488 research outputs found

    A Flow-aware MAC Protocol for a Passive Optical Metropolitan Area Network

    Full text link
    The paper introduces an original MAC protocol for a passive optical metropolitan area network using time-domain wavelength interleaved networking (TWIN)% as proposed recently by Bell Labs . Optical channels are shared under the distributed control of destinations using a packet-based polling algorithm. This MAC is inspired more by EPON dynamic bandwidth allocation than the slotted, GPON-like access control generally envisaged for TWIN. Management of source-destination traffic streams is flow-aware with the size of allocated time slices being proportional to the number of active flows. This emulates a network-wide, distributed fair queuing scheduler, bringing the well-known implicit service differentiation and robustness advantages of this mechanism to the metro area network. The paper presents a comprehensive performance evaluation based on analytical modelling supported by simulations. The proposed MAC is shown to have excellent performance in terms of both traffic capacity and packet latency

    Size-based scheduling vs fairness for datacenter flows: a queuing perspective

    Full text link
    Contrary to the conclusions of a recent body of work where approximate shortest remaining processing time first (SRPT) flow scheduling is advocated for datacenter networks, this paper aims to demonstrate that per-flow fairness remains a preferable objective. We evaluate abstract queuing models by analysis and simulation to illustrate the non-optimality of SRPT under the reasonable assumptions that datacenter flows occur in batches and bursts and not, as usually assumed, individually at the instants of a Poisson process. Results for these models have significant implications for the design of bandwidth sharing strategies for datacenter networks. In particular, we propose a novel "virtual fair scheduling" algorithm that enforces fairness between batches and is arguably simple enough to be implemented in high speed devices.Comment: 16 pages, 5 figure

    Self-Prioritization of Audio and Video Traffic

    Get PDF
    International audienceWe present a packet scheduler called “shortest queue first” (SQF) that aims at protecting audio and video traffic from the congestion caused by data traffic. Unlike standard solutions, the services to be handled with priority are not known in advance. It is rather the traffic characteristics of audio and video applications that are used to detect their delay sensitivity. The SQF algorithm does not require any prior configuration of the network and, as such, adapts to the fast evolution of traffic and usage. The performance of the proposed solution is demonstrated using both analysis and experiments on a testbed emulating a residential access line

    Admission control in Flow-Aware Networking (FAN) architectures under GridFTP traffic

    Full text link
    This is the author’s version of a work that was accepted for publication in Optical Switching and Networking. Changes resulting from the publishing process, such as peer review, editing, corrections, structural formatting, and other quality control mechanisms may not be reflected in this document. Changes may have been made to this work since it was submitted for publication. A definitive version was subsequently published in Optical Switching and Networking, 6, 9 (2009) DOI: 10.1016/j.osn.2008.05.003Selected papers from First International Symposium on Advanced Networks and Telecommunication Systems, ANTS 2007Computing and networking resources virtualization is the main objective of Grid services. Such a concept is already used in the context of Web-services on the Internet. In the next few years, a large number of applications belonging to various domains (biotechnology, banking, finance, car and aircraft manufacturing, nuclear energy etc.) will also benefit from Grid services. Admission control is a key functionality for Quality of Service (QoS) provision in IP networks, and more specifically for Grid services provision. Service differentiation (DS) is a widely deployed technique on the Internet. It operates at the packet level on a best-effort mode. Flow-Aware Networking (FAN) that operates at the scale of the IP flows relies on implicit flow differentiation through priority fair queuing (PFQ). It may be seen as an alternative to DS. A Grid session may be seen as a succession of parallel TCP/IP flows characterized by data transfers with much larger volume than usual TCP/IP flows. In this paper, we propose an extension of FAN for the Grid environment called Grid over FAN (GoFAN). We compare, by means of computer simulations, the efficiency of Grid over DS (GoDS) and GoFAN. Two variants of GoFAN architectures based on different fair queuing algorithms are considered. As a first step, we provide two short surveys on QoS for Grid environment and on QoS in IP networks respectively

