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Abstract: Adversarial attacks represent a critical issue that prevents the reliable integration of machine
learning methods into cyber defense systems. Past work has shown that even proficient detectors are
highly affected just by small perturbations to malicious samples, and that existing countermeasures
are immature. We address this problem by presenting AppCon, an original approach to harden
intrusion detectors against adversarial evasion attacks. Our proposal leverages the integration of
ensemble learning to realistic network environments, by combining layers of detectors devoted to
monitor the behavior of the applications employed by the organization. Our proposal is validated
through extensive experiments performed in heterogeneous network settings simulating botnet
detection scenarios, and consider detectors based on distinct machine- and deep-learning algorithms.
The results demonstrate the effectiveness of AppCon in mitigating the dangerous threat of adversarial
attacks in over 75% of the considered evasion attempts, while not being affected by the limitations of
existing countermeasures, such as performance degradation in non-adversarial settings. For these
reasons, our proposal represents a valuable contribution to the development of more secure cyber
defense platforms.

Keywords: adversarial attacks; network intrusion detection; evasion attacks; cyber security;
machine learning

1. Introduction

Adversarial attacks represent a dangerous menace for real world implementations of machine
learning (ML) algorithms [1–4]. This threat involves the production of specific samples that induce the
machine learning model to generate an output that is beneficial to an attacker. Literature has identified
two categories of adversarial attacks [2]: those occurring at training-time (also known as poisoning
attacks [5]), and those occurring at test-time (often referred to as evasion attacks [6]). Our paper focuses
on this latter category due to its relevance for cyber detection scenarios.

The topic of adversarial machine learning has been thoroughly studied by computer vision
literature [7–9]. However, surprisingly, proper analyses and efficient solutions to this menace are scarce
in the cybersecurity domain. The field of network intrusion detection is poorly investigated [10,11],
while multiple works exist in the areas of malware, phishing, and spam detection [6,12–17].
In particular, although several studies have shown the effectiveness of adversarial evasion attacks
against botnet detectors [10,11,18,19], there is a lack of proposals to counter this menace that are
feasible for real world environments. Some defensive strategies have been proposed and evaluated
by existing literature, but they are affected by critical limitations, such as reduced performance in
non-adversarial scenarios [19,20], or high maintenance and deployment costs [2,21].
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In this paper, we propose AppCon, an original approach that is focused at mitigating the
impact of adversarial evasion attacks against ML-based network intrusion detection systems
(NIDS), while preserving detection performance in the absence of adversarial attacks. Furthermore,
our proposal is specifically addressed to real-world environments, thus favoring its integration into
existing defensive schemes. Our solution is based on the idea of restricting the range of samples that an
adversary may create to evade the detector, and also leverages the adoption of ensemble models that are
shown to produce more robust classifiers [22]. As a practical implementation, we integrate our solution
in botnet detectors, due to the high rate of botnet activities in modern organizations [23]; these detectors
are based on different supervised machine and deep-learning algorithms. An extensive experimental
campaign conducted on a large and public dataset of millions of labeled network flows [24] is used to
evaluate AppCon. The results confirm the efficacy of our solution, which is able to decrease the rate of
successful evasion attempts against state-of-the-art botnet detectors by nearly 50%, while retaining
similar performance in the absence of adversarial attacks. This symmetric benefit, paired with its
simple integration into existing defensive schemes, highlight that the proposed approach represents a
valid contribution towards the development of more secure cyber detectors.

The remainder of this paper is structured as follows. Section 2 compares this paper against related
work. Section 3 presents the proposed countermeasure and describes the evaluation methodology.
Section 4 discusses the experimental results. Section 5 concludes the paper with final remarks and
possible extensions for future work.

2. Related Work

It is important to provide some pieces of background knowledge on the machine learning methods
employed in this work, and on adversarial attacks. Then, we compare our proposal against related
work on countermeasures against evasion attacks.

2.1. Machine Learning for Cyber Detection

Machine learning methods are becoming increasingly popular in several domains, such as
image and speech processing, social media marketing, healthcare, and also in cybersecurity [25–27].
These techniques can be separated into two main categories: supervised algorithms must undergo a
training phase with a proper labeled dataset, where each sample is associated with a specific label (or
class); on the other hand, unsupervised algorithms do not require a labeled dataset. These characteristics
make unsupervised methods more suitable for data clustering and rule mining, whereas supervised
techniques can be adopted for actual classification tasks [25,26]. In the context of cybersecurity,
supervised algorithms can be readily employed as cyber detectors, where the (trained) model is
used to determine whether a sample is benign or malicious, thus resembling a binary classification
problem [28].

Among the dozens of existing supervised algorithms, this paper focuses on those classifiers that
have been found to be particularly effective for scenarios of Network Intrusion Detection [1,3,28]:
Decision Tree (DT), Random Forest (RF), AdaBoost (AB), and Multi-Layer Perceptron (MLP); we also
consider a fifth method based on deep learning and proposed by Google, Wide and Deep (WnD).
A brief description of each of these methods is provided below, alongside some notable examples in
cybersecurity:

• Decision Tree: these algorithms are conditional classifiers composed of several nodes. The tree is
inspected from top to bottom, where a given condition is checked at each node by analyzing the
features of the input sample, leading to the following node [1,3,27,28].

