at.icri rate = O + 0	 3

N'F = r i rs t f iii 1 year of opera te i u-n	 990

L	 Design anc, constructJ on time in Ve_^rs = 3

Base of natural 1`f;aritM1'1is

rr.	 Cost of capital Before ^,_ xes and w i thout i nfl at i on =
F +f	 ;
I v i Dl	 pi p 

+ 
fCJ ^:

(0.3 ., 0.03) * 0 x - 4 0.i x .0. 07 - i ,058



For example for a construction time L = 3 years, the ratio of capital

investment to capital cost is:

k = X0.418 x 0.058 x 3 = 1.075
m

k= 
F0.562 x 0 x 3	

= 1.000
e

(I + ek) (N*-1978-0.5)-L = 0 + 0) (1990-1978-0.5)-3 = 1.000

K
= 1.075 x 1.000 x 1.000 = 1.075

Revenue From Sale of Power to Util ity

If a hea" match of the cogeneration system to the industrial process

produces more power than required by the process, the surplus is assumed

to be exported to the utility grid and a revenue received at a rate of

0.6 ti;iles the rate paid for purchased power. Actually the setting of this

export power rate is a complicated function of the particular utility s ys-

tem involved, load profile, reliability, etc., but for the purpose of

comparing the economics of the various cogeneration systems the 0.6 pur-

chase power rate 's used. The yearly revenue is given by the expression:

Qj,EE = MWEEx103xhxpEE(1+epE)(N*-1985-0.5)+J, 5/yr
	

(9-5)

where

Q
j,EE = Revenue from sale of power to utility, $/yr

MW EE= Average power exported, MW

h	 = Plant operating time, hr/yr

PEE	
= Price received for export power in 1985 in 1978 $/kWh

= 0.0198

e pE	 = Rate of inflation plus escalation of power price above

inflation = 0 + 0.01 = 0.01

N*	 = First year of full operation = 1990

J	 = Years of plant operation = 1, 2, 3, etc. to 30

9-14
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Purchased Power Expense

When the nocogeneration system is supplying the industrial process

or the cogeneration system is heat matched and has a lower power over heat

ratio than the process, power must be purchased from the utility. The

equation for the expense of purchased power in year J is:

Qj,EP - MWEP
x10 3 xhxp EP (l+e pE )

(N*-1985-0.5)+j , $/yr	 (9-6)

where

MW EP = Average power purchased, MW

P
EP = Cost of purchased power in 1985 in 1978 S/kWh = 50.033/kWh

epE = Rate of inflation plus escalation of price of power above

inflation = 0+0.01 = 0.01

Purchased Fuel_ Expense

The expense per vear of fuel is calculated using the expression:

t?J,F = FxhxpC(I+ePC)(N*-1985-0.5)+J, S/yr	 (9-7)
F

where

F	 = Total average power p lant fuel, 106 Btu/hr

P C
	 = C;z;t of fuel in 1985 in 1978 S/10 6 Btu (51.80 for c'-al,

53.10 for residual or 53.40 for distillate)

e . = k^:i^e of inflation plus escalation of fuel price above inflati
PC
	 on

(.
0 + 0.(11 - 0.01 for coal and oil

As mentioned above, the relative costs and escalation rates assumed for

coal and oil are_ always subjects for heated debate; e.(,,., the .ippruximately

5H i.-:crease in OPEC crude this year has hrOUght the priC0 of ail to the

value assumed in the study for 1985.	 Ir addition there i ; no differentia-

t. i c 	 i n this s ^ _;dy bF fween the co:^ t of petrel eui: de ' i ved	 1 s (P-.	 and

S



coal derived liquids (CDL). While today the cost of CDL is projected as

being higher than PDL, in the time frame of 1990 to 2020 when the plants

in this study are assumed to operate, this may be an accurate assumption.

As we will see below in the sensitivity studies, the fuel price differ-

entials are very important in determining the relative economics of the

various cogeneration systems.

Operating and Maintenance k08M) Expenses

The 08M expense per year, QOM , for the various power plant systems

for 1985 in 1978 dollars is calculated from the following equation:

QOM = L(F) M + N(C) + P(Fxh) x 10 -5 , $/yr

where

L, M, N, and P are given in Table 9.3-3 and ECS's in Table 8.4-1

F )s the fuel flow in Btu/hr and h is operating hours/yr

and C is the total capital cost in dollars

Escalation of O&M costs are added by using the equation:

Qj,OM	 QOM ( l -eOM )
(N*-1985-0.5)+J

, $/Yr

where

QOM = Operating and maintenance cost in 1985 in 1978 $iyr

e0M = Rate of inflation plus t.,calation of 0&M above inflation

= 0 + 0 = 0

Local__ Taxes_ and Insurance dense

The following eqL , tion is uses! in calcuiatinq this expense:

Q j J = P C , $/yr	 (9-9)

where

p = Fraction of capital investment for local real estate tax and

insurance = 0.02

C - Capital inaestmen: including cost of capital and escal-,ion

during construction.
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With inflation it is more accurate to include the term (1+eT)(N*-1985-0.5)+j

to account for the probable increase in real estate taxes and insurance

with inflation. Since the study was done with zero inflation this term

has a value of one.

Dep reciation

Depreciation is calculated i*or each year of tax 1 -, u r-inq Sum of

Years Digits method from the following equation:

Q
DEP = 

2 hT	 j) C ' S/yr, n^T t (9-10)

where

0
j,DEP = Depreciation deduction in year, j, of U—Aeration, S/yr

_115- '1C	 = (15-	 C
15 1 15 + 1)	 120

	

T	 = Tax life of power plant = 15 years

	

C	 = Total capita	 ;nvestment, S

Cash Flow Calculations

Cash flows for the nocogeneration base case, 
S i NOCOGEN' 

and alcer-

nat ., ^:noeneration system, S  
C0GEN' 

are calculated for each of the 30 years

of operation.  using Equatiors (5), (6), (7), (8) , (g) b (10) and substitutinq

these values into Equation (2) to obtair the income tax and Equation (1)

for the cash flow.	 In these cash flow equations:

Cash flow = S  =

Revcnue _ Revenue from sal£ of power to utility Q j,EE in

equation (9-5),

9-18



+ Cash Operating Expenses

= Purchased Power, Qj,EP , in equation ( 9-6)

+ Purchased Fuel, Q. 
IF* 

in equation (9-7)

+ Operating & Maintenance, Q
j,OM

, in equation (q-R)

+ Local Taxes & Insurance, Q.
J T, 

in equation (9-9)
+

- Income Tax =

Tax rate (Revenue - Cash Operating Expenses - Depreciation)

- Investment Tax Credit

ere

Depreciation = Qj,UEP in equation (9-10)

Investment Tax Credit = cC for year j = I only.

The above cash flows are then substituted in equation (9-3) in the

manner shown in the simplified example of .ble 9.3-2 and the ROI calcu-

lated.

This calculation methodology was programmes into the computerized

CTAS Cogeneration Evaluation and Data System. An example of a computer

printout of the cash flows for a PFB Steam Turbine - 1465/1009 cogeneration

system power matched to the hypothetical industr.al process plant is shown

in Table 9.3-4 and the cash flows for the corresponding coal-fired nocogen-

eration system are shown in Table 9.3-5.

The results oi- the ROI ar.aly;is for all of the cogeneration/fuel sys-

tems heat and sower matched to all of the industrial processes are shown

in Computer Report 5.2, Section 12.1 for the base case of a coal-fired

nocogeneration process boiler and in Section 12.2 for the base ca ,-.e of

an oil-fired nocogene-ation process boiler. A sample of a computer
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printout from these reports is shown in Table 9.3-6 for about one half of

the cogeneration fuel systems (ECS's) matched to hypothetical industrial

process #10132 requiring 30 MW of electric power and a power/heat ratio

of 0.25. The first ECS is the nocogeneration base case using a residual

fired process heat boiler. The cogeneration fuels by type shown are for

the on-site power plant plus the utility fuel consumed if power is pur-

chased or minus if the cogeneration fuel or fuel saved includes the saving

of utility fuel. The nocogeneration minus cogeneration fuel or fuel saved

includes the saving of utility fuel. For each cogeneration system/fuel

combination the data is shown for the ECS sized for matching process power

requirements if the cogeneration system does not produce a surplus of pro-

cess heat and the next line shows the data for the ECS sized to deliver the

process heat required; e.g., both matches are shown for the PFB STM. If the

ECS only appears once in the tabulation, the power match case produces ex-

cess heat and is not shown; e.g., the residual fired, coal-FGD (F) and coal-

AFB (A) STM141. Usually comparison of the data in the column on power re-

quired by process and the column on cogeneration power produced indicates

which type of match is shown. An exception to this last rule is the above

three STM141 matches which are actually heat matches but also almost match

the power required within the roundoff of the data. "O&M" is in 10 6 dollars/

year and includes only the on-site power plant. "FESR" is the fuel energy

saved ratio. Capital cost is the on-site power plant capital cost, K, with-

out interest and escalation during construction and "norm cost" is the ratio

of the cogeneration over the nocogeneration on-site capital cost. The

column labelled $/kW equivalent is the ECS capital cost divided by the ECS

fuel input and should be ignored as it did not prove to be a helpful indi-

cator. Finally, the ROI's are shown for each cogeneration system-fuel ECS

match where the nocogeneration base case is shown as the first system in

the listing for a particular industrial process. A ROI of 0 indicates that

the sum of even the undiscounted cash flows over the 30-year life was less

than the difference in capital cost between the cogen and nocogen cases and

thus the ROI = 0. An example is not shown here on this sample computer

printout, but often the ROI is shown equal to 999. This usually means that

the capital cost of the cogen ECS is less than the nocogen case and is most

often found in the case where coal-fired nocogen case is compared with an
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Table 9.3-7
RETURN ON INVESTMENT OF COGENERATION ENERGY CONVERSION SYSTEMS COMPARED TO

NOCOGENERATION IN SELECTED INDUSTRIAL PROCESSES

POWER MATCH

COAL NOCDGENfRATI0N BASE

StW-OF-TNE MT

' 	 Vl	 ^ U	 >C ' ^ ^ ^y ^ ^
Akc

v2 h /.v /^ Q p y of

Note:	 Matches producing excess heat. or match not possible because process temperature required exceeds ECS capability,
are shown by --.

r—	 •

Table 9.3-8

RETURN ON INVESTMENT C' COGENERATION ENERGY CONVERSION SYSTEMS COMPARED TO
NUCOGENEs;=T10N IN SELECTED INDUSTRIAL PROCESSES

NEAT MATCH

COAL NJCOGENERATION BASE

STFt - i -(M ART	 Ap xfa	 w	

dQ

CT	 ^ ^ ^ ^ v N ^ ^ ^ ^ ^ y v	
O Q

^	 '	 .	 U	 ^••r	 .	 V ,p̂  ^	 ^ 	 aY	 ^	 H
a	

^vs
 
Q) q 	yam.	 ^^l y  W  U	 i	 y^	 O	 '-L 	 y^i

Ix,	

Qc

Ic

cc

^	 N	 U	 O	 4 ^	 '^	 h V	 ~	 4p	 ^ of	 O O	 4	 y	 L^

NEAT PACKING 	 6	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 . 0 1	0	 0	 0	 0	 0	 0

HALT BEVERAGES	 12	 999	 u	 0	 24	 8	 0	 0	 8	 0	 0	 -22 	 0 1 - 0	 0	 0	 0	 0	 0

BLEACHED KRAFT PAPER	 42	 999	 499	 0	 999	 49	 6	 7	 7	 5	 4	 999	 11	 0	 0	 0	 0	 0	 0

THERIi-MECH PULP ING	 30	 -2	 39	 0	 999 1 22	 10	 9	 15	 1	 2	 136	 20	 0	 0	 B	 0	 0	 6

INTEGRATED CHEMICAL 	 44	 -4	 2	 0	 999 1 66	 14	 13	 10	 10	 6	 26	 9	 0	 0	 0	 0	 0	 O

CHLORINE	 35	 999	 SI	 0	 999	 27	 11	 14	 11	 5	 4	 110	 41	 6	 13	 11	 0

NYLON 	 g	 12	 15	 1	 12	 8	 4	 5	 11	 1	 0	 22	 17	 0	 8	 11	 7	 0	 0

PET RD-REEF INING	 43	 -12	 0	 --	 999 103 	 11	 it	 5	 3	 3	 0	 0	 -	 -	 0	 0	 0	 0

INTEGRATED STEEL 	 31	 994	 999	 0	 999	 54	 9	 11	 9	 7	 3	 f94	 73	 -	 2	 5	 14

COPPER	 10	 999	 24	 0	 23	 8	 3	 4	 16	 0	 0	 72	 IO	 0	 0	 11	 6	 0	 0

ALUMINA	 .36	 -17	 O	 --	 993	 4I	 B	 8	 3	 0	 0	 0	 0	 -	 --	 0	 0	 0	 0

Note:	 Matches producing excess heat, or match not possible because process tenperatuie required exceeds ECS capability.
are shown by

Zz
O 5^ V

HEAT PACKING 0 0 0 0 0 0 0 0 0 0 0 0 01 0 0 0 0 0 0

MALT BEVERAGES 5 -19 0 0 10 2 0 0 5 0 0 17 0 0 0 0 0 0 0

BLEACHED KRAFT PAPER 999 0 -- 30 1 0 12 6 4 959 999 -24 0 5 -30 0 0

THEICi- nECH PULPING - - 40 0 -- - 9 8 -- -- -- 131 39 0 0 10 0 0 0

INTEGRATED CHEMICAL "9 0 _ -- 15 12 12 10 6 949 51 999 0 0 0 0 0

CHLORINE -- -- -- i -- -- -- -- -- -- -- -- -- 10 ) -- -- 0 0

NYLON -- -- 4 -- -- -- -- -- -- -• -- -- 4 -- •- -- 0 0

PETRO-REFINING 48 -14 •31 -- 999 38 12 10 10 6 1 -25 -28 -- - 0 -61 999 0

INTEGRATED STEEL -- -- -- 0 -- -- -- -- -- -- -- -- -- -- 4 -- -- 0 0

COFFER -- -- -- 0 -- -- -- / -- -- -- -- 19 0 0 -- -- 0 0

ALUMINA 22 -19 -35 -- 999 28 6 -_ 5 6
—71 0 -29 -32 -- - 0 -"1999 999
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.J

oil-fired cogen ECS and is a "winner" investment wise even though the ROI

value cannot be calculated. "LEVL CHRG" is the levelized annual energy

cost (LAEC) in 10 6 dollars per year and "NORM ENRG" is the ratio of the

cogen LAEC over the nocogen LAEC. The levelized annual energy cost

savings ratio (LAECSR) is not shown but is one minus the "NORM ENRG".

