1,952 research outputs found

    Experimentation with MANETs of Smartphones

    Full text link
    Mobile AdHoc NETworks (MANETs) have been identified as a key emerging technology for scenarios in which IEEE 802.11 or cellular communications are either infeasible, inefficient, or cost-ineffective. Smartphones are the most adequate network nodes in many of these scenarios, but it is not straightforward to build a network with them. We extensively survey existing possibilities to build applications on top of ad-hoc smartphone networks for experimentation purposes, and introduce a taxonomy to classify them. We present AdHocDroid, an Android package that creates an IP-level MANET of (rooted) Android smartphones, and make it publicly available to the community. AdHocDroid supports standard TCP/IP applications, providing real smartphone IEEE 802.11 MANET and the capability to easily change the routing protocol. We tested our framework on several smartphones and a laptop. We validate the MANET running off-the-shelf applications, and reporting on experimental performance evaluation, including network metrics and battery discharge rate.Comment: 6 pages, 7 figures, 1 tabl

    Efficient real-time video delivery in vehicular networks

    Full text link
    Tesis por compendio[EN] Vehicular Ad-hoc Networks (VANET) are a special type of networks where the nodes involved in the communication are vehicles. VANETs are created when several vehicles connect among themselves without the use of any infrastructure. In certain situations the absence of infrastructure is an advantage, but it also creates several challenges that should be overcome. One of the main problems related with the absence of infrastructure is the lack of a coordinator that can ensure a certain level of quality in order to enable the correct transmission of video and audio. Video transmission can be extremely useful in this type of networks as it can be used for videoconferencing of by traffic authorities to monitor the scene of an accident. In this thesis we focused on real time video transmission, providing solutions for both unicast and multicast environments. Specifically, we built a real-world testbed scenario and made a comparison with simulation results to validate the behavior of the simulation models. Using that testbed we implemented and improved DACME, an admission control module able to provide Quality of Service (QoS) to unicast video transmissions. DACME proved to be a valid solution to obtain a certain level of QoS in multi-hop environments. Concerning multicast video transmission, we developed and simulated several flooding schemes, focusing specifically on VANET environments. In this scope, the main contribution of this thesis is the Automatic Copies Distance Based (ACDB) flooding scheme. Thanks to the use of the perceived vehicular density, ACDB is a zeroconf scheme able to achieve good video quality in both urban and highway environments, being specially effective in highway environments.[ES] Las redes vehiculares ad-hoc (VANET) son un tipo especial de redes en las que los nodos que participan de la comunicación son vehículos. Las VANETs se crean cuando diversos vehículos se conectan entre ellos sin el uso de ninguna infraestructura. En determinadas situaciones, la ausencia de infraestructura es una ventaja, pero también crea una gran cantidad de desafíos que se deben superar. Uno de los principales problemas relacionados con la ausencia de infraestructura, es la ausencia de un coordinador que pueda asegurar un determinado nivel de calidad, para poder asegurar la correcta transmisión de audio y vídeo. La transmisión de vídeo puede ser de extrema utilidad en este tipo de redes ya que puede ser empleada para videoconferencias o por las autoridades de tráfico para monitorizar el estado de un accidente. En esta tesis nos centramos en la transmisión de vídeo en tiempo real, proveyendo soluciones tanto para entornos unicast como multicast. En particular construimos un banco de pruebas real y comparamos los resultados obtenidos con resultados obtenidos en un entorno simulado para comprobar la fiabilidad de estos modelos. Usando el mismo banco de pruebas, implementamos y mejoramos DACME, un módulo de control de admisión capaz de proveer de calidad de servicio a transmisiones de vídeo unicast. DACME probó ser una solución válida para obtener ciertos niveles de calidad de servicio en entornos multisalto. En lo referente a la transmisión de vídeo multicast, desarrollamos y simulamos diversos esquemas de difusión diseñados específicamente para entornos VANET. En este campo, la principal contribución de esta tesis es el esquema de difusión "Automatic Copies Distance Based" (ACDB). Gracias al uso de la densidad vehicular percibida, ACDB es un esquema, que sin necesidad de configuración, permite alcanzar una buena calidad de vídeo tanto en entornos urbanos como en autopistas, siendo especialmente efectivo en este último entorno.[CA] Les xarxes vehiculars ad-hoc (VANET) son un tipus de xarxes especials a les que els diferents nodes que formen part d'una comunicació son vehicles. Les VANETs es formen quan diversos vehicles es connecten sense fer ús de cap infraestructura. A certes situacions l'absència d'una infraestructura suposa un avantatge, encara que també genera una gran quantitat de desafiaments que s'han de superar. U dels principals problemes relacionats amb l'absència d'infraestructura, és la manca d'un coordinador que puga garantir una correcta transmissió tant de video com d'àudio. La transmissió de video pot ser d'extrema utilitat a aquest tipus de xarxes, ja que es por emprar tant per a videoconferències com per part de les autoritats de trànsit per monitoritzar l'estat d'un accident. A aquesta tesi ens centrem en transmissió de video en temps real, proporcionant solucions tant a entorns unicast como a entorns multicast. Particularment, vam construir un banc de proves i obtinguérem resultats que comparàrem amb resultats obtinguts mitjançant simulació. D'aquesta manera validarem la fiabilitat dels resultats simulats. Fent ús del mateix banc de proves, vàrem implementar i millorar DACME, un mòdul de control d'admissió, capaç de proveir de qualitat de servici a transmissions de video unicast. DACME va provar ser una bona solució per obtindré un bon nivell de qualitat de servici en entorns de xarxes ad-hoc amb diversos salts. Si ens centrem a la transmissió de video multicast, vàrem implementar i simular diferents esquemes de difusió, específicament dissenyats per al seu ús a entorns VANET. La principal contribució d'aquesta tesi es l'esquema de difusió ACDB (Automatic Copies Distance Based). Fent ús de la densitat vehicular, ACDB es capaç d'obtindre una bona qualitat de video tant a ciutats com a vies interurbanes, sent a especialment efectiu a aquestes últimes. A més a més no es necessària cap configuració per part de l'usuari.Torres Cortés, Á. (2016). Efficient real-time video delivery in vehicular networks [Tesis doctoral no publicada]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/62685TESISCompendi