• Random Forest: they are ensemble methods consisting of several Decision Trees, in which the
output is computed after evaluating the prediction of each individual tree composing the
“forest” [1,3,27–29].
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• AdaBoost: similar to Random Forests, these algorithms are able to improve their final performance
by putting more emphasis on the “errors” committed during their training phase [30].

• Multi-Layer Perceptron: also known as “neural network”, they are based on sets of processing units
(the neurons) organized in multiple layers and that communicate with each other. The output is
provided in the last layer of the architecture [1,3,27,28].

• Wide and Deep: this technique is a combination of a linear “wide” model, and a “deep” neural
network. The idea is to jointly train these two models and foster the effectiveness of both.

To the best of our knowledge, WnD has not been tested for Cyber Detection yet, but its
promising results in other fields motivate our decision to include this deep learning technique into our
experiments [31].

2.2. Adversarial Attacks

Security operators often adopt machine learning techniques [3,32], which allow for detecting
anomalies and may even reveal novel attacks that are not easily recognizable through traditional
signature-based approaches [33,34], thus increasing protection against advanced threats. However,
the integration of these methods into cyber defence platforms still presents several issues [28]:
among these, one of the most critical problems is that that of adversarial attacks.

Adversarial attacks leverage the generation of specific samples that induce a machine learning
model to generate an output that is favorable to the attacker, who exploits the high sensitivity of
machine learning models to their internal properties [3,35,36]. Early examples of adversarial attacks
are the ones proposed in [37,38]: these papers studied the problem in the context of spam filtering,
where linear classifiers could be easily tricked by few carefully crafted changes in the text of spam
emails without significantly affecting the readability of the spam message. Another typical example
of adversarial attack is the one proposed in [39] which targets neural networks classifiers. Here,
the authors apply imperceptible perturbations to test images, which are then submitted to the classifiers:
the results highlight that it is possible to change the algorithm’s predictions arbitrarily.

Adversarial perturbations affect all integrations of machine learning, but in the cyber security
sphere the problem is further aggravated due to several intrisic characteristics of this domain.
Among these, we cite: the constantly evolving arms race between attackers and defenders; and the
continuous modifications that affect the system and network behavior of an organization [28].
These unavoidable and unpredictable changes are known as “concept drift” [40], which is often
responsible for decreasing the performance of anomaly detection models. Possible mitigations involve
periodic re-calibrations and adjustment processes that can identify behavioral modifications and recent
related threats. However, performing such operations is a costly and challenging task in itself [28],
and it also facilitates the execution of adversarial attacks [41].

The authors of [4] propose a taxonomy of adversarial attacks that has now become widely accepted
by the scientific community [2]. It considers the following properties:

• Influence, which denotes whether an attack is performed at training-time or test-time.

– Training-time: it is possible to thwart the algorithm by manipulating the training-set before
its training phase, for example by the insertion or removal of critical samples (also known as
data poisoning).

– Test-time: here, the model has been deployed and the goal is subverting its behavior during
its normal operation.

• Violation, which identifies the security violation, targeting the availability or integrity of
the system.

– Integrity: these attacks have the goal of increasing the model’s rate of false negatives.
In cybersecurity, this involves having malicious samples being classified as benign, and these
attempts are known as evasion attacks.
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– Availability: the aim is to generate excessive amounts of false alarms that prevent or limit the
use of the target model.

This work focuses on adversarial attacks performed at test-time that generate integrity violations,
that is, evasion attacks.

2.3. Existing Defenses

Despite the proven effectiveness of evasion attacks against cyber detectors [1,10,11,18,42,43],
proposals involving countermeasures that are suitable for realistic environments are scarce. The authors
of [44] propose an approach exclusive to neural networks that hardens these classifiers against
evasion attacks, but detectors based on these algorithms are under-performing in cyber detection
scenarios [3,10,19,21,28,45]; furthermore, the authors of [46] showed that the method in [44] can be
thwarted by skilled adversaries, while the results in [20] show an increased rate of false positives in the
baseline performance of the “hardened” classifier. Other methods to defend against evasion attacks
may involve adversarial training [21,47,48]; the problem is that such strategies require to (continuously)
enrich the training dataset with (a sufficient amount of) samples representing all the possible variations
of attacks that may be conceived, which is an unfeasible task for real organizations. A known line
of defense leverages the adoption of an altered feature set [2,49], but these approaches are likely to
cause significant performance drops when the modifications involve features that are highly important
for the decision-making process of the considered model [11,21]. Solutions based on game theory are
difficult to deploy [50] and evaluate in practice [2,51], and their true efficacy in real contexts is yet to
be proven [52]. Finally, defenses conforming to the security-by-obscurity principle [2,19] are not reliable
by definition, as the attacker is required to learn the underlying mechanism to thwart them [53].

Within this landscape, we propose a countermeasure that (i) can be applied to any supervised
ML algorithm, (ii) does not cause a performance drop in non-adversarial scenarios, (iii) can be easily
integrated into existing defensive systems, and (iv) does not rely on security-by-obscurity.

3. Materials and Methods

This section presents the considered threat model and the proposed solution, AppCon; then, it
describes the experimental settings adopted for the evaluation.