A selected sample of the ROI's calculated for a sample of cogen-

_	 eration systems and industrial processes using a coal-fired nocogen pro-

ces!^ boiler are shown in Table 9.3-7 for matching the cogen ECS to the

process power requirements. The large number of blanks indicate matches

where excess process heat is generated and the ROI was not calculated.

The negative values of ROI indicate that the nocogen capital cost was

higher than the cogen but the cash flows were less for the nocogen case

or the positive value would be the ROI realized if the nocogen system

were installed instead of the cogen ECS. Table 9.3-8 shows the ROP s

when these cogen ECS's are heat matched to the process.

The effect on ROI of using a residual-fired nocogen process boiler

as the base case against which the power and heat matched ECS's are com-

pared is shown in Tables 9.3-9 and -10. Since none of the cogeneration

ECS's have a lower capital cost than the nocogen residual-fired process

boilers, all of the ROI ' s equal to or are greater than zero. As with

the coal-fired nocogen base, the steam turbine, gas turbine, and combined

ECS's tend to have the highest ROI's.

An application of these ROI results is best seen from the plots of

capital cost versus LAEC versus ROI which will be discussed in a later

section. Inspection of these tables shows that coal-fired steam turbine

systems, particularly the AFB, show up very well in those industrial pro-

cesses with low power to heat ratios. Those cogen systems burning high

priced distillate fuel; e.g., the regenerative gas turbine and fuel cells,

are very poor when compared to a coal-fired nocogen ECS. Also, those

cogen systems with high capital cost show up with poor ROI's; e.g.,

thermionics. As an economic index, ROI is very sensitive to capital costs

and if ECS's are screened on ROI the selections will be different than if

screened on LAEC or fuel energy saved ratio.
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Table 9.3-9
RETURN ON INVESTMENI OF COGENERATION ENERGY CONVERSION SYSTEMS COMPARED TO

NOCOGENERATION IN SELECTED INDUSTRIAL PROCESSES

POWER MATCH

RESIDUAL NOCOGENERATION BASE

y ^ Q ^ m ^ ^~ ^ ^i ^"
b ^ H Q	

lS	 W

MEAT PACKING 0 0	 0 0	 D	 D 0 0	 0 0	 0 0 0 0 0 0 0 0 0

MALT BEVERAGES 7 10	 6 3	 10	 5 0 1	 7 0	 0 10 5 0 2 4 0 0 0

BLEACHED KRAFT PAPER - 23 1	 22 7 5	 13 9	 7 30 21 9 6 11 0 0 0

TNERM-MECH PULPIN6 19 2	 - 10 9 - 25 20 8 6 11 6 0 0

INTEGRATED CHEMICAL 30 4 19 16	 16 15	 10 37 30 15 8 13 4 0 0

CHLORINE 4 13 9 0 0

NYION 4 4 0 0

PETRO-REFINING 32 100	 20 -	 46	 30 19 17	 18 15	 12 29 24 7 0 0 P

INTEGRATED STEEL - -	 - o - - 5 - 0 0

COPPER D 4 1? t 2 0 0

ALUMINA 25 65	 15 45	 27 15 14	 16 1	 131	 9 24 20 - - 4 0 0 0

Note	 Matches Producinq excess heat, or match not Possible because Process tem perature required exceeds ECS iapab+lit^
are shown by -.

Table 9.3-10

RETURN ON INVESTMENT OF COGENERATION ENERGY CONVERSION SYSTEMS COMPARED TO

NOCOGENERATION IN SELECTED INDUSTRIAL PROCESSES

HEAT MATCH

RESIDUAL NOCOGENERATION BASE

'.A'.[-Of-THf	 AR1

r
y^

yy^^
	 yŴ

O

yy,,^^	 Q
r ti

^,	 N

^,	 yy	 W	 r	 ror	 li	 ,	 W

R	 q	 tiC	 ,j 	 ^^77

Y

t0	 ,	 O
0 h

e 

it

a	 5
r xo

5

ti ti

41
W

^	 aJ	 ~ 04 ^°V 4 ^k	 H	 to	 A	 4 +,	 N b N O QT tl

MEAT PACKING 0 0 0 D	 0 0	 1 0 0 0 0 0 0	 1 0 0 0 0 0 o

MALT BEVERAGES 11 15 6 0	 17 9 2 2 9 1 0 10 3 0 0 4 0 0 0

BLEACHED KRAFT PAPER 24 54 16 0	 46 27 8 8 9 8 5 24 15 0 0 6 0 0

THE WMECH PULPING 19 26 14 0	 29 18 11 9 14 7 4 26 16 0 0 10, 3 n o

I NTEGRATED CHEMICAL 34 84 19 0	 55 42 17 15 14 15 10 28 17 0 0 ? 0

CHLORINE ?4 43 27 1	 39 23 15 15 15 9 6 34 31 0 8 14 15 J n

NYLCN ,+9 12 15 4	 12 8 4 5 14 1 0 22 17 0 8 11 7

PETRO-REFINING 31 131 1 54 39 14 14 10 11 8 17 10 - 0 0 0 0

INTE6RATED STEEL 16 102 21 0	 39 23 9 11 9 7 4 28 25 - 4 7 11 0 0

COPPER 8 10 14 0	 12 7 4 5 13 1 0 2D 14 0 0 10 6 0

ALUMINA 30 93 0 49 32 12 11 9 8 6 14 A D 0 0 P

Note.	 Matches Producinq excess heat, or match not possible because Process temperature re q uired exceeds ECS capabi1 t^,

are shown by -.
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9.4 LEVELIZED ANNUAL ENERGY COST (LAEC) ANALYSIS

The levelized annual enemy cost is defined as the minimum constant

cost each year over the life of the project to include all ex-

penses, the cost of money and recovery of the initial investment. This

calculation of LAEC is often referred to as the "utility method" (1) cost

calculation and includes the cost of capital, recovery of investment,

income tax, depreciation, local real estate taxes, fuel and operating and

maintenance costs and the cost of purchased power or revenue from exported

power in the units of total energy system costs in 1978 dollars per year.

The LAEC is equal to

LAEC = levelized fixed charges

+ levelized operating costs

- levelized revenues
	

(9-11)

Levelized Fixed Charges

The levelized fixed charges (LFC) are analogous to the annual mortgage

payments an individual makes on his loan to purchase his house except

that factors are included to take into account the tax deductions for

interest and depreciation. In fact, the quantity called the "capital

recovery factor", CRFm,n , in equation (9-15) below is the constant annual

installment payment on aB loan of $1 to be repaid in n  years at an interest

rate of m' and is calculated by the equation:

	

CRF= nl' 1+m' nB -	 (9-12)

m,n B	 (1+m') n B - 1

where for the CTAS groundrules shown in Table 9.2-1:

(1) The method of calculating LAEC is the same as described in the "Tech-

nical Assessment Guide", by EPRI, June 1978 except that the values of

cost of money, escalation, etc. are different and inflation is zero
(constant dollars) and local taxes and insurance are not included in the

fixed charge rate (FCR)
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m' = after tax cost of capital assuming zero inflation

	

= (1-Oi dfd + i pfp + i cfc 	(9-13)

= (1-0.5)0.03x0.3+OxO+0.07xO.7 = 0.0535

n  = book life which in CTAS groundrules was equal to useful

life of investment, n = 30 years.

CRFm',n6 = capital recovery factor

0_.0535 1+0.0535. 30 = 0.0677
(1+0.0535 	 1

The levelized fixed charges (LFC) are calculated by the equation:

LFC = C x FCR	 (9-14)

where

FCR = fixed charge rate

C = capital investment as defined in equation (9-4).

The fixed charge rate is equal to:

FCR = 

CRF
iii, nB	

[ 1-t(DEP)-c ]	 (9-15)

t

where

t	 = Federal and State Income Tax Rate = 0.50

c	 = Investment Tax Credit Rate = 0.10

DEP = levelized depreciation factor as defined below.

The term DEP for "sum of the years digits" (SYD) depreciation is equal to:

2 nT 
_ 

CRFm 
1
^^"

T
DEP = nT T-n7  1 m -- --

•	 9-?g



where

n 
	 = tax depreciation life = 15 years

CRF	 = capital recovery factor for after tax cost ;f
m,nT	

capital, m; and tax life, n 

= 0.0535 (1+0.0535) 15 
_ 0.098E

(1+.0535)15-1

so that	
2 15 -	 1	 1

DEP =	 0.0986 J = 0.757
15 15+1 0.0535

Substituting these values into equation (9-15), the value of FCR used in

CTAS witt,out local tax and insurance is:

CRFi^► I
FCR =	 B	 Cl-t(DEP)- C'

_(T_—tT

_ 0.0677	
1,- (0.5 x 0.757) - 0.10] = 0.0706 	 (9-17)_

(1 --0 

Those readers who include an inflation of, say 6.5 0', in their economic

calculations will be accustomed to values of fixed charge rates in industry

of over 0.20 and view the CTAS value of 0.0706 as very low. This is due

to cost of money not including inflation, the FCR not including local taxes

and insurance of 0.03 and using a book life, n B , of 30 years. If an inflation

rate of 6.5 01,, is used the FCR is 0.137 or 0.167 including local taxes and

insurance. If the book life is reduced to more representative value of

15 years the FCR is 0.167 or with the 0.03 local tax and insurance, 0.197.

This is approximately the value many of us are accustomed to seeing with

inflation.

Levelized Operating Expenses and Revenues

To account for the escalation of the operating expenses or revenue

over the operating life of the power plant, they are levelized by first

finding the sum of the present worths of each expense over the life, n, of

the plant and using the discount rate of the after tax cost of money, m',

or:
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j=n

Present Worth =	 QJ

(1 +n. )3
j=1 

whe re

(9-18)

QJ = operating expense in year j, $/year

n = life of plant, years = 30

ni
t
 = after tax cost of money = 0.0535

The present worth of the expense in equation (9-13) is then multiplied by

the capital recovery factor, CRFm;n , to give the "levelized" annual cost

or revenue, LC, or:

j=n	 Q

_ J

This levelized cost is the average annual constant payment required to

meet these escalating expenses. This calculation can be simplified if

the expense, Q j , increases at a constant annual escalation rate, e p . Thus,

if

Qj = Qo (1+ep;J	 (9-20)

where Q  is the operating cost in year j = 0 and e  is the escalation

rate, equation (9-19) for the levelized cost becomes:

' = n	 ^l+e

LC = CRF
m',n x Qo	

1+nP	 (9-21)

j=1
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If the substitution

1 + k __ l+m'

p	 i:e

is made in equation (9-21), it simplifies to:

LC = Qo

CRF

 CRF^n	 Qo(LF)
	 (9-22)

kp,n

CRF

	where the quantity	
CRS 

R is often referred to as the "levelization
kp,n

factor", LF. If the escalation of the expense or revenue ep = 0, equation

(9-22) reduces to

	

LC = Qo	 (9-23)

P typical value of the levelization factor, LF, used in CTAS to cal-

culate the levelized expense of coal, oil or purchased or export power

with zero inflation is from equation (9-2?)

LF = LC = 
CRF

m,n = 0._0677= 1.1277
Qo	CRF. ,n
	

0.0600	 (9-24)

P

where

m' = 0.0535

n = 30 years

e = 0.01 above inflation
P

k = l+m' _1 = 1 + 0.0535 -1 = 1.0431-1 = 0.0431
p	 l+e p	1 + 0.01
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Figure 9.4-1 shows the values of levelization factor for esca W itin

rates varying from 1 to 15% per year and costs of capital (or discount

rates) from 5 to 15'8. Because these levelization factors can be very

lar(ae for even 10% total escalation rates, it is very important in com-

pa_ring levelized costs to understand the graundrules on inflation and the

escalation above inflation of the ex ense . or_revenue. In CTAS the in-

flation rate was set at zero and only the escalation of the expense or

revenue above the inflation rate are used.