    Improving the Performance of Internet Data Transport

    Get PDF
    With the explosion of the World Wide Web, the Internet infrastructure faces new challenges in providing high performance for data trafïŹc. First, it must be able to pro-vide a fair-share of congested link bandwidth to every ïŹ‚ow. Second, since web trafïŹc is inherently interactive, it must minimize the delay for data transfer. Recent studies have shown that queue management algorithms such as Tail Drop, RED and Blue are deïŹcient in providing high throughput, low delay paths for a data ïŹ‚ow. Two major shortcomings of the current algorithms are: they allow TCP ïŹ‚ows to get synchronized and thus require large buffers during congestion to enable high throughput; and they allow unfair bandwidth usage for shorter round-trip time TCP ïŹ‚ows. We propose algorithms using multiple queues and discard policies with hysteresis at bottleneck routers to address both these issues. Us-ing ns-2 simulations, we show that these algorithms can signiïŹcantly outperform RED and Blue, especially at smaller buffer sizes. Using multiple queues raises two new concerns: scalability and excess memory bandwidth usage caused by dropping packets which have been queued. We propose and evaluate an architecture using Bloom ïŹlters to evenly distribute ïŹ‚ows among queues to improve scalability. We have also developed new intelligent packet discard algorithms that discard packets on arrival and are able to achieve performance close to that of policies that may discard packets that have already been queued. Finally, we propose better methods for evaluating the performance of fair-queueing methods. In the current literature, fair-queueing methods are evaluated based on their worst-case performance. This can exaggerate the differences among algorithms, since the worst-case behavior is dependent on the the precise timing of packet arrivals. This work seeks to understand what happens under more typical circumstances

    Downlink scheduling and resource allocation for 5G MIMO-multicarrier: OFDM vs FBMC/OQAM

    Get PDF
    OAPA The definition of the next generation of wireless communications, so-called 5G networks, is currently underway. Among many technical decisions, one that is particularly fundamental is the choice of the physical layer modulation format and waveform, an issue for which several alternatives have been proposed. Two of the most promising candidates are: (i) orthogonal frequency division multiple (OFDM), a conservative proposal that builds upon the huge legacy of 4G networks, and (ii) filterbank multicarrier/offset quadrature amplitude modulation (FBMC/OQAM), a progressive approach that in frequency selective channels sacrifices subcarrier orthogonality in lieu of an increased spectral efficiency. The comparative merits of OFDM and FBMC/OQAM have been well investigated over the last few years but mostly, from a purely physical layer point of view and largely neglecting how the physical layer performance translates into user-relevant metrics at the upper-layers. This paper aims at presenting a comprehensive comparison of both modulation formats in terms of practical network indicators such as goodput, delay, fairness and service coverage, and under operational conditions that can be envisaged to be realistic in 5G deployments. To this end, a unifying cross-layer framework is proposed that encompasses the downlink scheduling and resource allocation procedures and that builds upon a model of the queueing process at the data-link control layer and a physical layer abstraction that can be chosen to model either OFDM or FBMC/OQAM. Extensive numerical results conclusively demonstrate that most of the apriori advantages of FBMC/OQAM over OFDM do indeed translate into improved network indicators, that is, the increase in spectral efficiency achieved by FBMC/OQAM makes up for the distortion caused by the loss of orthogonality.Peer ReviewedPostprint (published version

    Final report on the evaluation of RRM/CRRM algorithms

    Get PDF
    Deliverable public del projecte EVERESTThis deliverable provides a definition and a complete evaluation of the RRM/CRRM algorithms selected in D11 and D15, and evolved and refined on an iterative process. The evaluation will be carried out by means of simulations using the simulators provided at D07, and D14.Preprin

    A Framework for Controlling Quality of Sessions in Multimedia Systems

    Get PDF
    Collaborative multimedia systems demand overall session quality control beyond the level of quality of service (QoS) pertaining to individual connections in isolation of others. At every instant in time, the quality of the session depends on the actual QoS offered by the system to each of the application streams, as well as on the relative priorities of these streams according to the application semantics. We introduce a framework for achieving QoSess control and address the architectural issues involved in designing a QoSess control laver that realizes the proposed framework. In addition, we detail our contributions for two main components of the QoSess control layer. The first component is a scalable and robust feedback protocol, which allows for determining the worst case state among a group of receivers of a stream. This mechanism is used for controlling the transmission rates of multimedia sources in both cases of layered and single-rate multicast streams. The second component is a set of inter-stream adaptation algorithms that dynamically control the bandwidth shares of the streams belonging to a session. Additionally, in order to ensure stability and responsiveness in the inter-stream adaptation process, several measures are taken, including devising a domain rate control protocol. The performance of the proposed mechanisms is analyzed and their advantages are demonstrated by simulation and experimental results
    • 

    corecore