3.1. Threat Model

To propose a valid countermeasure against adversarial attacks, it is necessary to define a
threat model that states the characteristics of both the target system, and of the considered attacker.
Our solution assumes a threat model similar to the one in [11], which we briefly summarize.

The defensive model, represented in Figure 1, consists of a large enterprise environment, whose
network traffic is inspected by a flow-based [54] NIDS that leverages machine learning classifiers to
identify botnet activities.

On the offensive side, an attacker has already established a foothold in the internal network
by compromising some hosts and deploying botnet malware communicating with a Command and
Control (CnC) infrastructure. The adversary is described by following the notation [2,4] of modeling
its goal, knowledge, capabilities, and strategy.

• Goal: the main goal of the attacker is to evade detection so that he can maintain his access to the
network, compromise more machines, or exfiltrate data.

• Knowledge: the attacker knows that network communications are monitored by an ML-based
NIDS. However, he does not have any information on the model integrated in the detector, but he
(rightly) assumes that this model is trained over a dataset containing samples generated by the
same or a similar malware variant deployed on the infected machines. Additionally, since he
knows that the data-type used by the detector is related to network traffic, he knows some of the
basic features adopted by the machine learning model.
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• Capabilities: we assume that the attacker can issue commands to the bot through the CnC
infrastructure; however, he cannot interact with the detector.

• Strategy: the strategy to avoid detection is through a targeted exploratory integrity attack [6]
performed by inserting tiny modifications in the communications between the bot and its CnC
server (e.g., [55]).

Figure 1. Model of the target network.

We thus consider a “gray-box” threat model, where the adversary has (very) limited knowledge
of the defenses. Our assumption portrays a realistic scenario of modern attacks [56]: machines that do
not present administrative privileges are more vulnerable to botnet malware, and skilled attackers
can easily assume control of them. On the other hand, the NIDS is usually one of the most protected
devices in an enterprise network, and can be accessed only through a few selected secured hosts.

3.2. Proposed Countermeasure

We now describe AppCon, short for “application constraints”, which is the main proposal of this
paper. We recall that the attacker plans to evade detection by modifying the network communications
between the bots and CnC server, without changing the logic of the adopted malware variant.
Our solution is based on the idea of restricting the freedom in which an attacker can create malicious
adversarial samples that evade detection. The intuition is that an attacker that is subject to additional
constraints when devising his samples is less likely to evade detection.

Since our threat model assumes that the attacker cannot change the underlying functionality of the
botnet, he is already limited in the amount of alterations that he can perform; however, past literature
has shown that even small modifications (like extending the duration of network communications
by few seconds, or adding few bytes of junk data to the transmitted packets) can lead to successful
evasion [10,11,55]. We aim to further restrict the attacker’s range of possibilities by having the
detection mechanism to focus only on a (set of) specific web-application(s). This approach allows
the detector to monitor only the network traffic with characteristics that are similar to those of the
considered applications.

To apply our solution to existing detectors based on supervised ML algorithms, AppCon leverages
the paradigm of ensemble learning, which has already been adopted to devise countermeasures against
adversarial attacks [22]. In particular, the idea is to transform the “initial” detector into an ensemble of
detectors, each devoted to a specific web-application. Formally, let D be the considered detector; let A
be the set of web-applications employed by an enterprise, and let a ∈ A be a specific web-application
within A. Then, we split D into |A| sub-instances (where | · | is the cardinality operator), each devoted
to a specific web-application a denoted with Da. The union of all the sub-instances will then represent
our “hardened” detector, denoted as D′ (thus,

⋃
a Da = D′). Therefore, D′ will only accept as input

those samples that conform to at least one of the network communications generated by a specific
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web-application a. Conversely, those network flows that do not fall within the accepted ranges will be
either blocked (e.g., through a firewall) or analyzed by other defensive mechanisms (which are out of
the scope of this paper). We illustrate the entire workflow of AppCon in Figure 2: the generated network
flows are first checked to determine their compatibility with the flows of the accepted web-applications
A, and those that are compliant (with at least one) are then forwarded to the ensemble of detectors
(represented by [Da1 , Da2 , . . . , Dan ]) composing D′.

 Hardened
 Detector

Da1

D'Da2

Dan

[...]

Ensemble-based
Cyber Detector

Compliant with 
applications (A)?

No:
Discard

Yes:
Forward

Monitored
Network Network Flows

AppCon

Figure 2. Overview of the proposed solution.

Let us provide an example to facilitate the comprehension of our proposal. Assume an
organization adopting a NIDS that uses some machine learning to detect malicious network flows,
and assume that this organization employs the web-applications a1 and a2: the network flows generated
by a1 have durations that vary between 1 and 5 s, whereas those generated by a2 vary between 10
and 30 s. Let us assume an attacker that has infiltrated the organization network and controls some
machines through a botnet variant whose communications with the CnC server generate flows lasting
3 s. In such a scenario, if the attacker plans to evade detection by increasing the length of network
communications through small latencies, he will only be able to apply increments of either +[2, 3] s (to
fall within the a1 range) or +[7, 27] s (to fall within the a2 range), thus considerably limiting his options.