The levelized operating costs and revenue portion of the LAEC of

equation (9-11) is

Levelized Expenses

= Local Taxes and Insurance, Qo,T x (LFT)

+ Operati nq and Maintenance, Qo,o
►
» x ( LF0"1)

+ Purchased Fuel, Qo'F x (LF,)

+ Purchased Electricity, 
Qo.E

p
 x (LFEP)

+ levelized Revenue

= Revenue from export power, 
Qo,EE x (L F EE )

	(9-25)

where

tlo = the expense or revenue in first year of plant operation,

$/year

LF = levelization factor as defined in equation (9-22).

Throuqhout the CTAS reports, revenue is considered to nave a negative value

when power is sold to ,p roduce income to the industrial. The unit cost of

fuel or power, p, given in Table 9.2-1 is for 1985 in 1978 dollars and must

be escalated to 1900, the first year of operation for all power plants

studied in CTAS. This is done by multiplying the cost in 1985 by (1+e
p)5
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COST OF CAPITAL-

01 111COUIT RATE

,05

i .15

1

n

0.0

9 . 0
 I-Ji (v°

7.0
6.0

5.0
a

4.0
0

3.0 w

^	 J
..0 W

W
J

1 .0
.05	 .10	 .15

ESCALATION RATE OF EXPENSE - e 

Figure 9.4-1. Levelization Fa c tors for Range of Expense Escalation Rates

and Costs of Capital (Economic Life - 30 Years)
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where 5 is the number of years between 1985 and 1990 and ep is the es-

calation rate above inflation for the particular item shown in Table

9.2-1. For instance, the cost of coal in 1990 in 1978 dollars is

1.80(1+0.01) 5 = $1.892/106 Btu and its levelized cost over the period

from 1990 to 2020, using .he levelization factor of equoition (9-24),

is 1.892x1.1277 = $2.133/10 6 Btu.

Levelized Annual EnergyCost Calculations

This LAIC calculation methodology was programmed into the computzr-

ized CTAS Cogeneration Evaluation and Data System and LAEC's calculated

for all of the cogeneration!fuel systems heat and power matched as shown

in Computer Report 5.2, Section 12.1 for the base case of a coal-fired

nocogeneration system. These same values of LAEC are repeated for the

oil-fired nocogeneration case in Section 12.2 as only the LAEC of the

nocogeneration system change because of their different fuel. A sample

of Computer Report 5.2 for the oil- or liquid-fired nocogeneration base

case is shown in Table 9.3-6, the same sample as used to illustrate the

values of ROI. In this tabulation the third column from the right labeled

"LEVL CHRG" is the LAIC in millions of dollars per year for the energy

conversion system indicated in the column labeled "ECS" matched to hypo-

thetical industrial process #10102. The column labeled "NORM ENRG" is

the ratio of the cogeneration over the nocogeneration LAEC and iF this

ratio is less than 1.0, the cogeneration LAECCG is less than the nocogen-

eration LAIC NC'

Table 9.4-1 shows a sample of Computer Report 5.4, entitled "Economic

Sensitivity Report" which shows the levelized cost elements mak, ing up

the LAIC in millions of dollars/year for some of the e.nerr.y conversion

system/fuel combinations matched to the industrial process. In this sample

a power match is indicated when the tabulated value of 	 JWER GEN/RFQD" is

1.00 and both the "PURCHD ELEC" and "RFVNUE" are 0. All other matches

are heat matches and as mention O previously when power is exported to the

utility a negative revenue is shown. The ratio of the cogeneration LAEC cc,

over the nocogeneration LAIC NC is tabulated in the column labe l ed "NOPML".
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A sample of level;z pd annual energy cost savings ratios (LAECSR)

calculated for selected cogeneration systems and industrial processes

are shown in Table 9.4-2 for heat matches and Table 9.4-3 for power

matches using a coal-fired process boiler as the nocogeneration base

case. Tables 9.4-4 and 9.4-5 show the LAECSR's when a residual-fired

boiler is used as the nocogeneration base case.

The LAECSR is defined as

LAECSR = 1	
LAEC 

CG
LAEC NC(9-26)

so that positive values indicate a LAEC savings when a cogeneration is

installed compared to the nocogeneration base case. A negative value of

LAECSR indicates the LAEC CG is more for the cogeneration case than the

nocogeneration system.

A study of Table 9.4-2 for the heat matches shows a pattern of re-

sults similar to those shown for ROI in Table 9.3-3. The LAECSR's for the

small 1.9 MWe meat packing plant with only 2100 hours per year operation

are negative. The coal-fired-FGD steam turbine performs well with the AFB-

steam turbine showing slightly better LAECSR's. The same is true for the

state-of-the-art gas turbine compared with the advanced gas turbine. Also,

there is a correlation with the cost of cogeneration fuel cost with higher

LAEC savings with coal-fired units compared with residual- and distillate-

fired units showing up poorly.
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Table 9.4
LIVII I:ED ANNUAL INIRGY COST SAVINGS RAT 10 0# COGENIRA:ICIA ME:' N CO:FN10IION

IN SELECTFO INDUSTRIAL PROCESSES

POMiR MATCH

COAL NOCOGWRATiON BASE

ie

	

. +tcl •N 1 RRI 3y

	

^	 ^'^

	

O	 t	 ,	 ~ 4 y

zy

if AT PACKING	 M -.34 -.35 -.	 - i,1 •1. -1.5 -.85 -1.4 @..1^2tS -./ ./f	 3R - . SF -.al - . 3A .Il

NAIL BEVERAGES	 .01 -.01 -.06 -.11	 .	 .24	 .00 - :0 •19'•.f: -.O:r.ls	 .11 -.09 	•.30 -.34

BLEAlHEO KRAFT PAPE R 	- • .OS -.li -	 :5 -,O  10 .13 .03 -.0:	 N .0 .0)	 Os 0	 ..1: -.4 -.33

TNERItt1ECN PU4PING	 --	 04 -.i	 -• --	 1 .10 --	 TS .tl .OS	 OS .05 .06 -.40  -.31

INTEGRATED CHEMICAL	 01 -.1	 l	 •16 .15 .00 .0s .0 .0.1 -11	 .13 -.04 -.18 -.48 -.I1

CNLORIiIE	 -	 --	 -- -	 -	 -	 -	 M	 M	 -	 - _ . 3)	 5

NYLON	 Ol	 -	 - .01	 31 ..14

PETRO-REiIN1NG	 •19 _,0N -.17 ••	 -23 .16	 .08 .07	 .01	 .02	 -.01 -	 •.1	 --	 :3 -.34 -.S6 -•5:

INiLGRATED STEEL-	 -	 - • 1/ -	 -	 °_	 0t	 37 - .:4
•-	 -	 - __ ^.	

- -	
-.05	 11 -.0!-.06	 -.35 -.:SLl1PFER	 --	 --	 -- -.il	 -	 -

ALLMiINA + _-	 I: -^t3 _ ^1	 .18 .il	 OI	 00 .0: -^M -.OQ -.I' •.1 --	 -	 1/ ' -5c -.SI

Note Matche% producing e+cess heat, or match not passible twause p racrss tm"raurr molmd rviceeds ICS capability.
are +hownl by

Table +1.4-;

LEVELIiEO ANNUAL ENERGY COST SAVINGS RATIO OF CXENLRATION OVEA ?"NENERATiON
IN SELECTED INDUSTRIAL PROCESSES

HEAT MATCH

COAL NOCOGENERATION BASE

^
y 4

1y	 8 `y

y
ppp^ '` U

ME Al	 f'ACK!NI: --	 -f h1 -	 t -	 it -.% -.4 •.N	 -	 :.i -.6t -1,3 -:.7	 -.: -.7 1.8 .46 -.7	 _SS -1.1 -1,7
NAIL FEVE RAW 5 ii .Os 05 -.:1	 .21 t	 -.35 .11 -.:6 -.65 O2 -.1 1.3 .21 -.11 •33 -.89 -1.8 

8114CHill KRAFT PAPER 9 .15 03 -1.1 .34	 05	 E19 .10 .01 -.06 .ill	Cl?. .91 .65 .07 1 :.' -1	 4

1HER'1-HECH PULPING .11 .01 .10 -.1	 .1. 1.	 .It, 	.14 .14 -.02 -.10 .17 .12 .65 .42 .04 .00 -t .1 -1.0
_	 - --

INTEGti11TED CNE711UL 18
_._.
.0: Oi 1.2	 ..1 5	 9 15 10

_
.06 .Los .OJ I.0 .73 -.11 8

.
'.ti l.b

CHLORINE	 -	 ~~ -_ ON 0: 07 15 .1,	 13	 19 ,10 CYO -.O1 .1 .16 .12 .0: .07 01 .63 .31

NYLON	
^-. _.__-V _._ -

04 .03 OF .01 0 .1: .06

_.
-.il .11 .15

-
.13 .0 7

_
.049 0' -.49 ,:i

PETRO REFINiNG :1 - .Oh ..0 1	 ..7, .01 -.03 -.06 -.07 -.1 - - -.50 .70 -3.9 :.6

INTEGRATED STELE OS .03 .06 _26 t	
_	

.t	 is .07 .02 -.01 .01 .11 .04 00 .01

COPPER Ot OI 10 ,50	 0 0	 -.0: .15 -.12 -.28 1 1 .' 07 tx, 1.1 -,61

ALWIKA L	 h .11 to -_	 :1 't	 l	 1/ •,07 -.13 -.20 -.1T1 - 2 b: N1 1.' :.N

Notr	 Mat.hev praduclnu e+cr+s heat, or match not pm 0 ble brcausr process tv"Vrat.+r ►oVulrrd eacrrd+ ICS :aPsW itv.
% ,v +horn b y	 -	 .
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Table 9.4-4
LEVELIZED ANNUAL ENERGv COST SAVINGS RATIO OF COGENERATION OVER NOCOGENERATION

IN SELECTED INDUSTRIAL PROCESSES

POWER MATCH

RESIDUAL NOCOGENERATION BASE

Aftu rn

C
^^
7

lf	
qy

4	
^i

y

oc
I

tq

^L	 %0

r

y^y
	

O

y'e~	
c:i

r	 y	 r

v	
^	

tD	 r	 y ti	 O	 4 jeti

1,9

C4 	 r

MEAT PACKING -.84 -.341-351-38 -.6 -1.111-1,641.52 -.841.43[2.1 -.2	 -.411-.411-57 -.S61-.44'1 -. 38 -.41

HALT BEVERAGES .08 .06 .01 -.03	 .1 .01 -.1 -.1 .0 -.2 -.3 .0	 .01 -.071-03 -.02 -.i -.21 -.25

BLEACHED KRAFT PAPER ,13 -.04	 - .32 .0 0 .21 .11 .0 .1	 .13 .03 .01 .09 -.0 -.28 -.21

TNEAM MECN PULPING 16 -.05	 - 19 .1 .2	 .17 .02 .02 .11 .01 -.30 -.22

INTEGRATED CHEMICAL is -.02	 - 31 z z 1 1	 16 .05 . 04 .11 -.ot -.27 •.20

CHLORINE - -.02	 - - - .08 .08 -.31 -.20

NYLON _ -.01	 - - .01 - 3t -.ta

PETRO-REFINING .35 .13 .06 -	 .3 .33 .2 .2 .2 .21 .l .0	 .08 - - .02.-.12 -.25 -.22

INTEGRATED STEEL - - -.12	 - - - - - - - -.01 - -.35 -.26

COPPER -.10 - -.0 - .13 -.04 -.04 -.33 -.23

ALUMINA .31 .10 .04 -	 .35 .30 .2 .21 .2 .1 .1 7717.06 - 0 -.14 -.25 -.22

Note: Matches Producing excess heat, or match not Possible beca , ise process temperature required exceeds ECS capabiIIt^
are sham by

Table 9.4-5

LEVELIZED ANNUAL ENERGY COST SAVINGS RATIO OF COGENERATION OVER NOCOGENERATION
IN SELECTED INDUSTRIAL PROCESSES

HEAT MATCH

RESIDUAL NOCOGENERATION BASE

.^ a., ao
- F I	

-. - ^.	 - -
'01

.^

MEAT PACKING -.61 -.23 -.33 -,98	 -.44 -.R4 -2.11 -2.3 -.61 -1.21- 2,65 -.20 -.7	 1,75 -.9 	 7C .5 •1.06 1,11

HALT BEVERAGES .19 .11 .02 -.27	 .27 .14 -.20 -.26 .17 -.18 -. 54 .09 -.0	 1.10 -.1	 -- O z -21 i-ik -

BLEACHED KRAFT PAPER .35 .22 .12 -.93	 .41 .40 .13 .17 .17 .10 .03 .19 .1	 -.1 -.5	 .0 •.1 •1, n4 -t,21

THERM•MECH PULPING .17 .08 .16 -.66	 .21 .21 .22 .20 .25 .05,1-02 .23 .1	 -.5 -.3	 .10 -.01 -1.4. -.88

I NTEGRATED CHEMICAL .30 .13 .14 -.88	 .32 .39 .36 .39 .2R .23 .20 .21 .i	 -.1 -.4	 .05 -.0 -1. q -1.2

CHLOR I NE .12 .06 .11 -.10	 .13 .14 .11 .23 .14 .OS .03 .14 .2 	 -.0:. .0	 .11 .0 -.56 -.26

NYLON .04 .03 .08 -.01	 .06 .04 -.04 .02 .12 -.061-17 .11 .1	 -.l ,0	 .0 .0 -+-1

PETRO-REFINING .36 .15 -.03 -	 .40 .41 .35 .41 .20 .17 .15 .14 O -.21 1.8

INTEGRATED STEEL 07 .05 .oR -.24	 .lo .12 .0R .16 .0R .04 -.OZ .to .t D	 o -.4 -.21

COPPER .05 .03 .11 -.4R	 .08 .05 -.05 0 .16 -.11 -.26 .16 .1	 -.4 -.2	 .0 .02 . 1 ",4 -.50

ALUMINA .34 .12 .l0 .37 .37 .29 .32 15 .10 .05 .12 .05	 - -.281 -.4 4 3.08 -21i1

Note: Matches Producing excess heat, or match not Possible because process tem perature required exceeds [CS capability.
are shown bV -,
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9.5 EFFECT OF ECONOMIC RESULTS ON IMPLEMENTATION OF COGENERATION BY
INDUSTRY

In Section 9.1 the economic criteria used by industrial management

in deciding between alternate methods of satisfying their process heat

and power requirements were listed as:

1. Minimum capital cost

2. Rate of return on investment (ROI). The rate of return (de-
crease in energy cost) on the investment (increase in capital

cost) must exceed a "hurdle rate" for that industry

*	 i. Minimum cost of energy.

