233 research outputs found

    AppCon: Mitigating evasion attacks to ML cyber detectors

    Get PDF
    Adversarial attacks represent a critical issue that prevents the reliable integration of machine learning methods into cyber defense systems. Past work has shown that even proficient detectors are highly affected just by small perturbations to malicious samples, and that existing countermeasures are immature. We address this problem by presenting AppCon, an original approach to harden intrusion detectors against adversarial evasion attacks. Our proposal leverages the integration of ensemble learning to realistic network environments, by combining layers of detectors devoted to monitor the behavior of the applications employed by the organization. Our proposal is validated through extensive experiments performed in heterogeneous network settings simulating botnet detection scenarios, and consider detectors based on distinct machine-and deep-learning algorithms. The results demonstrate the effectiveness of AppCon in mitigating the dangerous threat of adversarial attacks in over 75% of the considered evasion attempts, while not being affected by the limitations of existing countermeasures, such as performance degradation in non-adversarial settings. For these reasons, our proposal represents a valuable contribution to the development of more secure cyber defense platforms

    Modeling Realistic Adversarial Attacks against Network Intrusion Detection Systems

    Get PDF
    The incremental diffusion of machine learning algorithms in supporting cybersecurity is creating novel defensive opportunities but also new types of risks. Multiple researches have shown that machine learning methods are vulnerable to adversarial attacks that create tiny perturbations aimed at decreasing the effectiveness of detecting threats. We observe that existing literature assumes threat models that are inappropriate for realistic cybersecurity scenarios because they consider opponents with complete knowledge about the cyber detector or that can freely interact with the target systems. By focusing on Network Intrusion Detection Systems based on machine learning, we identify and model the real capabilities and circumstances required by attackers to carry out feasible and successful adversarial attacks. We then apply our model to several adversarial attacks proposed in literature and highlight the limits and merits that can result in actual adversarial attacks. The contributions of this paper can help hardening defensive systems by letting cyber defenders address the most critical and real issues, and can benefit researchers by allowing them to devise novel forms of adversarial attacks based on realistic threat models

    Adversarial Machine Learning Applied to Intrusion and Malware Scenarios: A Systematic Review

    Get PDF
    Cyber-security is the practice of protecting computing systems and networks from digital attacks, which are a rising concern in the Information Age. With the growing pace at which new attacks are developed, conventional signature based attack detection methods are often not enough, and machine learning poses as a potential solution. Adversarial machine learning is a research area that examines both the generation and detection of adversarial examples, which are inputs specially crafted to deceive classifiers, and has been extensively studied specifically in the area of image recognition, where minor modifications are performed on images that cause a classifier to produce incorrect predictions. However, in other fields, such as intrusion and malware detection, the exploration of such methods is still growing. The aim of this survey is to explore works that apply adversarial machine learning concepts to intrusion and malware detection scenarios. We concluded that a wide variety of attacks were tested and proven effective in malware and intrusion detection, although their practicality was not tested in intrusion scenarios. Adversarial defenses were substantially less explored, although their effectiveness was also proven at resisting adversarial attacks. We also concluded that, contrarily to malware scenarios, the variety of datasets in intrusion scenarios is still very small, with the most used dataset being greatly outdated

    Practical Evaluation of Graph Neural Networks in Network Intrusion Detection

    Get PDF
    The most recent proposals of Machine and Deep Learning algorithms for Network Intrusion Detection Systems (NIDS) leverage Graph Neural Networks (GNN). These techniques create a graph representation of network traffic and analyze both network topology and netflow features to produce more accurate predictions. Although prior research shows promising results, they are biased by evaluation methodologies that are incompatible with real-world online intrusion detection. We are the first to identify these issues and to evaluate the performance of a state-of-the-art GNN-NIDS under real-world constraints. The experiments demonstrate that the literature overestimates the detection performance of GNN-based NIDS. Our results analyze and discuss the trade-off between detection delay and detection performance for different types of attacks, thus paving the way for the practical deployment of GNN-based NIDS

    Artificial Intelligence and Machine Learning in Cybersecurity: Applications, Challenges, and Opportunities for MIS Academics

    Get PDF
    The availability of massive amounts of data, fast computers, and superior machine learning (ML) algorithms has spurred interest in artificial intelligence (AI). It is no surprise, then, that we observe an increase in the application of AI in cybersecurity. Our survey of AI applications in cybersecurity shows most of the present applications are in the areas of malware identification and classification, intrusion detection, and cybercrime prevention. We should, however, be aware that AI-enabled cybersecurity is not without its drawbacks. Challenges to AI solutions include a shortage of good quality data to train machine learning models, the potential for exploits via adversarial AI/ML, and limited human expertise in AI. However, the rewards in terms of increased accuracy of cyberattack predictions, faster response to cyberattacks, and improved cybersecurity make it worthwhile to overcome these challenges. We present a summary of the current research on the application of AI and ML to improve cybersecurity, challenges that need to be overcome, and research opportunities for academics in management information systems

    Artificial intelligence in the cyber domain: Offense and defense

    Get PDF
    Artificial intelligence techniques have grown rapidly in recent years, and their applications in practice can be seen in many fields, ranging from facial recognition to image analysis. In the cybersecurity domain, AI-based techniques can provide better cyber defense tools and help adversaries improve methods of attack. However, malicious actors are aware of the new prospects too and will probably attempt to use them for nefarious purposes. This survey paper aims at providing an overview of how artificial intelligence can be used in the context of cybersecurity in both offense and defense.Web of Science123art. no. 41
    corecore