We highlight that the proposed method is suited to modern enterprise networks that generate
network data through a finite set of web-application: in such a scenario, a potential attacker cannot
apply his perturbations arbitrarily because, if an adversarial sample does not conform to the traffic
generated by the considered applications, then it will automatically trigger other defensive mechanisms
or be completely blocked.

3.3. Experimental Settings

We present the dataset adopted for our experiments; the development procedures of the detectors;
the formulation of appropriate adversarial attacks; the definition of the application constraints that
represent the core of our proposal; and the performance metrics to evaluate the cyber detectors.

3.3.1. Dataset

Our experimental campaign is based on the CTU-13 dataset [24], which consists of a large
collection of labeled network traffic data, in the format of network flows, containing both benign and
malicious samples belonging to seven different botnet families. Overall, this dataset contains over
15M network flows generated in a network of hundreds of hosts over multiple days. These important
characteristics make the CTU-13 a valid representation of a realistic and modern enterprise network,
and many studies have adopted it for their experiments [57,58]. To facilitate the understanding of our
testbed, we now describe the main characteristics of the CTU-13 dataset.
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The CTU-13 includes network data captured at the Czech Technical University in Prague,
and contains labeled network traffic generated by various botnet variants and mixed with normal and
background traffic. It contains 13 distinct data collections (called scenarios) of different botnet activity.

The network traffic of each scenario is contained in a specific packet-capture (PCAP) file, which
has been converted by the authors into network flows [54]. A network flow (or netflow) is essentially a
sequence of records, each one summarizing a connection between two endpoints (that is, IP addresses).
A typical representation of netflow data is given in Table 1. The inspection of network flows allows
administrators to easily pinpoint important information between two endpoints (e.g., source and
destination of traffic, the class of service, and the size of transmitted data). Network flows provide
several advantages over traditional full packet captures, such as: reduced amount of required storage
space; faster computation; and reduced privacy issues due to the lack of content payloads [59].

Table 1. Example of network flows.

Date Flow Start Duration Proto Src IP Addr:Port Dst IP Addr:Port Packets Bytes

2020-09-01 00:00:00.459 2.346 TCP 192.168.0.142:24920 192.168.0.1:22126 1 46
2020-09-01 00:00:00.763 1.286 UDP 192.168.0.145:22126 192.168.0.254:24920 1 80

To convert the raw network packets into network flows, the authors of the CTU-13 rely on
Argus [60], a network audit system with a client–server architecture: the processing of the packets
is performed by the server, and the output of this computation is a detailed status report of all the
netflows which is provided to the final clients. After inspecting the CTU-13, we can safely assume that
the client used by the authors to generate the netflows from each individual PCAP file is ra, which has
been invoked with the following Command:

Command 1: CTU-13 netflow generation through Argus.

ra -L 0 -c , -s saddr daddr sport dport stime ltime flgs dur proto
stos dtos pkts sbytes dbytes dir state -r inputFile > outputFile.csv

where the -L option prints headers once, -c specifies the field separator, -s chooses the fields to
extract, and -r specifies the file to read the data from. The output is redirected to a CSV file. After this
conversion process, the authors proceeded to manually label each individual network flow. Indeed,
the CTU-13 is made available as a collection of 13 CSV files (one for each scenario) presenting the
fields specified in Command 1 alongside the added “Label” field, which separates legitimate from
illegitimate flows. In particular, benign flows correspond to the normal and background labels; whereas
the botnet and CnC-channel labels denote malicious samples.

Table 2 shows the meaningful metrics of each scenario in the CTU-13. This table also shows the
botnet-specific piece of malware used to create the capture, alongside the number of infected machines.
This table highlights the massive amount of included data, which can easily represent the network
behavior of a medium-to-large real organization. Nevertheless, we remark that, in our evaluation, the
Sogou botnet is not considered because of the limited amount of its malicious samples.
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Table 2. Meaningful metrics of the CTU-13 datasets, Source: [24].

Scenario Duration (h) Size (GB) Packets Netflows Malicious Flows Benign Flows Botnet # Bots

1 6.15 52 71,971,482 2,824,637 40,959 2,783,677 Neris 1
2 4.21 60 71,851,300 1,808,122 20,941 1,787,181 Neris 1
3 66.85 121 167,730,395 4,710,638 26,822 4,683,816 Rbot 1
4 4.21 53 62,089,135 1,121,076 1808 1,119,268 Rbot 1
5 11.63 38 4,481,167 129,832 901 128,931 Virut 1
6 2.18 30 38,764,357 558,919 4630 554,289 Menti 1
7 0.38 6 7,467,139 114,077 63 114,014 Sogou 1
8 19.5 123 155,207,799 2,954,230 6126 2,948,104 Murlo 1
9 5.18 94 115,415,321 2,753,884 184,979 2,568,905 Neris 10

10 4.75 73 90,389,782 1,309,791 106,352 1,203,439 Rbot 10
11 0.26 5 6,337,202 107,251 8164 99,087 Rbot 3
12 1.21 8 13,212,268 325,471 2168 323,303 NSIS.ay 3
13 16.36 34 50,888,256 1,925,149 39,993 1,885,156 Virut 1

3.3.2. Developing the Baseline Detectors

As described in Section 2.1, our experiments involve botnet detectors based on five different
machine and deep learning algorithms that have been shown by related literature to perform well
for botnet detection tasks [3,11,28,45,61–63]: Random Forest (RF), Multi-Layer Perceptron (MLP),
Decision Tree (DT), AdaBoost (AB), alongside the recent “Wide and Deep” (WnD) technique proposed
by Google [31]. Each detector presents multiple instances, each focused on identifying a specific botnet
variant within the adopted dataset—in our case, each detector has six instances (we do not consider
the Sogou malware variant due its low amount of available samples). This design idea is motivated by
the fact that ML detectors show superior performance when they are used as ensembles instead of
“catch-all” solutions, in which each instance addresses a specific problem [2,18,62,63].