A graphic method of portrahing these economic parameters, their re-

lationships and the application of the above selection criteria is shown

in Figure 9.5-1. A number of alternate nocogeneration and cogeneration

systems all matched to a single industrial process are plotted at the

intersection of their LAEC and capital cost on this graph. A very impor-

tant characteristic of this graph is that the slope of the line connecting

any two power plant alternatives plotted on this graph is a function of

the ROI of implementing the alternative with the higher capital cost and

lower LAEC compared with the other. A correlation of the ROI of cogen-

eration versus coal- and liquid-fired nocogeneration systems for two dif-

fereA processes is shown in Figure 9.5-2. This correlation was used to

6,_I ve the "ROI Protractor" shown on Figure 9.5-1.

The first criteria in selecting a power plant to meet the energy re-

quirements of the industrial process is minimum capital cost and, in this

example, is represented by power plant A, a liquid-fired nocogeneration

boiler and purchasing the required power from the utility. The next

higher capital cost alternative with a lower LAEC is cogeneration oil-fired

system D having a considerable savings in LAEC at a modest increase in

capital cost and gives a ROI of 131 on the increase in incremental
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Figure 9.5-1. Industrial Economics of a Small Sample of Cogeneration and
Nocogeneration ECS's Heat and Power Matched to a Medium
Petroleum Refinery - SIC 2911-2
(A more complete selection of ECS's matched to this process
is shown in Figure 9.5-2.)
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investment over system A, and other factors being equal, would almost

always be selected over system A. The next higher capital cost systems

are two systems very close together labelled G but these systems would

not he selected over 6 because, in addition to the higher capital cost,

they have a higher LACC than Q. System C, a coal-fired cogeneration

system is the next higher capital cost system and gives a significant

decrease in LAEC over system B and has a ROI of 45" on the incremental

investment over B. The only remaining alternative system which gives a

reduction in LAEC compared with C, is system D but the reduction in LAEC

is small compared with the incremental increase in capital cost so its

ROI is only 711 which is not high enough to be considered.

If the choice of power plants were restricted to those burning coal

(shown as D or 0 on the plot), the base coal-fired nocogeneration
case is system E. Advanced Cogeneration System C gives a significant re-

duction in LAEC compared with E at a reduction in incremental capital cost

so it is a winner. Theoretically the ROI of C compared to E can not be

calculated because there is a savings with a reduction in capital cost. As

before there is a low ROI = 7% when system D is compared to C so D would

not be chosen. If the selection were limited to present state-of-the-art

coal-fired systems (shown by 0 ) system F with a ROI of 43" compared with
E would be the system selected.

On Figure 9.5-1, when both a power match and heat match can be made

with a single cogeneration ECS-fuel combination, the power match is in-

dicated by a dot, ., and the heat match is indicated by a q , 0 , Q or
0 and is connected to the power match by a straight solid line: e.g.
line GH, JL, or KM. These latter systems have a much higher power to heat

ratio than the process so that when heat matched to the process they gen-

erate from 3 to 6 times the power required by the process, are advanced

systems and, at the price assumed received for export power of 0.6 times

the purchase power, do not give a favorable ROI.
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Application of the various energy conversion systems and the fuels

to supply a given industry with heat and power result in a wide spectrum

of economics. These plots provide a vehicle for displaying results and

comparing the economics of state-of-the-art systems versus advanced sys-

tems using either coal or liquid fuels. When the fuel energy saved ratio,

shown as a decimal number, and power generated by the various heat matched

cogeneration systems, shown as MWe, are also noted on these plots, the key

data for comparison can be presented on one sheet for each industrial pro-

cess. Coupling the dat-i presented by these plots for several processes

with representative power to heat ratios and the energy requirement

characteristics of &e national population of industrial processes allows

the process results to be used to infer probably preferred systems from a

iiational perspective.

Figure 9.5-3 is a plot of selected CTAS ECS cogeneration economics for

a med Wm-sized petroleum refinery. The refinery requires 52 megawatts of

electricpower and 1333 million Btu per hour of steam at 470 0 F and operates

8760 hr/yr. The power to heat ratio of the petroleum refinery is 0.13.

As shown in Section 10, about 60" of industrial process energy required in

the U.S. for steam and electric power is consumed by processes with power

to heat ratios less than or equal to 0.20 so that ECS's which have bood

performance and economics application probably will have high national

impact. A direct conclusion is clouded by the effect of the national

distribution of process temperature variations.

In comparison to the liquid-fueled nocogeneration case, the liquid-

fueled cogeneration systems that have a ROI greater than 15": are the

power matched state-of-the-art and advanced gas turbine (GE-HRSG •), the

advanced diesel with a heat pump (DIESEL-NEAT PUMP •), the advanced com-

bined-cycle (COMB CYCLE -), the state-of-the-art steam turbine (STM TURB •,

10 ). These systems are all sized to match process power required with

the exception of the state-of-the-art steam turbine where both the heat

match and power match cases are economic. The heat match cases of all other

systems have poorer economics than the power match cases. The fuel energy

savings of these power matched cases are all about 11" to 14.. The steam
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Heat and Power Matched to Medium Petroleum Refinery -
SIC 2911-2
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turbine saves about 18% fuel energy and it has the best return on invest-

ment ( >50%) of any system.

An area of concern on the liquid-fired systems is the possibility of

an increasing price differential between liquid fuel and coal. The ground

rule base price of coal used is $1.80/10 6 Btu and residual liquids is

$3.10 in 1985 (in 1978 dollars). The effect of increasing the liqu ':

price by 507 to $4.65/10 6 Btu is to significantly increase the LAEC of

the liquid-fired systems as shown by point A for the nocogen liquid boiler,

point B for the gas turbine, (GT-HRSG •), power matched and point C for the

same gas turbine (GT-HRSG Q ) heat matched. The slopes of the lines A-B
and A-C compared to those connecting the same ground rule base costs show

a significant reduction in ROI and make the liquid cogeneration ECS's

uneconomical compared to the coal-fired systems.

Concentrating on coal burning systems only, the coal-fired nocogen-

eration case with flue gas desulfurization (COAL NON COGEN BOILER FGD q )

costs $78 million with a levelized annual nocogeneration case is about

double that of the liquid-fired nocogeneration case. Even though the coal-

fired nocogeneration equipment is very expensive, if the industrial can

raise the capital, it appears to be a good investment with an ROI of about

25% (using the ROI protractor) compared to the liquid nocogeneration case

The coal-fired cogeneration systems that fall to the left of 	 15",

ROI hurdle line are the state-of-the-art steam turbine with flue gas desul-

furization (FGD STM TURB 0), the PFB steam turbine (PFB STM TURB [3),  and
the AFB steam turbine (AFB STM TURK q ) matched to process heat or power.

Of the economically feasible systems, the AFB steam turbine matched to

process heat gives the best economics. The capital cost is less than the

nocogeneration boiler with flue gas desulfurization and the levelized annual

cost of energy is also less. A ROI cannot be calculated in this situation

with the nocogeneration case as the base becaise there would be a negative

incremental investment. The heat matched PFB gives a higher FESR of 0.26

vs. 0.18 for the AFB.
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Figure 9.5-4 shows the economics for a thermomechanical pulp mill

which has a power to heat ratio of 0.58. The economics shown here may

be considered representative of those for processes with power to heat

ratios of from 0.20 - 0.6. About 227 of industrial energy for steam and

electric power is consumed by industries that require power to heat ratios

over this range. Liquid-fired cogeneration ECS's which have favorable

economics compared to the liquid nocogeneration boiler are the state-of-

the-art steam turbine (STM TURB 0), the state-of-the-art gas turbine
(GT-HRSG 9), the advanced combined-cycle (COMB CYCLE (j), and the ad-
vanced air-cooled gas turbine (GT-HRSG (D). The state-of-the-art steam

turbine, while it only generates 10 MW out of the 31.3 MW required and

saves 12',. in fuel, still gives a good ROI ( 26'!0) for the lowest incre-

ment of capita` cost. The other systems when compared to the state-of-

the-art steam .urbine are less attractive investments (ROI's less than

151 ) with the exception of the advanced air-cooled gas turbine (GT-HRSG

()). It has a ROI of about 25% compared to the state-of-the-art steam

turbine and has a fuel energy saved ratio of 0.33.

Next, the coal-fueled systems are compared to the coal-fueled noco-

generation case. Systems that have good ecnomic potential (fall to the

left of the 157." ROI hurdle line) are the state-of-the-art steam turbine

with flue gas desulfurization (FGD STM TURB N), the advanced PFB steam
turbine (PFB STM TURB [] ) and the advanced steam turbine with AFB (AFB

STM 'TURB E]). The only state-of-the-art system in consideration here

is the state-of-the-art steam turbine-boiler with flue gas desulfuri-

zation. It gives an attractive ROI of =27"', while saving 12 in fuel energy.

Of the advanced systems, the AFB steam turbine is the ultimate economic

winner because its initial capital cost is less than that of the nocogen-

eration boiler with flue gas desulfurization.

Figure 9.5-5 Shows the economics for a copper smelter which has a

power to heat ratio of 0.86. The economics shown here may he considered

somewhat typical for those processes with power to heat ratios from 0.6

to I.S. At--)ut l?". 	 industrial energy for steam and electric power is

consumed by industries that require power to heat ratios over this range.
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Of the liquid-fueled systems compared to the liquid nocogeneration case,

the state-of-the-art steam turbine (STM TURB •) and state-of-the-art

gas turbine (GT-HRSG 9) both have ROP s less than 15`x. Of the advanced
Systems, the advanced air-cooled gas turbine (GT-HRSG (D )is clearly the

economic winner with a ROI of =19x. Comparing coal-fired systems, the

only system with favorable economics is the AFB steam turbine (AFB STM

i;!RB []) with a ROI of 222x,.

Tab' ps 9.5-1, -2 and -3 show the levelized cost components for fuel

and power (variable operatin g and maintenance component is not shown)

corresponding to the systems shown in Figures 9.')-3, 	 and -5. One

very convenient feature of these capital cot versus LAEC and ROI plots

is that it is very easy to visualize the effect -f changing the price of

fuel or purchased or exported power when tice original magnitude of the

levelized cost of the item is known. For instance on Figure 9.5-5 for

the Copper Smelter, the best choice of cogeneration system is the advanced

Gas Turbine-HRSG-Residual (GT-HRSG ()) using the base groundrules with

a 1985 residual fuel cost of $3.10/10 6 Btu in 1978 dollars. Table 9.5-3

shows a breakdown of the levelized costs for the power systems shown on

the plot of Figure 9.5-5 and for the GT HRSG RESIDUAL the fuel cost is

2.39x106 S/vr. If the fuel cost were increased b y 50', or 1.2x10 6 . an

inspection _.f the plot with the gas turbine moved 1.2x10 6 $/yr to right

indicates that it has a ROI compared to the coal nocogeneration base case

poorer than zero. In fact, a 50^ increase in liquid fuel prices would

eliminate all of the liquid-fired systems and the steam turbine AFB would

again be the most economic choice!

These type plots are a very convenient method for comparing not only

alternate power plant economics and their sensitivities to changes in

the various cost components but in comparing any investment alternative.

Of course, the general groundrules used in calculating economic character-

istics of all the alternative investments entered on a single plot must be

the same.
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14.86	 8	 9 59.0	 7.86	 8.08	 -3.69 i'I

-	 -- -- 41.9	 5.58	 6.65	 3.87

	

--	 - 67.5	 8.99	 5.47	 2.84

	

-- -- 36.2	 4.82	 6.81	 .96

	

-- -- 21.0	 2.80 11.72	 .96

	

14.01 131 25 16.2	 2.16 12.05	 -.76

	

14.77 39 20 22.2	 2.96 16.07	 -4.95

17.3	 0	 8 44.5	 5.93 42.21 -22.13

17.35	 0	 6 64.6	 8.60 27.28 -12.76

	

15.73 10 it 32.4	 4.32 13.05	 -1.87

17.58	 0	 6 20.8	 2.77 17.73	 -2.81

23.07	 0	 0 70.3	 9.36 40.32 -17.19

21.58	 0	 0 60.4	 8.04 29.42 -12.33

affN

LEVI

CAP.
COST

5.8

14.8

17.5

31.8

46.9

50.0
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Table 9.5-2

CAPITAL COSTS LEVELIZED ENERGY COSTS AND
^R2kF^3N1SN nZA	

RETUR ONINVESTMENT OF COGENERAION ECS's2
AND	 i^AT1	 -WMrWf 1iB A`WE	

_

POWER MATCH	 HEAT MATCH

LEVELIZED COSTS - 106	YEAR	 LEVELIZED COSTS - 106	YEAR-
CAP.