    Cognitive radio networks : quality of service considerations and enhancements

    Get PDF
    The explosive growth of wireless and mobile networks, such as the Internet of Things and 5G, has led to a massive number of devices that primarily use wireless channels within a limited range of the radio frequency spectrum (RFS). The use of RFS is heavily regulated, both nationally and internationally, and is divided into licensed and unlicensed bands. While many of the licensed wireless bands are underutilised, useable unlicensed bands are usually overcrowded, making the efficient use of RFS one of the critical challenges faced by future wireless communication technologies. The cognitive radio (CR) concept is proposed as a promising solution for the underutilisation of useful RFS bands. Fundamentally, CR technology is based on determining the unoccupied licensed RFS bands, called spectrum white spaces or holes, and accessing them to achieve better RFS utilisation and transmission propagation. The holes are the frequencies unused by the licensed user, or primary user (PU). Based on spectrum sensing, a CR node, or secondary user (SU), senses the surrounding spectrum periodically to detect any potential PU transmission in the current channel and to identify the available spectrum holes. Under current RFS regulations, SUs may use spectrum holes as long as their transmissions do not interfere with those of the PU. However, effective spectrum sensing can introduce overheads to a CR node operation. Such overheads affect the quality of service (QoS) of the running applications. Reducing the sensing impact on the QoS is one of the key challenges to adopting CR technology, and more studies of QoS issues related to implementing CR features are needed. This thesis aims to address these QoS issues in CR while considered the enhancement of RFS utilisation. This study concentrates on the spectrum sensing function, among other CR functions, because of its major impact on QoS and spectrum utilisation. Several spectrum sensing methods are reviewed to identify potential research gaps in analysing and addressing related QoS implications. It has been found that none of the well-known sensing techniques is suitable for all the diverse QoS requirements and RFS conditions: in fact, higher accuracy sensing methods cause a significant QoS degradation, as illustrated by several simulations in this work. For instance, QoS degradation caused by high-accuracy sensing has not yet been addressed in the IEEE 802.11e QoS mechanism used in the proposed CR standard, IEEE 802.11af (or White-Fi). This study finds that most of the strategies proposed to conduct sensing are based on a fixed sensing method that is not adaptable to the changeable nature of QoS requirements. In contrast, this work confirms the necessity of using various sensing techniques and parameters during a CR node operation for better performance

