5,850 research outputs found

    What your Facebook Profile Picture Reveals about your Personality

    Get PDF
    People spend considerable effort managing the impressions they give others. Social psychologists have shown that people manage these impressions differently depending upon their personality. Facebook and other social media provide a new forum for this fundamental process; hence, understanding people's behaviour on social media could provide interesting insights on their personality. In this paper we investigate automatic personality recognition from Facebook profile pictures. We analyze the effectiveness of four families of visual features and we discuss some human interpretable patterns that explain the personality traits of the individuals. For example, extroverts and agreeable individuals tend to have warm colored pictures and to exhibit many faces in their portraits, mirroring their inclination to socialize; while neurotic ones have a prevalence of pictures of indoor places. Then, we propose a classification approach to automatically recognize personality traits from these visual features. Finally, we compare the performance of our classification approach to the one obtained by human raters and we show that computer-based classifications are significantly more accurate than averaged human-based classifications for Extraversion and Neuroticism

    Hierarchical Attention Network for Visually-aware Food Recommendation

    Full text link
    Food recommender systems play an important role in assisting users to identify the desired food to eat. Deciding what food to eat is a complex and multi-faceted process, which is influenced by many factors such as the ingredients, appearance of the recipe, the user's personal preference on food, and various contexts like what had been eaten in the past meals. In this work, we formulate the food recommendation problem as predicting user preference on recipes based on three key factors that determine a user's choice on food, namely, 1) the user's (and other users') history; 2) the ingredients of a recipe; and 3) the descriptive image of a recipe. To address this challenging problem, we develop a dedicated neural network based solution Hierarchical Attention based Food Recommendation (HAFR) which is capable of: 1) capturing the collaborative filtering effect like what similar users tend to eat; 2) inferring a user's preference at the ingredient level; and 3) learning user preference from the recipe's visual images. To evaluate our proposed method, we construct a large-scale dataset consisting of millions of ratings from AllRecipes.com. Extensive experiments show that our method outperforms several competing recommender solutions like Factorization Machine and Visual Bayesian Personalized Ranking with an average improvement of 12%, offering promising results in predicting user preference for food. Codes and dataset will be released upon acceptance

    A framework for interrogating social media images to reveal an emergent archive of war

    Get PDF
    The visual image has long been central to how war is seen, contested and legitimised, remembered and forgotten. Archives are pivotal to these ends as is their ownership and access, from state and other official repositories through to the countless photographs scattered and hidden from a collective understanding of what war looks like in individual collections and dusty attics. With the advent and rapid development of social media, however, the amateur and the professional, the illicit and the sanctioned, the personal and the official, and the past and the present, all seem to inhabit the same connected and chaotic space.However, to even begin to render intelligible the complexity, scale and volume of what war looks like in social media archives is a considerable task, given the limitations of any traditional human-based method of collection and analysis. We thus propose the production of a series of ‘snapshots’, using computer-aided extraction and identification techniques to try to offer an experimental way in to conceiving a new imaginary of war. We were particularly interested in testing to see if twentieth century wars, obviously initially captured via pre-digital means, had become more ‘settled’ over time in terms of their remediated presence today through their visual representations and connections on social media, compared with wars fought in digital media ecologies (i.e. those fought and initially represented amidst the volume and pervasiveness of social media images).To this end, we developed a framework for automatically extracting and analysing war images that appear in social media, using both the features of the images themselves, and the text and metadata associated with each image. The framework utilises a workflow comprising four core stages: (1) information retrieval, (2) data pre-processing, (3) feature extraction, and (4) machine learning. Our corpus was drawn from the social media platforms Facebook and Flickr

    Survey of the State of the Art in Natural Language Generation: Core tasks, applications and evaluation

    Get PDF
    This paper surveys the current state of the art in Natural Language Generation (NLG), defined as the task of generating text or speech from non-linguistic input. A survey of NLG is timely in view of the changes that the field has undergone over the past decade or so, especially in relation to new (usually data-driven) methods, as well as new applications of NLG technology. This survey therefore aims to (a) give an up-to-date synthesis of research on the core tasks in NLG and the architectures adopted in which such tasks are organised; (b) highlight a number of relatively recent research topics that have arisen partly as a result of growing synergies between NLG and other areas of artificial intelligence; (c) draw attention to the challenges in NLG evaluation, relating them to similar challenges faced in other areas of Natural Language Processing, with an emphasis on different evaluation methods and the relationships between them.Comment: Published in Journal of AI Research (JAIR), volume 61, pp 75-170. 118 pages, 8 figures, 1 tabl
    corecore