	MAIN.	 MAIN.

	

CAP. TAXES	 (C) (R) CAP. TAXES	 (C) (R)
Ef.S	 COST INS.	 FUEL POWER TOTAL ROT RO1 COST INS. 	 FUEL	 POWER TOTAL	 R01 RO1

NON COGLN RLSIOOAL 	 41.1	 5.5	 50.0 17.5 13.4	 --- --- 41.1	 5.5	 50.0	 17.5	 73.4	 --	 --

NON COGLN COAL FGD	 77.5 10.3	 29.0 17.5 58.8	 --	 --- 77.5 10.3	 29.0	 17.5	 58.8	 ---	 --

STM TURB RESIUUAI	 44.9	 6.0	 56.6	 0	 63.6	 -14 100 44.0	 5.9	 57.7	 62.6	 -12 131

STM IURB COAL FGD 	 90.4 12.0	 32.9	 0	 47.7	 48	 32 93.8 12.5	 33.5	 -1.7	 46.6	 43	 31

GT IIRSG SOA RESIDUAL	 58.3	 7.8	 60.5	 0	 69.1	 -31	 20 110.6 14.7	 109.1 -48.3	 75.9	 0	 1

DIESEL SOA IIRSG RESID 	 -	 -	 -	 -	 -	 -	 -	 -	 -	 -	 -	 -	 -	 -

AFB STM TURK COAL	 72.0 9.6	 32.9	 0	 45.6	 0	 40 69.6	 9.3	 33.5	 -1.7	 43.8 %%	 54

Pfil SIM TURB COAL	 91.5 12.2	 33.1	 0	 49.6	 38	 30 84.8 11.3	 37.6 -11.6	 43.0	 103	 39

INI GAS COMB CYC COAL	 21.7 16.2	 34.9	 0	 53.8	 12	 19 206.4 27.5	 55.8 -37.4	 47.7	 1	 14

INT GAS FUEL Clll
MCST COAL	 28.9 17.2	 33.6	 0	 54.7	 10	 17 245.9 32.8	 59.9 -60.0	 42.9	 11	 14

CLOStO CYCLE GT
HELIUM COAL	 30.7 17.4	 37.4	 0	 57.8	 6	 15 176.8 23.5	 42.9 -19.3	 60.8	 3	 11

THFRMIONIC STM COAL	 77.6 15.7	 33.0	 0	 59.4	 4	 12 294.5 39.2	 40.5 -19.9	 62.4	 3	 8

S1111t ING COAL	 130.0 17.3	 35.0	 0	 54.0	 10	 18 239.3 31.9	 48.9 -24.7	 511.4	 5	 10

511141ING 1tk%1D1IA1 	 16.11 10.2	 60.2	 0	 71.3	 9 134.0 17.8	 84.3 -24.7	 77.9	 0	 0

GI 1116(1 HISIDUAL	 56.b	 7.5	 58.4	 0	 66.7	 -25	 29 92.2 12.3	 91.7 -41.5	 b2.9	 0	 11

C.1Mt11 CYC11 Gl ItI51U	 S6.8	 7.6	 59.1	 0	 61.7	 -211	 24 123.2	 16.4	 119.1	 -b9.2	 b7.3	 0	 10

SIM INJ GI RESIDUAL	 -	 -	 -	 -	 -	 -	 -	 -	 -	 -	 -	 -

DII SLI HRSG 14L%11)1ML 	 -	 -	 -	 -	 -	 -	 -	 -	 -	 -	 -	 -	 -	 -

	

UltSLL IILAI PUMP RESIU 86.0 11.4 	 59.9	 0	 12.2	 0	 7 225.6 30.0	 98.8 -41.2	 88.0	 0	 0

RiGEN 111 111%1	 59.0	 7.9	 73.4	 0	 82.0	 -61	 0 128.7 17.1	 144.5 -61.8 100.2	 0	 0

ItILL Cttl VA DISI	 77.8 10.4	 75.9	 0	 91.8	 0 459.1 61.1	 306.3 166.2 285.5	 0	 0

foil tilt MC DIST	 19.6 10.6	 73.5	 0	 89.2	 0	 0 397.3 52.9	 223.5 129.2 2011.5	 0	 0
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I	 CAPITAL COSTS
NON COGENERATION

ECS

Table 9.5-3

LEVELIZED ENERGY COSTS AMD RETURN ON
PROCESSMATCHED 	 0BOILERS

POWER MATCH

LEVELIZED COSTS - 106	YEAR
CAP.
MAIN.

CAP.	 TAXES	 (C)
COST	 INS.	 FUEL POWER	 TOTAL	 R01

INVESTMENT OF COGENERATION ECS's

HEAT MATCH

LEVELIZED COSTS - 106
CAP

IN.
(R)	 CAP.	 AXES
R01	 COST	 INS.	 FUEL	 I POWER

YEAR

TOTAL
(C)
ROI

(R)
RO1

NON COGEN RESIDUAL 2.2 .29 1.30 2.96 4.73 --- ---	 2.2 .29 1.30 2.96 4.73 --- ---

NON COGEN COAL FGD 4.6 .62 .76 2.96 4.66 --- ---	 4.6 .62 .76 2.96 4.66 --- ---

STM TURK RESIDUAL - - - - - --- ---	 - .48 1.54 2.33 4.60 0

STM TURB COAL FGD - - - - - --- ---	 6.6 .88 .90 2.33 4.51 10 8

GT HRSG SOA RESIDUAL - - - - - -- ---	 6.0 .80 2.61 .61 4.21 24 14

DIESEL SOA HRSG RESID 10.6 1.42 3.42 0 5.19 0 0	 21.1 2.82 6.45 -2.56 6.98 0 0

AFB STM TURB COAL - - - - - -- ---	 5.6 .75 .90 2.33 4.33 23 12

PFB STM TURB COAL - - - - - --- ---	 8.6 1.15 1.00 1.89 4.49 8 7

1NT GAS COMB CYC COAL - - - - - --- ---	 17.0 2.27 1.49 .74 4.98 3 4

INT GAS FUEL CELL 20.0 2.67 1.60 -.16 4.74 4 5
MCST COAL 19.9 2.66 1.53 0 4.92 4 0	 20.0 2.67 1.60 -.16 4.74 4 5

CLOSED CYCLE GT
HELIUM COAL - - - - - -- ---	 14.3 1.91 1.32 1.72 5.23 0 1

THERMIONIC STM COAL - - - - - --- ---	 22.1 2.96 1.08 1.52 5.98 0 0

STIRLING COAL - - - - - --- ---	 8.4 1.12 1.35 1.14 3.99 16 13

STIRLING RESIDUAL - - - - - -- ---	 5.0 .67 2.33 1.14 4.35 61 14

GT HRSG RESIDUAL - - - - - --- ---	 5.2 .70 2.39 .70 3.96 72 20

COMB CYCLE GT RESID 6.7 .90 2.84 0 4.13 19 13	 7.0 .94 3.19 -.41 4.03 20 14

STM INJ GT RESIDUAL 7.3 .98 3.55 0 4.92 0 1	 12.9 1.73 8.37 -3.81 6.71 0 0

DIESEL HRSG RESIDUAL 9.8 1.31 3.26 0 4.92 0 2	 14.8 1.98 5.39 -1.94 5.69 0 0

DIESEL HEAT PUMP RESID - - - - - --- ---	 8.5 1.14 2.59 .33 4.31 11 0

REGEN GT DIST - - - - - --- ---	 6.9 .92 3.51 .03 4.64 6 6

FUEL CELL PA DIST 8.5 1.14 4.06 0 6.28 0 0	 16.4 2.19 8.00 -2.83 9.66 0 0

FUEL CELL MC DIST 8.6 1.15 3.66 0 5.81 0 0	 14.0 1.87 5.83 -1.87 7.53 0 0
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9.6 SENSITIVITY OF ROI TO CHANCES IN COSTS

Return en investment (ROI) is a very important index of the economic

performance of cogeneration ECS's and the question arises as to its sen-

sitivity to changes in fuel, power, and capital costs. A conventional

method of presenting these sensitivities is shown in Figure 9.6-1 for a

steam turbine coal-fired AFB boiler cogeneration system heat matched to

a medium petroleum refinery and compared to a nocogeneration residual-

fired boiler with power from the utility. Four costs were varied from

-10% to +50% of their base value; namely the cost of residual fuel for

the nocogeneration boiler, coal fuel for the steam turbine AFB boiler

and its capital cost and the price received for the power exported to the

utility. None of these sensitivities are startling and since the system

has a high base ROI of 54%, it would appear to take a very major change

to make this AFB ECS look poorly.

The greatest uncertainty is felt to be in the fuel costs. Figure

9.6-2 shows the sensitivity to cogen fuel cost of several cogeneration

ECS's heat or power matched to the same medium refinery with a residual-

fired nocogeneration boiler as the base. Probably the greatest uncertainty

exists in the future price of oil since the OPEC price has risen about 50'"

in 1979 bringing it over the $3.10 per 10 6 Btu assumed in the groundrules in

1985. For the residual-fired combined cycle ECS shown, heat and

power matched in Figure 9.6-2, an additional 20`. increase would bring the

heat matched combined cycle ECS to zero ROI. Therefore, the probable con-

tinued steep increase in oil prices needs to be considered in deciding on

the possible implementation of an oil-fired cogeneration system.

A more complete understanding of these cost sensitivities can be seen

by preparing the capital cost versus levelized annual enerqy cost plot

shown in Figure 9.6-3. This is the same plot for ECS's matched to a medium

petroleum refinery as shown in Figure 9.5-3 except only a few ECS's are

shown and for these the effect of increasing the fuel, power, and capital

cost by 25"; over the base is indicated. Now it becomes clear what the

effect of these cost increases have on these cogeneration ECS's relative

to both the coal- arid oil-fired nocogeneration base cases; e.g., a 25",
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Base: Residual Fired Nocogeneration Boiler & Utility Power
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increase in price of power received by the heat matched combined cycle,

just gives an ROI of 15% compared with a coal-fired nocogen base

and any increase in oil price would rapidly decrease its ROI. Note

also as the price of oil increases, the ROI of the power matched combined

cycle compared to the oil-fired nocogen base decreases. Using these

plots, a pair of dividers and the ROI protractor, a wide range of con-

tingencies can be easily investigated. Such an analysis should be made

as a part of the detailed economic analysis of any cogeneration system

seriously considered for implementation.
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Section 10

NATIONAL CONSIDERATIONS

Fuel energy saved, emissions saved, and capital saved were calculated

on a national basis to provide a measure of comparison between energy con-

version systems. The savings were calculated for each energy conversion

system employed in all suitable CTAS processes without competition from

other ECS's. The results were scaled to a national level. The yearly rate

of national savings of fuel, emissions, and capital costs were computed

for the year 1990 assuming that each of the energy conversion systems were

available and implemented beginning in 1985. These national savings were

calculated for both heat and power matches.

METHODOLOGY

A basic assumption affecting the amount of total savings possible was

that cogeneration could only be employed in new plants by capacity addition

to existing plants or where replacement of old unserviceable industrial

boilers was assumed necessary. Figure 10-1 displays the relationship be-

tween the yearly amount of fuel energy that cogeneration can be applied to

and the total yearly amount of energy used by industry. The top line in

the figure represents the total yearly rate of energy consumption by indus-

try. In this figure, the industrial energy consumption includes fuel for

direct heat and steam and the fuel used in utilities to generate the pur-

chased electric power at an assumed efficiency of 32",. The portion of

energy consumption rate between the top line and the horizontal dashed

line represents the increase in the rate of energy consumption from the

1985 base year due to increased industrial capacity. The portion of

energy consumption rate between the horizontal dashed line and the lower

solid line represents the difference from the 1985 base year attributed to

the replacement of old unserviceable boilers. The amount of fuel energy
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Figure 10-1. Potential Industrial Fuel Use for Process Heat and Power
Generation Applicable to Cogeneration
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considered here is all of that consumed by industry and utilities in pro-

ducing the heat and power required by industrial processes. The total

yearly rate of fuel energy that cogeneration could be applied to beginning

from 1985 is represented by the difference between the two solid curved

lines. The solid vertical line shows the amount for the year 1990.

The rate of replacement of old unserviceable industrial boilers was

assumed to occur in a compound manner such that the total industrial

capacity in 1985 was replaced in thirty years. This results in a compound

annual replacement rate of 2.338%. The rate of increase in energy con-

sumption varied by industry. The average annual rate of increase in energy

consumption for all CTAS processes was 2.77. A summary of the total energy

consumption (also including the fuel used in generating power at a utility)

is given in Table 10-1. Total fuel use is qiven for the year 1985 and for

2000. That part of the increase which occurs between 1985 and 1990 is also

given. Values are given for each of the 4-digit SIC codes that were con-

sidered in the CTAS study and the total use for each of the 2-digit SIC

codes considered. The fuel use shown for the 2-digit industries includes

the 4-digit industries shown and all other 4-digit industries in that cate-

gory.