    Models and Performance of VANET based Emergency Braking

    Get PDF
    The network research community is working in the field of automotive to provide VANET based safety applications to reduce the number of accidents, deaths, injuries and loss of money. Several approaches are proposed and investigated in VANET literature, but in a completely network-oriented fashion. Most of them do not take into account application requirements and no one considers the dynamics of the vehicles. Moreover, message repropagation schemes are widely proposed without investigating their benefits and using very complicated approaches. This technical report, which is derived from the Master Thesis of Michele Segata, focuses on the Emergency Electronic Brake Lights (EEBL) safety application, meant to send warning messages in the case of an emergency brake, in particular performing a joint analysis of network requirements and provided application level benefits. The EEBL application is integrated within a Collaborative Adaptive Cruise Control (CACC) which uses network-provided information to automatically brake the car if the driver does not react to the warning. Moreover, an information aggregation scheme is proposed to analyze the benefits of repropagation together with the consequent increase of network load. This protocol is compared to a protocol without repropagation and to a rebroadcast protocol found in the literature (namely the weighted p-persistent rebroadcast). The scenario is a highway stretch in which a platoon of vehicles brake down to a complete stop. Simulations are performed using the NS_3 network simulation in which two mobility models have been embedded. The first one, which is called Intelligent Driver Model (IDM) emulates the behavior of a driver trying to reach a desired speed and braking when approaching vehicles in front. The second one (Minimizing Overall Braking Induced by Lane change (MOBIL)), instead, decides when a vehicle has to change lane in order to perform an overtake or optimize its path. The original simulator has been modified by - introducing real physical limits to naturally reproduce real crashes; - implementing a CACC; - implementing the driver reaction when a warning is received; - implementing different network protocols. The tests are performed in different situations, such as different number of lanes (one to five), different average speeds, different network protocols and different market penetration rates and they show that: - the adoption of this technology considerably decreases car accidents since the overall average maximum deceleration is reduced; - network load depends on application-level details, such as the implementation of the CACC; - VANET safety application can improve safety even with a partial market penetration rate; - message repropagation is important to reduce the risk of accidents when not all vehicles are equipped; - benefits are gained not only by equipped vehicles but also by unequipped ones

    Voice Call Capacity Over Wireless Mesh Networks

    Get PDF
    The goal of this thesis is to understand the voice call carrying capacity of an IEEE 802.11b/e based ad hoc network. We begin with the modelling of conversational speech and define a six state semi-Markov voice model based on ITU-T P59 recommendation. We perform a theoretical analysis of the voice model and compare it with results obtained via simulations. Using a Java based IEEE 802.11 medium access layer simulator, we determine the upper-bound for the number of voice calls carried by an ad hoc network. We use a linear topology with the ideal carrier sensing range and evaluate the number of calls carried using packet loss and packet delay as metrics. We observe that, for one, two, three and four hop, 5.5 Mbps IEEE 802.11 wireless links have an upper-bound of eight, six, five, and three voice calls respectively. We then consider a carrier sensing range and a path loss model and compare them with the ideal case. We observe, after considering a carrier sensing range with path loss model, there is a reduction in the number of calls carried by the linear networks. One, two, three and four hop 5.5 Mbps IEEE 802.11 wireless links support eight, five, four, and two voice calls respectively, when a carrier sensing range and a path loss model is considered. We also find that by adopting packet dropping policies at the nodes, we improve the call carrying capacity and quality of service on the network. In our simulations of a two hop network in path loss conditions, we find that, by adopting a time delay based packet dropping policy at the nodes, the number of calls supported simultaneously increased from five to six. In a four hop linear network we find that by total packet loss is reduced by 20%, adopting a random packet dropping policy and by 50% adopting a time delay based packet dropping policy. Although there is no change in number of calls supported, load on the network is reduced

    Weighted proportional fairness and pricing based resource allocation for uplink offloading using IP flow mobility

    Get PDF
    Mobile data offloading has been proposed as a solution for the network congestion problem that is continuously aggravating due to the increase in mobile data demand. However, the majority of the state-of-the-art is focused on the downlink offloading, while the change of mobile user habits, like mobile content creation and uploading, makes uplink offloading a rising issue. In this work we focus on the uplink offloading using IP Flow Mobility (IFOM). IFOM allows a LTE mobile User Equipment (UE) to maintain two concurrent data streams, one through LTE and the other through WiFi access technology, that presents uplink limitations due to the inherent fairness design of IEEE 802.11 DCF by employing the CSMA/CA scheme with a binary exponential backoff algorithm. In this paper, we propose a weighted proportionally fair bandwidth allocation algorithm for the data volume that is being offloaded through WiFi, in conjunction with a pricing-based rate allocation for the rest of the data volume needs of the UEs that are transmitted through the LTE uplink. We aim to improve the energy efficiency of the UEs and to increase the offloaded data volume under the concurrent use of access technologies that IFOM allows. In the weighted proportionally fair WiFi bandwidth allocation, we consider both the different upload data needs of the UEs, along with their LTE spectrum efficiency and propose an access mechanism that improves the use of WiFi access in uplink offloading. In the LTE part, we propose a two-stage pricing-based rate allocation under both linear and exponential pricing approaches, aiming to satisfy all offloading UEs regarding their LTE uplink access. We theoretically analyse the proposed algorithms and evaluate their performance through simulations. We compare their performance with the 802.11 DCF access scheme and with a state-of-the-art access algorithm under different number of offloading UEs and for both linear and exponential pricing-based rate allocation for the LTE uplink. Through the evaluation of energy efficiency, offloading capabilities and throughput performance, we provide an improved uplink access scheme for UEs that operate with IFOM for uplink offloading.Peer ReviewedPreprin
    corecore