Each model is trained through sets of features adopted by related work on flow-based
classifiers [11,64,65], reported in Table 3. To compose the training and test datasets for each instance, we
rely on the common 80:20 split (in terms of overall malicious samples); benign samples are randomly
chosen to compose sets with a benign-to-malicious samples ratio of 90:10.

Table 3. Features of the ML models, Source: [18].

# Feature Name Type

1, 2 src/dst IP address type Bool
3, 4 src/dst port Num

5 flow direction Bool
6 connection state Cat
7 duration (seconds) Num
8 protocol Cat

9, 10 src/dst ToS Num
11, 12 src/dst bytes Num

13 exchanged packets Num
14 exchanged bytes Num

15, 16 src/dst port type Cat
17 bytes per second Num
18 bytes per packet Num
19 packets per second Num
20 ratio of src/dst bytes Num

Each classifier is fine-tuned through multiple grid-search operations and validate them through
3-fold cross validation.

The entire procedure followed to prepare the data used to train each detector is displayed
in Figure 3. First, the CTU-13 dataset is pre-processed to compute the derived features (such as the
bytes_per_packet). Next, we merge the collections pertaining to the same botnet family, and finally create
the pool of benign flows by extracting all the non-botnet traffic from each collection and including
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them in a dedicated collection. At the end of these operations, we thus obtain eight datasets: seven
containing malicious flows of each botnet family (We do not consider the Sogou malware in the
evaluation) denoted as Xm, and 1 containing only legitimate flows, denoted as Xl .

CTU Dataset 
(13 netflow collections) 

...

Preprocessing

Preprocessed  
CTU Dataset 

Merge
collections of
same botnet 

7 Botnet-based
netflow collections 

Extract benign
flows

...

7 Botnet-based
malicious  

netflow collections 

Benign  
netflow collection 

Figure 3. Data preparation workflow.

3.3.3. Design and Implementation of AppCon

Our proposed countermeasure is implemented by devising our detectors on the basis of five
different web applications that are widely used by modern enterprises [66–69]: WhatsApp (WhatsApp:
https://www.whatsapp.com/), Teams (Microsoft Teams: https://teams.microsoft.com/), Skype (Skype:
https://www.skype.com/), OneNote (Microsoft OneNote: https://www.onenote.com/), OneDrive
(Microsoft OneDrive: https://office.live.com/). We consider this specific set of applications because
their popularity makes them a suitable example for a practical use-case: our approach can be easily
expanded by considering more network services. To this purpose, each application is deployed
on several dedicated machines which have their network behavior monitored over the course of
several days; we also distinguish between active and passive use of each application. This allows us
to identify the samples of network flows in the CTU-13 dataset that are “compliant” with each of
these applications, which are then used to train (and test) our hardened detectors by developing
application-specific sub-instances.

As an example, consider the case of the application Teams. After monitoring its network behavior,
we determine that, when it is actively used, it generates flows transmitting between 71 and 1488 bytes
per packet, whereas it transmits 50–1050 bytes per packet during its passive use. We then take these
two ranges (alongside the accepted ranges of other features used by our detectors—see Table 3) and
use them to filter all the flows in the CTU-13 dataset: only those flows (both malicious and benign)
compatible with these ranges will be used to train each (instance of the) detector. Thus, by taking
the Random Forest detector as an example, its hardened version will be composed of six instances
(each corresponding to a specific malware variant); each of these instances is, in turn, split into five
sub-instances, each devoted to monitor a specific application. A schematic representation of this
implementation is provided in Figure 4, where the initial ensemble(s) of application-specific detectors
(Denoted with (DWhatsApp, DTeams, DSkype, DOneNote, DOneDrive)) is used as input to another “layer” of

botnet-specific classifiers (Denoted with (Db1
A , . . . , Dbn

A ), with n = 6 in our case, and b is a specific
botnet family), whose output is then combined to generate the final detection.

https://www.whatsapp.com/
https://teams.microsoft.com/
https://www.skype.com/
https://www.onenote.com/
https://office.live.com/
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DWhatsApp DTeams DOneNoteDSkype DOneDrive

DA
b1

DWhatsApp DTeams DOneNoteDSkype DOneDrive

DA
bn

[...]

Hardened
Detector
D'

Figure 4. Implementation of the proposed method.