'The scale factors, M, listed in Table 10-1 were developed in order to

convert the savings determined for each of the ECS's when matched to a

particular process into a national savings potential for that ECS. They

were developed so they could be applied directly to the savings calculated

for each CTAS process. The scale factors take into account the processes

not covered by CTAS data, the power to heat ratio of these processes and the

amount of fuel used in direct heating applications.

SAMPLE CALCULATION

A sample calculation of using this scaling method for determining the

national fuel t^ prgy saved from the process level is given using the food

and kindred products industry, SIC 20 as an example.

10-3



Table 10-1
NATIONAL FUEL ENERGY SAVINGS DATA BASE

• Total Direct • Indirect

NocoOeneration Fuel Entrm. 1012 Btu

New Capacity
Process/Sector Scale FaCtoj3, M Replaceaent.

SIC Code Fowtr Ma 1905 2000 1	 - 1

2011 .101 .084 % 168 31.44
2026 .082 .101 80 101 16.20
2046 .153 .119 141 159 23.0
2063 .372 1.052 118 162 27.38
2082 .111 .079 120 190 34.49

20 .099 .046 1"11 2372 403.02

2160 .721 .608 75 75 9.19

22 .069 .081 435 435 53.28

2421 .316 .252 300 400 67.0
2436 .361 .529 ISO 275 51.93
2492 .178 .380 1OJ 172 32.05

24 .079 .046 1093 1684 300.0

2621-2 .118 .107 454 784 146.05
2621-4 .148 .127 441 950 182.6
2621 .6 .118 .107 69 128 24.21
2621-7 .078 .152 110 20S 38.6
2621-8 .123 .105 191 419 80.61

26 .113 .064 1457 2864 543.7

2812 .041 .055 240 300 47.95
2813 .041 .041 33 66 12.61
2819-1 .046 .061 76 135 25.33
2819-2 .036 .022 229 40S 75.93
2821-2 .063 .139 110 160 27.93
2821-3 2.012 2.68 38 60 10.92
2822 .022 .030 9 13 2.28
1824-1 .082 .109 55 7S 15.19
2824-2 .041 OS4 20 25 4.0
2865-1 .140 .419 65 90 1S.4
2865-2 .004 .004 10 15 2.67
2865-3 .066 .139 45 60 10.05
2865-4 .403 1.422 45 6S 11.36
2859-1 .108 .299 0 0 0
2869-2 .0403 .040 750 1100 194.16
2869-3 .108 .299 6 11 2.07
2869-4 .140 .419 24 30 4.79
2873 .207 .674 250 305 47.7
2874 .036 .025 48 60 9.S9
2895 .021 .029 20 24 3.7

28 .096 .183 2321 13S7 S86.3

2911-1 .179 .206 S80 630 87.18
2911-2 .173 .184 870 950 128.5
2911-3 .166 .154 1250 1280 163.0

29 .186 .155 2887 3058 404.9

32 0 0 1945 2115

3312-1 .028 .028 643 835 137.0
3325-1 .016 .016 3539 4596 756.0
3325-4 .020 .020 414 538 88.0
3331-1 .002 .002 S.8 9.3 1.7
3331-2 DO2 .002 7.8 12.4 2.26
3331-3 .002 .002 5.6 9.3 1.70
3331-4 .013 .013 15.5 24.8 4.53
3331-5 .016 .016 38.8 62.0 11.31
3331-6 .014 .014 23.3 37.2 6.79
3334-1 .015 .015 49.2 66.4 16.18
3334-2 OS9 D59 197 346 64.86
3334-3 .074 .074 246 432 80.56

33 .369 .49S 6%0 9381 1557.0

TOTAL NATIONAL 19901 29858 4548.0

• NOTE: Direct • Indirect Nocogeneratioo fuel energy refers to industrial fuel consumption for
direct process heat (sensible). steam. hot Mater. and the fuel co'sueed at a utility to
provide for the process electric parer needs. Utility conversion efficiency was assumed
to be 335 for this data.
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There were five processes selected for CTAS in the food and kindred

product sector. The 4-digit SIC codes for these processes were:

2011 Meat Packing

2026 Fluid Milk

2046 Wet Corn Milling

2063 Beet Sugar

2082 Malt Beverages

The fuel energy saved ratio, when. a given energy conversion system is

utiliz	 to provide heat and power, for example, is denoted by

FESR2011

The scaling factor fo- the Meat Packing process that scales the contribution

of that process to the 2-digit SIC level is 
M2011' 

so the Meat Packing process

scales to M2011FESR2011'

For a given energy conversion system the fuel energy saved ratio for

the 2-digit SIC code 20 is calculated from:

FESR20 = M2011
FESR

2011 + M2026
FESR

2026 + M2046
FESR

2046 + M2063FESR2063

+ M2082FESR2082

The 2-digit SIC fuel energy saved ratios were in turn scaled to give

a national fuel energy saved ratio. The national fuel energy saved ratio

for a given energy conversion system is

F U RMATIONAL * M20FESR20 + M 22 FESR
22 + M24

FESR24 + M26FESR26 +

M28FESR28 + ML9 FESR^9 + M33FESR33
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These seven sectors account for over 75% of the total national in-

dustrial energy use. The eighth sector considered, SIC 32 (Stone, Clay

and Glass), accounts for another 7% but uses no steam from bottoming

cycles and so is rot included here. The remaining fuel use is assumed to

scale in the same ratio as these so that the national fuel energy saved

ratio and the national industrial fuel use rate attributable to new capacity

and replacement capacity for the period beginning in 1985 to 1990 combine to

give:

FES 
NATIONAL- 

FESR 
NATIONAL 

(National Industrial Fuel Energy Use)

The type of fuel used for these calculations was assumed to be coal or

coal derived wherever possible. The state-of-the-art gas turbine and

state-of-the-art diesel were assumed to burn petroleum derived fuel. 'Utility

fuel displaced here was assumed to be coal.

The methodology and derivation of the scaling factors was developed

by General Energy Associates, Inc. Additional detail is given in the

Appendix of this section.

NATIONAL FUEL ENERGY SAVED

National fuel energy saved by fuel type for selec^_ed energy conversion

systems is summarized in Figures 10-2 and 10-3. Neat match cases are pre-

sented in Figure 10-2 and power match cases are presented in Figure 10-3.

The fuel energy saved for the year 1990 is given in units of quads/year,

where a quad is defined as 10 15 Btu. Negative savings for oil and gas, of

course, means increased use 0 these fuels. The savings for each ECS type

assumes that each ECS is used exclusively wherever applicable in conon-

eration systems. Nineteen ECS's were selected as representative of all

the various ECS's considered. The four on the left are currently available

state-of-the-art systems. The fifteen advanced systems represent various

levels of development. In both the current and advanced systems those
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utilizing coal are shown on the left, then residual fuel, with advanced

systems utilizing distillate on the right. The advanced systems

utilizing residual and distillate fuels were assumed to utilize fuels

derived from coal in 1990. It was assumed that the current gas

turbine and diesel systems using residual fuel would continue to require

petroleum derived residual in 1990.

A more complete set of data for all ECS's is given in Table 10-2

which is tanen from Computer Report 6.1 in Volume VI.

In comparing Figure 10-2 with 10-3, it is apparent that more fuel

energy can be saved in all cases for heat matches than for power matches.

In the heat match cases much more power is generated than used in the

industry and the excess is exported and sold to the utility. Therefore,

even with current state-of-the-art systems if maximum benefits are to be

obtained from cogeneration, it will be necessary to make provisions for

exporting and selling power to the utilities. An alternative to this

could be utility ownership of the cogeneration plant. The effect of

this export power on utilities was not examined but some of the factors

to be considered are the effects on the utility load factor, peaking,

intermediate and baseload power requirements, standby power, growth rates,

and above all the economics of the remaining electric power generation.

NATIONAL EMISSIONS SAVED

The national emissions saved were calculated in a somewhat similar

manner. The emission savings were calculated on a per plant basis and

ratioed to a 2-digit SIC level and to a national level based on appropriate

conversions from the fuel energy saved ratios and scale factors.

The national emissions saved per year in 1990 for the same selected

ECS's are given in Figure 10-4 for the heat matches and in Figure 10-5

for the power matches. The emissions saved for the year 1990 are given in

units of million tons/year. A more complete set of data is (liven in Table

10-2.
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As with fuel energy saved, more emissions are saved with heat matches

than with power matches. Diesel engines as currently used without emission

scrubbing equipment were assumed in this study in order to determine the

effect of these diesel engines on the environment. As expected, the

emissions of NO  would increase significantly unless NO  scrubbers are

used to bring their level of NO  emissions down to the required specifi-

cations. Several systems would increase the level of particulate emissions,

somewhat, but all systems as assumed in this study would decrease the level

of SO2 emissions.

LEVELIZED ANNUAL ENERGY COST SAVINGS

Up to this point the fuel energy and emission savings have been shown

for all systems without regard for economics. One of the economic factors

discussed in Section 9 is the levelized annual energy cost (LAEC). This is

an annual charge, levelized for equal amounts every year for a 30-year

period, that would pay for supplying the total amount of energy used by

the industry for that period. Levelized annual energy cost saving (LAECS)

is the difference between that cost with cogeneration and the cost without

cogeneration. A positive saving occurs when the cost with cogeneration is

less than without.

Many of the matches between particular industries and ECS's result

in large savings in fuel use. The totals of all these fuel savings for

each ECS was given in Figures 10-2 and 10-3. Of those matches, however,

many of them had a higher annual energy cost than without cogeneration

because of the cost of equipment or the cost of operation. While those

matches saved fuel it is not reasonable to include them because no industry

would be willing to pay the added costs. The potential national fuel energy

savings shown in Figures 10-6 and 10-7, for heat and power matches, are based

on only matches that result in a levelized annual charge for energy that is

no greater than that for the no-cogeneration case (LAECS > 0). The levelized

annual energy cost savings that result from these matches are given in

Figures 10-8 and 10-9 for the heat and power matches, respectively.
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For many of the ECS's, particularly the advanced systems that are

also expensive, the national fuel saving decreases substantially. Three

systems, all using steam turbines and burning coal, show the best savings

in LAECS and have the least decrease in fuel energy saved when restricted

to positive savings in annual energy costs. These three systems are the

current coal fired boiler and steam turbine with flue gas desulfurization,

the atmospheric fluidized bed boiler, steam turbine and gas turbine. As

before, the heat matches with export of power show much larger savings in

both fuel energy and annual energy costs.
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CHARACTERISTICS OF NATIONAL AND INDUSTRIAL STEAM AND ELECTRIC POWER DEMAND

The methodology described and used here on National Considerations is

complex and obscures the reasons why the national fuel savings, emissions,

and economics of the various cogeneration technologies give the national

results presented. Each ECS was employed separately (without competition

from others) in all CTAS processes. An understanding of the characteristics

of the steam and electric power requirements of the national population of

industrial processes is needed to generalize the results from a process

basis to a national basis. It was established extensively iri Section S

that the process power to heat ratio is very influential on fuel energy

savings realizable with the various cogeneration technologies. The process

power to heat ratio also influences the economic choice of cogeneration

technology for a given fuel type and process temperature. All of the

cogeneration technologies studied were employed in the production of steam

and electric power. Therefore, a distribution of national industrial fuel

energy consumption for steam and electric power versus power to heat ratio

will give insight as to the national impact of various cogeneration tech-

nologies. The potential application of cogeneration systems to industry

can be more closely focused on by considering situations where industry

will have to make a choice between cogeneration or nocogeneration in the

1985 - 1990 time period. This will probably occur in the following situa-

tions.

• New plant construction or capacity additions

• Replacement of old unserviceable process boilers

e Changeout of existing serviceable boilers due to future non-

availability of current fuel type (such as gas-coal conversions
due to legal requirements)

CTAS processes are representative of the eight industrial sectors that

consume 85vl of industrial energy and therefore are representatives of most

of U.S. industry where cogeneration of steam and electric power has potential.
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Table 10-3 presents the distribution and cumulative percent of enerqy con-

sumption rate for CTAS processes for steam and electric power. The energy

consumption rate is only that attributable to new capacity projected to be

installed between 1985 and 1990 and replacement of capacity in existence

in 1985 at a 2.3% rate. The table shows that 74.68% of the energy is con-

sumed by industrial processes with a power to heat ratio of 0.25 or less.

Also, note that 65.87% of the energy is consumed by industrial processes

with power to heat ratios between 0.1 and 0.25. Energy conversion systems

that have good performance, fuel flexibility, and economics when applied

to industrial processes with power to heat ratios from 0.1 to 0.25, will

have the largest impact on fuel energy and emission savings from a national

implementation standpoint.
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Section 11

RESULTS AND OBSERVATIONS

BACKGROUND

The objective of the Cogeneration Technology Alternatives Study

(CTAS) is to determine the advantages of advanced relative to current

industrial cogeneration systems and to evaluate and compare the advanced

technologies in order to identify those justifying major research and

development effort.

In CTAS the performance, emission, and cost characteristics of ad-

vanced technology cogeneration steam turbine-fluidized bed boiler, open

and closed-cycle gas turbines, combined-cycle, thermionic, stirling,

diesel, phosphoric acid fuel cell, and molten carbonate fuel cell energy

conversion systems (ECS's) judged to be available in the 1985 to 2000

year time frame were consistently defined for comparison with currently

available steam turbine-boilers, open-cycle gas turbines, and diesels.

These ECS's were matched to the electric power or steam requirements of

over 50 specific industrial processes selected from the food; paper and

pulp; chemical; petrole-un refining; stone, clay and glass; and primary

metals groups. The resulting cogeneration systems were evaluated for

their fuel, emissions, and cost of energy saved compared to both a coal-

fired or residual-fired boiler nocogeneration system defined for each

industrial process. In addition, the return on investment to the indus-

trial owner was calculated using the nocogeneration system as a base case.

These data permitted a comparison of advanced technology and currently

available ECS's in a wide range of specific industrial process and ti^eir

relative advantages with and without the export of power to the utility

grid.
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To determine the effect on comparison of systems of the national fuel

consumption and growth rates of the various industrial processes together

with their distribution of power to heat ratios, process steam temperatures

and load factors, each ECS was assumed implemented without competition and

its national fuel savings, emissions reduction, and energy cost savings

estimated. In this calculation it was assumed that the total savings pos-

sible were due to implementing the cogeneration ECS in new plants added

because of needed growth in capacity. or to replace old unserviceable

process boilers in the period from 1985 to 1990. National fuel savings,

emissions reduction, and energy cost savings were compared for advanced

and currently available cogeneration systems to determine those advanced

systems which indicated the greatest potential benefit.

To achieve the level of performance estimated for these attractive

advanced technology systems. the significant advanced developments re-

qui-, rd were identified.

RESULTS AND OBSERVATIONS

The comparison of the v,, rious cogeneration systems required that an

economic criteria for implem7ntation by industry be established since

those systems providing the highest fuel savings often had high capital

costs and low returns on investment. Attractive cogeneration systems for

industrial ownership were identified using the following criteria: the

system would have a return on investment greater than 10", before inflation,

a capital cost which is less than two and one half times the capital cost

of the nocogeneration coal-fired process boiler and a fuel energy saved

ratio of 0.15 or greater.

In Tables 11-1 and 11-2 the intersection of an energy conversion sys-

tem with an industrial process represents a power or heat matched cogen-

eration system. Those rr,.tches meeting the above criteria are shown cross

hatched and those shown as solid black exceed the criteria by having a

fuel energy saved ratio equal to or greater than 0.25. The reason for a

cogenera`ion system not meeting these criteria is sho! •an by noting which

11-
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Ĵ3Hj

73H

x x x xc O x O O Y

c o 0 0^S01j

7dils
o 0

W15

1111

X x x o 0 0
o^	 o0

10C3

01111

x X x
0

Y x
o

O x x

s 8dd

Y O o Y

i

Y c^ O

e	 °

3S3I0

Y o o ;

aH-19

x 0 'r x	 x Y , x

Y C. Ox C Ox OX

11 VIS
o 0 o

oY o O o 100 1C o o0
S 
09^

o 0 0

Y C

CC

W ►— J =
Lkj

/W—

hie

dr- J `^ yy^,^ W 0 0 Cr W
Q.

11-4



11 0 1
s" or "X's" are missing from the rectangle representing the cogeneration

system match. Based on study results including Tables 11-1 and -2, the

following observations on the various types of cogeneration systems were made:

1. The atmospheric and pressurized fluidized bed steam turbine

systems give payoff compared to conventional boiler with

flue gas desulfurization-steam turbine systems which already
appear attractive in low and medium power over heat ratio

industrial processes.

2. Open-cycle gas turbine and combined gas turbine/steam turbine
systems ar , well suited to medium and high power over heat ratio
industrial processes based on the fuel prices used in CTAS.
Regenerative and steam injected gas turbines do not appear to

have as much potential as the above systems, based on GE results.
Solving low grade coal-derived fuel and NOx emission problems
should be emphasized. There is payoff in these advanced systems
for increasing firing temperatures.

3. The closed-cycle gas turbine systems studied by GE have higher
capital cost and poorer performance than the more promising

technologies.

4. Combined-cycle molten carbonate fuel cell and gas turbine/steam
turbine cycles using integrated gasifier, and heat matched to

medium and high power over heat ratio industrial processes and

exporting surplus power to the utility give high fuel savings.

Because of their high capital cost, these systems may be more

suited to utility or joint utility-industry ownership.

5. Distillate-fired fuel cells did not appear attractive because

of their poor economics due to the low effectiveness of the
cycle configurations studied by GE and the higher price of
distillate fuel.

6. The very high power over heat ratio and moderate fuel effective-
ness characteristics of diesel engines limit their industrial
cogeneration applications. Development of an open-cycle heat pump

to increase use of jacket water for additional process heat would
increase their range of potential applications.

The national savings calculated by implementing each type cogeneration

energy conversion system without competition in the new plants built from

1985 to 1990 gives an index which can be used to compare the relative

potential of the various types of cogeneration energy conversion systems.

The absolute ma gnitude of the-, e savings should not be used because each

energy conversion system was assumed to be 100" implemented but using
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these results to compare the various systems, the following observations

are made:

1. There are significant fuel, emissions, and energy cost savings

realized by pursuing development of some of the advanced tech-

nologies.

2. The greatest payoff when both fuel energy savings and economics

are considered lies in the steam turbine systems using atmospheric

and pressurized fluidized beds. In a comparison of the national
fuel and energy cost savings for heat matched cases, the atmos-
pheric fluidized 5ed showed an 11% increase in fuel saved and 6V

additional savings in levelized annual energy cost savings over

steam turbine systems using conventional boilers with flue gas
desulfurization whose fuel savings were 0.84 quads/year and cost
savings $1.9 billion/year. The same comparison for the pressurized

fluidized bed showed a 73% increase in fuel savings and a 29% in-

crease in energy cost savings.

3. Open-cycle gas turbines and combined-cycles have less wide appli-
cation but offer significant savings. The advanced residual-
fired open-cycle gas turbine with heat recovery steam generator

and firing temperature of 2200 F was estimated to have a potential
national saving of 39% fuel and 27% energy cost compared to cur-
rently available residual-fired gas turbines whose fuel savings
were 0.18 quads/year and cost savings $0.33 billions/year.

4. Fuel and energy cost savings are several times higher when the
cogeneration systems are heat matched and surplus power exported
to the utility than when the systems are power matched.

Other important observations made during the course of performing CTAS

were:

1. Comparison of the cogeneration systems which are heat matched
and usually exporting power to the utility with the power

matched systems shows the systems exporting power have a much
higher energy savings, often reaching two to five times the power
match cases. In the past, with few exceptions, cogeneration sys-
tems have been matched to the industrial process so as not to
export power because of numerous load management, reliability,

regulatory, economic and institutional reasons. A concerted ef-

fort is now underway by a number of government agencies, industries,
and utilities to overcome these impediments and it should be
encouraged if the nation is to receive the full potential of
industrial cogeneration.
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2. The economics of industrially owned cogeneration plants are very
sensitive to fuel and electric power costs or revenues. In-
creased price differentials between liquid fuels and coal would
make integrated gasifier fuel cell or combined-cycle systems
attractive for high power over heat industrial processes.

3. Almost 75% of the fuel consumed by industrial processes studied
in CTAS, which are representative of the national industrial

distribution, have power over heat ratios less than 0.25. As a

result energy conversion systems, such as the steam turbine usinq

the atmospheric or pressurized fluidized bed, which exhibit good

performance and economics when heat matched in the low power over
heat ratio range, give the largest national savings.

SIGNIFICANT DEVELOPMENT REQUIREMENTS

The level of performance estimated for each advanced energy conversion

system studied in CTAS was premised on the achievement of certain advanced

developments. The developments required for the most attractive conversion

systems by fuel type are shown in Table 11-3 for coal-fired ECS's and in

Table 11-4 for coal-derived liquid-fired.

Table 11-3

SIGNIFICANT DEVELOPMENTS OF MOST ATTRACTIVE ECS's

(Coal Fired)

FCS	 SIGNIFICANT DEVELOPMENTS

Steam Turbine AFB	 Atmospheric Fluidized Bed Boiler

Pressurized Fluidized Bed 	 System and Control

Particulate Removal or Gas Turbine
Erosion Protection

Pressurized Fluidized Bed
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Table 11-4

SIGNIFICANT DEVELOPMENTS OF MOST ATTRACTIVE ECS's
(Coal-Derived Liquid Fuel)

ECS
	

SIGNIFICANT DEVELOPMENTS

GT-HRSG, and Combined-Cycle
	

2200 F air-cooled gas turbine

NO  reduction systems

Certain developments have broad generic impact on advanced energy

conversion systems and thus merit aggressive development effort regard-

less of the particular advanced systems that are most attractive. Table

11-5 lists the most important of these developments along with the energy

conversion systems requiring their development.

Table 11-5

CRITICAL DEVELOPMENTS REQUIRED FOR COGENERATION ENERGY CONVERSION

SYSTEMS

1. Fluidized Bed Combustion

Nocoqeneration AFB process steam boilers
AFB power steam boilers
Gas turbine for PFB system
Helium heaters - Closed-cycle gas turbine

- Stirling cycle

2. NO  Reduction Systems

Advanced diesels
Coal-derived liquid-fired units

a. Fuel Gas Clean-up Systems and Coal Gasifiers

Molten carbonate fuel cell

Integrated gasifier gas and steam turbine

Gas turbine for PFB system

4. Very Hirs h Temperature Air Pr,heaters

Thei ionic boiler

Stirling cycle

Closed-cycle gas turbine - AFB

5. DC-AC Inverters - Cost Reductions

Thermionics

Fuel cells
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SR = L2/!1'85
F/P + 3

(II -P)

APPENDIX-SCALING METHODOLOGY

The total industry savings were obtained by using the 4-digit SIC

industry data generated in CTAS to scale to the 2-digit SIC industry level

and then scaling the 2-digit data to a national level.

Scaling to 2-Digit SIC Industry

It was assumed that the fuel savings for each cogeneration system,

producing both steam and electric power, is a strong function of the ratio

of steam to power. This relatiorship was not determined for each energy

conversion system (ECS) but for purposes of estimating the total national

savings some simplifying models were developed.

The relationships were developed for both heat and power matches and

for regimes of the ratio of heat to power required by the industrial process.

Power Match. For the power match case the fuel energy saved is approximated

for two regimes. Regime I is for process heat to power ratios (H/P) less

than 2 and regime II is for H/P ratios greater than 2. The resulting

equations for the savings ratio are:

SR = 1/0.85 H/P

/P + 
3	 {I-P)

for regime I, where,

H is the industrial process heat requirement

P is the industrial power requirement

and F is the nocogeneration total fuel requirement for both the utility

and the industry, including the fuel used for direct heat,

and
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SR = (1/0.85)(H/P)
F/P+3

(I and II-H)

and

(3) ( 1085 ) 6	 1
X

(1) (6-1— 6+l x H/P-5 (III-H)
SR = (1/0.85)(H/P) + 3

F/P+3

for regime II. The savings ratio, SR, is defined as the savings in fuel

energy between nocogeneration and cogeneration diveded by the nocogeneration

fuel energy used including the fuel energy for direct heat in addition to

the process heat and fuel for electric power.

Heat Match. For the heat match case the fuel energy saved is approximated

for three regimes. Regime I is for an H/P less than 2, regime II for H/P

between 2 and 6, and regime III for H/P greater than 6. In the heat match

case it was assumed that the amount of export power was limited to twice

that required by the process, or PECS - 3 P where PECS is the power generated

by the ECS. The heat match equations are:

Savings Ratio. The savings ratio (SR) for the total 2-digit industry may

be obtained by integrating over each of the 4-digit SIC's within the 2-digit

sector and weighting it by fossil fuel used in that 4-digit sector. It is

assumed that the values of H/P are known for each industry and that the SR

function is defined as above.

Thus,

N

SR r2 =	fiSRr4i

i=1

where,

f i = 1.0

A-2



fi	= fraction of fossil fuel used in each 4-digit SIC within

2-digit group

SRr4 = relative savings ratio for the ith 4-digit SIC

i	 = 1 to N where N is the total number of 4-digit groups in

2-digit groups

and

SRr2 = relative savings ratio for 2-digit SIC industry.

Case of single 4-digit SIC industry. In the case of only one 4-digit SIC

industry in a 2-digit SIC sector, i equals some number j in the above

analysis and we let

SR r4 = SR 
r4

(only one 4-digit SIC designated by j).

,1

We also now define

SR2	 SRr2 x SR4
r4

Where

SR 	 = the FESR calculated in Section 8 for the 4-digit industry

and a particular ECS,

SR r2and SR r4are defined above

SR 	 = estimated FESR for the 2-digit SIC industry scaled from the

single 4-digit SIC industry, SR 4*

For the single 4-digit SIC within the 2-digit sector, the equation becomes,	 }`
1

SR  = M SR 
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where M = multiplier for the single 4-digit industry and is given by

N

f i SRr4 x (H/P)
1

SRr4

-X  -
H/P 

--

The ratio H/P is ratio of the process heat to power. Thus, by using

this multiplier, M, times the calculated SR for the 4-digit group, the >R

for the 2-digit group is estimated.

Case of multi 4-digit SIC industries. In the case of several 4-digit SIC

industries in a 2-digit SIC sector, as previously,

N

SR r2 =	fiSRr41

i=1

where

f. = 1.0
1

fi	= fraction of fossil fuel used by ith 4-digit group within the

2-digit sector

SRr4 = relative savings ratio for ith 4-digit SIC
1

i	 = 1 to N where N = total number of 4-digit groups in 2-digit

groups

and SR r2 = relative savings ratio for 2--digit SIC industry.