3.3.4. Generation of Adversarial Samples

The attack scenario considered in this paper is reproduced by inserting small perturbations in the
malicious network flow samples contained in the CTU-13 dataset. These perturbations are obtained
by adopting the same procedure described in [18], which involve altering (through increments)
combinations of the (malicious) flow-based features by small amounts (the corresponding derived
features are also updated). This procedure allows for generating multiple adversarial datasets,
each corresponding to a specific malware variant, a specific set of altered features, and a specific
increment value(s). We anticipate that the generated adversarial samples will be used to evaluate
our solution, hence only those botnet flows included in the datasets used for testing the detectors are
altered, which allows us to avoid performing the validation phase on samples included in the training
sets. To facilitate in the reproduction of our experiments, we now provide a more detailed discussion
of the adversarial samples generation process.

Attackers may try to evade detection by inserting small latencies to increase the flow duration;
another possibility is appending insignificant bytes to the transmitted packets, thus increasing the
number of exchanged bytes or packets. These operations can be easily achieved by botmasters who only
need to modify the network communications of the controlled bots [10]; at the same time, these simple
strategies comply with our assumption that the underlying application logic of the piece of botnet
malware remains unchanged. To devise similar attack strategies, the adversarial samples are crafted by
modifying the malicious flows contained in the CTU-13 through manipulations of up to four features:
flow_duration, exchanged_packets, src_bytes, dst_bytes. The 15 different groups of feature manipulations
are reported in Table 4, which we denote as G. In practical terms, the adversarial samples in group 1b
alter only the flow src_bytes, while those of group 3b include modifications to the duration, src_bytes
and tot_packets features.

Table 4. Groups of altered features, Source: [18].

Group (g) Altered Features

1a Duration (in seconds)
1b Src_bytes
1c Dst_bytes
1d Tot_pkts
2a Duration, Src_bytes
2b Duration, Dst_bytes
2c Duration, Tot_pkts
2d Src_bytes, Tot_pkts
2e Src_bytes, Dst_bytes
2f Dst_bytes, Tot_pkts
3a Duration, Src_bytes, Dst_bytes
3b Duration, Src_bytes, Tot_pkts
3c Duration, Dst_bytes, Tot_pkts
3d Src_bytes, Dst_bytes, Tot_pkts
4a Duration, Src_bytes, Dst_bytes, Tot_pkts
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The alterations of these features are obtained by increasing their values through nine fixed steps,
which we denote as S and which are reported in Table 5. To provide an example, samples obtained
through the V step of the group 1c have the values of their flow incoming bytes increased by 64.
The adversarial datasets obtained through the I step of the group 3c have the values of their flow
duration, outgoing bytes, and exchanged packets increased by 1. We put more emphasis on small
increments because not only they are easier to introduce, but they also yield samples that are more
similar to their “original” variant (which is a typical characteristic of adversarial perturbations [9]).
Furthermore, increasing some of these features by higher amounts may trigger external defensive
mechanisms based on anomaly detection [59], or may generate incorrect flows (e.g.,: some flow
collectors [70] have flow upper duration limits of 120 s [71]).

Table 5. Increment steps of each feature for generating realistic adversarial samples, Source: [18].

Step (s) Duration Src_bytes Dst_bytes Tot_pkts

I +1 +1 +1 +1
II +2 +2 +2 +2

III +5 +8 +8 +5
IV +10 +16 +16 +10
V +15 +64 +64 +15

VI +30 +128 +128 +20
VII +45 +256 +256 +30

VIII +60 +512 +512 +50
IX +120 +1024 +1024 +100

The complete breakdown of the operations performed to generate our adversarial datasets is
provided in Algorithm 1, in which an adversarially manipulated input is denoted through the A(·)
operator. It should be noted that some features are mutually dependent: for instance, changing the
flow duration also requires to update other time-related features (such as packets_per_second): these
operations are addressed in line 19 of Algorithm 1.

After applying all these procedures, we generate a total of 135 adversarial datasets for each
botnet family (Given by: 15[groups of altered features] ∗ 9[increment steps] = 135), where each dataset
represents a different type of evasion attempt. All these attack patterns are compatible with our threat
model and can be easily achieved by botmasters [10,55].

3.3.5. Performance Metrics

The machine learning community usually relies on one or more of the following metrics to measure
the performance of machine learning models: Accuracy, Recall, Precision, and F1-score. These metrics are
based on the concept of Confusion Matrix. We stress that all problems pertaining to cyber detection can
be identified as binary classification problems (that is, a data sample can be either malicious or benign),
hence the Confusion Matrix in these contexts is represented as a 2 × 2 matrix, in which rows represent
the output of the detector, and columns represent the true class of the input data. An example of
such matrix is reported in Table 6, where TP, FP, TN, and FN denote True Positives, False Positives,
True Negatives, and False Negatives, respectively. As is common in cybersecurity settings, a True
Positive represents a correct prediction of a malicious sample [18].

Table 6. Example of Confusion Matrix.

Predicted
Malicious Benign

Actual Malicious TP FN
Benign FP TN
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Algorithm 1: Algorithm for generating datasets of adversarial samples. Source: [72]

Input: List of datasets of malicious flows Xm divided in botnet-specific sets Xb; list of altered
features groups G; list of feature increment steps S.