In this case of multi 4-digit SIC groups or plants in this 2-digit SIC

sector,
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k

	

1	 SRr2

	

SR = K	 (31 ' - SR43

J=1	 j

k

1 SR 
r2

( K S--R---)SR
 

4j

j=1

	
j

K

MiSR4j

j=1

where

M. = 1 SR r2
K
 

SR r4

and

j	 = 1 to K, where K = total number of 4-digit groups (plants)

specified and analyzed by GE

SR r4 = relative savings ratio for the jth 4-digit SIC group (plant)

i	 specified by GE

and

Mj = multiplier for the jth 4-digit SIC group (plant)

Thus, each multiplier (Mj ) is used for each 4-digit SIC group or plant to

scale up to the 2-digit savings ratio, SR:

SR  = M 1 SR41 + M2SR42 +.... MjSR4j +...• MkSR4k
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If there we re five industries considered within a 2-digit group, then

K = 5 and SR2 represents the estimated savings ratio (not relative) for the 	 i

2-digit SIC group and the values SR41 , etc. are those calculated by GE for 	 t

specific technology. For each technology, different values are used for

SR4j but the same values are used for M  since it is assumed that the same

relative savings function is reasonable.

SR = SR (H/P)

Scaling To Total Industry From 2-Digit Savings Ratio

The same procedure developed in the multi 4-digit SIC group is used

in this analysis. In this case there are multi 2-digit SIC sectors from

which to scale to the total industry savings ratios. Thus,

L

	

1	 SRrT

	

SRT L	 SR r2

k=1	 k

L

SR 2k=	 MkSR2k

k=1

where F.

K

SRrT

Mk	
LSRr2y

k

20

SRrT =	 FiSRr2J

i=1

fraction of total industry fossil fuel used by ith 2-digit

SIC group. There are 20 groups.

1 to L, where L = total number of 2-digit SIC sectors coverrd
by the GE analysis.	 (In this study L = 8).

and
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I

SR r2= relative savings ratio for the kth 2-digit SIC group specified

k	 by GE.

Mk	- multiplier for the kth 2-digit SIC group specified by GE.

SR 2k = estimated savings ratio for the 2-digit SIC industry sector

scaled from the 4-digit plant-cogen technology calculations

performed by GE.

and

SR 	 = savings ratio estimated for the total industry and scaled

from the 2-digit groups selected by GE.

Thus,

SR  = M 1 SR21 + M2SR21 +... 
MkSR2k +... 

M8SR28

where the M k are the 2-digit multipliers and there are eight 2-digit

groups considered in the GE study.

Since GE calculated savings ratios based on fossil fuel used to pro-

duce steam plus 3 times the electric use, (but did not include the direct

heat) the multiplier must correct for the fossil fuel used fo- direct heat

also. Thus the multipliers are corrected for the proper fuel basis as

follows:

Estimated savings ratio for 2-digit sector based on

M __	 National Energy
Estimated savings ratio for 4-digitor sub 4-digit

sector based on GE energy (boiler fuel + 3P).

Analysis Modification For H/P Ratio of Zero

In many 4-digit industries within 2-digit sectors (particularly S:C-32)

the H/P is essentially zero. For those industries with H/P equal to zero,

the multiplier is essentially, F i , the fraction of fuel used in that process.
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If the savings are very low for a cogeneration system producing steam,

then the overall savings for the 2-digit sector is very low if most

industries have an H/P near zero. For those 2-digit groups having a mix

(H/P greater than or equal to 0) of industries (e.g. SIC 28 oN 33), then

the multipliers that have been developed from the previous analysis are

modified by the fraction of fuel in those industries with H/P = 0.

Plant__ Scal i_ny to_ 4-Digit Groups

Each plant or industrial process was considered to he a sub 4-digit

group and therefore represented a specified fraction of the energy used

within that 4-digit group. Using these fractions. a fraction (f i ) of the

2-digit group used by the sub 4-digit group was developed. These fractions

(f i ) were estimated as well as the heat/power ratio (H/P) for each in-

dustrial process (sub 4-digit group) and for each 4-digit group within a

2-digit sector. For those eight 2-digit groups analyzed in detail, a

weighted (H/P) was determined and an (H/P) was estimated for the remaining

12 2-digit SIC groups. Thus the following information was required for

selected 4-digit (and sub 4-digit groups) and 2-digit industrial groups.

f i = 4-digit (sub 4-digit) fossil fuel fraction

F  = 2-digit fossil fuel fraction

H/P = heat/power ratio

Data for Industrial Processes_ Specified by GE

The data for those processes specified by GE are contained in

Table A-l.

Data for• Plant Size Distribution

Each of the 4-digit groups (not sub 4-digit processes) has been pro-

filed to size of plant by employees ind the percent of energy within 0001

size cate gory. These data are presented in Table A

A-4



I

Table	 A-1

INDUSTRIAL PROCESS DATA

(4-Digit or Sub 4-Digit SIC Group)

SIC Group f  H/P Ratio

SIC-20 2011 .0656 3.6
(Food Industry) 2026 .0359 2.4

2046 .0975 6.7

2063 .1139 20.0

2082 .0495 4.2

SIC-22 (a) 2260 .2997 7.7
(Textiles)

SIC-24 2421 .2510 5.9
(Lumber and Wood) 2436 .1315 7.1

2492 .0279 2.2

SIC-26 (b) 2621-2 .3607 4.5

(Paper and Pulp) 2621-4 .3246 6.3

2621-6 .0090 4.5
2621-7 .0721 2.1
2621-8 .1353 4.8

SIC-28 (c) 2812 .0420 0.6
(Chemicals) 2813 .0224 .0

2819-1 .0101 9.1

2819-2 .0303 9.1
2921-2 .0395 14.3

2821-3 .0139 0.01

2822 .0134 1.37

2824-1 .0269 0.27

2824-2 .0127 0.61
2865-1 .0231 33.0
2865-2 .0049 0
2865-3 .0158 14.3

2865-4 .0170 100.0	 (Cont'd)

(a)	 This represents 2261, 2262 and 2269 combined into one 4-digit

2260 within SIC 22 since only one analysis was performed by GE.

(b)	 These 5 industrial processes represent the three 4-digit SIC's	 -
2611,	 2621	 and 2631.	 The combined fossils of these 3 were con-
sidered and then disaggregated into the above 5 industrial	 pro-
cesses.	 The designation numbers used above are similar to those
given by GE.
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Table A-1 (Cont'd)

INDUSTRIAL PROCESS DATA
	

f

(4-Digit or Sub 4-Digit SIC Group)

SIC G r̂ _	 fi _	 H/P Ratio

SIC-28 (c) (Cont'd)	 2869-1	 .0041	 25.0
(Chemicals)	 2869-2	 .3828	 7.7

2869-3	 .0041	 25.0
2869-4	 .0206	 33.0

2873	 .1160	 50.0

2874	 .0223	 6.7

2895	 .0095	 1.47

SIC-29 (d)	2911-1	 .1958	 7.8

(Petroleum)	 2911-2	 .2984	 7.5
2911-3	 .4382	 7.1

SIC-32	 3211	 .0446	 0
(Stone, Clay & Glass) 	 3221	 .1198	 0

3229	 .0548	 0
3241-1	 .1096	 0
3241-2	 .0365	 0
3241-3	 .1827	 0
3241-4	 .0365	 0

SIC-33 (e)	3312-1	 .0947	 0.45
(Primary Metals)	 3312-2	 .5207	 0.95

3312-3	 .0609	 0.67
3331-1	 .0022	 0
3331-2	 .0029	 0
3331-3	 .0022	 0
3331-4	 .0058	 1.16

3331-5	 .0146	 0.95
3331-6	 .0087	 1.10

3334-1	 .0047	 0

3334-2	 .0187	 0
3334-3	 .0234	 0

(c) The sub 4-digit processes were assumed to represent some fraction of
the 4-digit total. This was estimated and used to calculate the f 
for that process. 2819-Alumina was built back into SIC 28 since
it is a part of the chemical sector and is required in the weighting
process. GE had included it in primary metals SIC-33, but that would
be improper in the analysis to estimate total savings ratio for the

2-digit sectors. 2819-1, 2 came from 3334-4, 5, 6.

(d) These refineries are small, medium and large as defined by GE.

(e) The GE designated 3312 and two 3325's were combined into three pro-

cesses in 3312. After reading process description and comparing pro-
ducts, it appeared that they should he primarily in 3312. Also alumina

plants (GE designated 3334-4,5,6) were removed and put in 2819 (chemi-

cal industry).
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Data and Multipliers for 4-Digit SIC Groups

Data for the fraction of the 2-digit total fuel represented by each

4-digit selected industry is given in Table A-3 . The fraction f'. is based

on the total industry fuel including direct heat plusithe utility fuel to

supply the electric power (based on an efficiency of 1/3). The totals for

each 2-digit sector indicates what fraction of the total 2-digit sector

is represented by the selected 4-digit industries. The multipliers as

defined earlier are also given for both the poi ,er match and the heat match

cases.

Data and Multipliers for Total Industry

Data for the total industry fraction of fuel represented by each

2-digit selected industry is given in Table A-4 . The frac t ion F! is

again based on the total fuel including direct heat plus the utility fuel

to supply the electric power. The total of the selected 2-digit groups

represents about 85T of the total industrial fuel for all sectors. The

heat to power ratio (H/P) representative of each 2-digit sector is also

shown. The multipliers given in this table are used to determine the

total national savings.

A-13
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Table	 A-3

DATA AND MULTIPLIERS FOR 4-DIGIT SIC GROUPS

Mu1 tip Iie_r_,_ M Fraction of Energy

4-Digit
f.

Power Heat
for Steam and
Electric Fower

SIC Group i Match Match Boiler Fuel	 + 3E

(a) Food Industry, SIC-20
Boiler Fuel	 + 3E +

Direct Heat

2011 .0738 .101 .084
2026 .0492 .082 .101 .99
2046 .0767 .153 .119 .55

2063 .0787 .372 1.052 .29
2082 .0504 .111 .079 .91

.3288

(b) Textiles, SIC-22

2260 .1723 .721 .608 .8

(c) Lumber & Wood, SIC-24

2421 .3254 .316 .252 1
2436 .1386 .361 .529 1

2492 .0390 .178 .380 .9
.503

(d) Paper, Pulp,	 SIC-26

2621-2 .3472 .118 .107 .7
2621-4 .3125 .148 .127 .87
2621-6 .0087 .118 .107 .7
2621-7 .0694 .078 .152 .46

2621-8 .1302 .123 .105 .72

.868

(e) Chemicals, SIC-28

2812 .0576 .041 .055 .64

2813 .041 .041 .041 .65

2819-1 .0877 .046 .061 1

2819-2 .1071 .036 .022 1
2819-2 .0403 .063 .139 1

2821-3 .0142 2.012 2.68 .36

2822 .0119 .022 .030 .4
2824-1 .0285 .082 .109 .42
2824-2 .0134 .041 .054 .47
2865-1 .0196 .140 .419 1
2865-2 .0041 .004 .004 .23
2865-3 .0134 .066 .139 1

2865-4 .0144 .403 1.422 1

(Cont'd)

H-!4



Table A-3 (Cont'd)

DATA AND MULTIPLIERS FOR 4-DIGIT SIC GROUPS

Multiplier, M Fraction of Energy
4-Digit

f! Power ^- Heat for Steam and

SIC Gro-up Match Match Electric Power
Boiler Fuel	 + 3E

(e)	 Chemicals, SIC-28	 (Cont'd) Qo ler Fuel	 + 3E +
Direct Heat

2869-1 .0032 .108 .299 1

2869-2 .2999 .0403 .040 .66

2869-3 .0032 .108 .299 1
2869-4 .0161 .140 .419 1
2873 .0878 .207 .674 1
2874 .0224 .036 .025 1
2895 .0075 .021 .029 .27

.8933

(f) Petroleum, SIC-29

2911-1 .1964 .179 .206 .63

2911-2 .2993 .173 .184 .61

2911-3 .4395 .166 .154 .59

.9352

(y)	 Stone,	 Clay R Glass,
SIC-32

3211 .0446 .076 .076 .21
3221 .1276 .217 .217 25

32 2 9 .0591 .100 .100 L6
3241-1 .1073 .182 .182 .19

3241-2 .0358 .061 .061 .19

3241-3 .1789 .304 .304 .19

3241-4 .0358 .061 .061 .19

.5891

(h) Primary Metals, SIC-33

3312-1 .0796 .028 .028 .18
3312-2 .4378 .016 .016 .21

3312-3 .0512 .020 .020 .19
3331-1 .0018 .002 .002 .11

3331-2 .0023 .002 .002 .11

3331-3 .0018 .002 .002 .11

3331-4 .0047 .013 .013 .17

3331-5 .0117 .016 .016 .16

3331-6 .0070 .014 .014 .16

3334-1 .0147 .015 .015 .77

3334-2 .0589 .059 .059 .77

3334-3 .0736_ .074 .074 .77

.7451
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Table	 A-4

DATA AND MULTIPLIERS FOR TOTAL INDUSTRY

Multiplier, M
SIC Group F  HJP Power Match Heat Match

20 .0612 5.8 .099 .046

22 .0264 2.3 .069 .081

24 .0178 4.6 .079 .046

26 .0809 4.7 .113 .064

28 .2195 12.5 .096 .183

29 .0996 7.1 .186 .155

32 .0721 0.1 .072 .072

33 .2687 0.6 .369 .495

.8462
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