Output: List of adversarial datasets A(Xm).
1 A(Xm)← emptyList();
2 foreach group g ∈ G do
3 foreach step s ∈ S do
4 foreach dataset Xb ∈ Xm do
5 Ag

s (Xb)← CreateOneDataset(s, g, Xb);
6 Insert Ag

s (Xb) in A(Xm);
7 return A(Xm)

8 // Function for creating a single adversarial dataset Ag
s (Xb) corresponding to a botnet-specific dataset Xb,

a specific altered feature group g, and a specific increment step s.

9 Function CreateOneDataset(s, g, Xb)
10 Ag

s (Xb)← emptyList();
11 foreach sample xb ∈ Xb do
12 Ag

s (xb)← AlterSample(s, g, xb);
13 Insert Ag

s (xb) in Ag
s (Xb);

14 return Ag
s (Xb)

15 // Function for creating a single adversarial sample Ag
s (xb) corresponding to a botnet-specific sample xb,

a specific altered feature group g, and a specific increment step s.

16 Function AlterSample(s, g, xb)
17 Ag

s (xb)← xb;
18 Increment features g of Ag

s (xb) by s;
19 Update features of Ag

s (xb) that depend on g;
20 return Ag

s (xb)

An explanation of each performance metric is provided below.

• Accuracy: This metric denotes the percentage of correct predictions out of all the predictions made.
It is computed as follows:

Accuracy =
TP + TN

TP + TN + FP + FN
(1)

In Cybersecurity contexts, and most notably in Network Intrusion Detection [28], the amount of
malicious samples is several orders of magnitude lower with respect of that of benign samples;
that is, malicious actions can be considered as “rare events”. Thus, this metric is often neglected
in cybersecurity [3,73]. Consider for example a detector that is validated on a dataset with 990
benign samples and 10 malicious samples: if the detector predicts that all samples are benign,
it will achieve almost perfect Accuracy despite being unable to recognize any attack.

• Precision: This metric denotes the percentage of correct detections out of all “positive” predictions
made. It is computed as follows:

Precision =
TP

TP + FP
(2)

Models that obtain a high Precision have a low rate of false positives, which is an appreciable
result in Cybersecurity. However, this metric does not tell anything about false negatives.
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• Recall: This metric, also known as Detection Rate or True Positive Rate, denotes the percentage of
correct detections with respect of all possible detections, and is computed as follows:

Recall =
TP

TP + FN
(3)

In Cybersecurity contexts, it is particularly important due to its ability to reflect how many
malicious samples were correctly identified.

• F1-score: it is a combination of the Precision and Recall metrics. It is computed as follows:

F1-score = 2 ∗ Precision ∗ Recall
Precision + Recall

(4)

It is used to summarize in a single value the Precision and Recall metrics.

To evaluate the quality of the developed detectors, we thus rely on the combination of three
different metrics: Recall, Precision, and F1-score; the Accuracy metric is not considered due to the reasons
provided above.

In addition, we measure the effectiveness of the considered adversarial evasion attacks through a
derived metric denoted as Attack Severity (AS), which is computed as follows:

AS = 1− DR(after the attack)
DR(before the attack)

(5)

This metric (which has been previously used also in [11,19]) allows for quickly determining if
an attack family is effective or not by taking into account the different Detection Rate of the targeted
detector before and after the submission of adversarial samples. It considers only the Detection Rate
because our focus is on evasion attacks, which implies modifying malicious samples so that they are
classified as benign. Higher (lower) values of AS denote attacks with higher (lower) amounts of
evaded samples.

4. Experimental Results

Our experimental campaign has the twofold objective of: (i) showing that the proposed
countermeasure is effective in mitigating evasion attacks; and (ii) showing that its integration has
negligible impact in non-adversarial settings. To this purpose, we conduct our evaluation by following
this outline:

1. determine the performance of the “baseline” detectors in non-adversarial settings;
2. assess the effectiveness of the considered evasion attacks against the “baseline” detectors;
3. measure the performance of the “hardened” detectors in non-adversarial settings;
4. gauge the impact of the considered evasion attacks against the “hardened” detectors.

We address and discuss each of these points in the following sections; and then provide some
final considerations.

4.1. Baseline Performance in Non-Adversarial Settings

It is important that the considered detectors achieve performance compliant with real-world
requirements: the crafted adversarial attacks must be effective on detectors that are ready for
production environments. Thus, we train and test each detector with the procedure described
in Section 3.3.2, and report the results in Table 7, which shows the average (and standard deviation)
values of the chosen performance metrics computed across all botnet-specific instances of the detectors.
The boxplot representation of these results is provided in Figure 5.
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Table 7. Performance of the baseline detectors in non-adversarial settings.

Algorithm F1-Score
(std. dev.)

Precision
(std. dev.)

Recall
(std. dev.)

RF 0.9760
(0.0167)

0.9830
(0.0177)

0.9691
(0.0157)

MLP 0.9253
(0.0246)

0.9254
(0.0252)

0.9253
(0.0240)

DT 0.9648
(0.0144)

0.9689
(0.0186)

0.9606
(0.0117)

WnD 0.9322
(0.0594)

0.9469
(0.0671)

0.9180
(0.0533)

AB 0.9679
(0.0142)

0.9700
(0.0121)

0.9658
(0.0172)

Average
0.9538

(0.0258)
0.9588

(0.0281)
0.9478

(0.0244)

Figure 5. Performance of the baseline detectors.

We observe that all detectors achieve performance scores suitable for real-world environments [11],
thus representing a valid baseline for the remaining evaluations.

4.2. Adversarial Samples against Baseline Detectors

The impact of the considered adversarial attacks against the baseline detectors is now evaluated.
This step is critical because our goal is showing that our countermeasure is capable of mitigating attacks
that are highly effective. Hence, we generate the adversarial samples with the procedure described in
Section 3.3.4 and submit them to the baseline detectors. The results are displayed in Table 8, which
reports the Recall obtained by all the detectors before and after the attack, alongside the Attack Severity
metric; in particular, each cell denotes the average (and standard deviation) values achieved by all
botnet-specific instances against all the generated adversarial samples; the boxplot diagrams of Table 8
are also presented in Figure 6.

Having established a solid baseline, we can now proceed to evaluate the quality of the
proposed countermeasure.
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Table 8. Performance of the baseline detectors under evasion attacks.

Algorithm Recall
(no-attack)

Recall
(attack)

Attack
Severity

RF 0.9691
(0.0157)

0.3142
(0.2236)

0.6760
(0.2284)

MLP 0.9253
(0.0240)

0.4623
(0.1832)

0.4979
(0.2048)

DT 0.9606
(0.0117)

0.3011
(0.2125)

0.6861
(0.2218)

WnD 0.9180
(0.0533)

0.4634
(0.1818)

0.4902
(0.2118)

AB 0.9658
(0.0172)

0.3228
(0.2221)

0.6637
(0.2345)

Average
0.9478

(0.0244)
0.3728

(0.2046)
0.6028

(0.2203)

We note that all detectors are significantly affected by our evasion attacks, which is particularly
evident by comparing Figure 6a with Figure 6b. As an example, consider the results obtained by
the Deep Learning algorithm (WnD): its Detection Rate goes from an appreciable 92% to a clearly
unacceptable 46%.

(a) (b)

(c)
Figure 6. Effectiveness of the baseline detectors against the adversarial samples. (a) Detection Rate
of the baseline detectors in non-adversarial settings; (b) Detection Rate of the baseline detectors in
adversarial settings; (c) Attack Severity of the evasion attacks against the baseline detectors.

4.3. Hardened Performance in Non-Adversarial Settings

The first goal is determining if AppCon has a negative effect on the detectors when they are not
subject to adversarial attacks. Thus, we devise all the application specific sub-instances of our detectors
through the methodology explained in Section 3.3.3 and evaluate them on the same test dataset used
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for the “baseline” detectors. The results are reported in Table 9 and their boxplot representation
in Figure 7.

Table 9. Performance of the hardened detectors in non-adversarial settings.

Algorithm F1-Score
(std. dev.)

Precision
(std. dev.)

Recall
(std. dev.)

RF 0.9726
(0.0146)

0.9762
(0.0125)

0.9691
(0.0177)

MLP 0.9239
(0.0259)

0.9231
(0.0258)

0.9247
(0.0261)

DT 0.9633
(0.0128)

0.9669
(0.0156)

0.9597
(0.0108)

WnD 0.9323
(0.0590)

0.9469
(0.0669)

0.9180
(0.0528)

AB 0.9681
(0.0134)

0.9693
(0.0109)

0.9669
(0.0174)

Average
0.9520

(0.0251)
0.9565

(0.0263)
0.9477

(0.0249)

From Table 9 and Figure 7, it is evident that our solution has a negligible impact on the
performance of the detectors in non-adversarial settings: indeed, its scores are very similar to the ones
obtained by the baseline (see Table 7 and Figure 5). These results are critical because several existing
countermeasures against adversarial attacks induce a reduced performance on samples that are not
adversarially manipulated.

Figure 7. Performance of AppCon in non-adversarial scenarios.

As machine learning-based detectors require undergoing a training phase, we report in Table 10
the length (in minutes) of the training operations for the baseline and hardened detectors, which are
performed on an Intel Core i5-4670 CPU with 16 GB of RAM, 512 GB SSD and Nvidia GTX1070
GPU. The implementation of AppCon is computationally more demanding to develop because of
the additional layer of classifiers integrated in the detectors. However, these operations need to be
executed only periodically.

Table 10. Training Times (in minutes) of the baseline and hardened detectors.

Detector RF MLP DT WnD AB avg
Baseline 5:34 9:58 4:12 16:15 5:58 8:23

Hardened 9:48 16:31 6:37 24:22 10:09 13:29
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4.4. Countermeasure Effectiveness

Finally, we measure the effectiveness of the proposed solution at mitigating evasion attacks.
Hence, we submit all the generated adversarial samples to the hardened detectors.

We first measure how many of the crafted adversarial samples are immediately blocked by AppCon.
Indeed, it is safe to assume that all samples that do not conform to the network traffic generated by
our set of applications are not able to evade detection as they are not classified as accepted traffic
for any of the known applications. In the ideal case in which the set of applications A covers all
the web applications used by the protected enterprise, these samples will be blocked. These results
are outlined in Table 11, which displays the percentage of adversarial samples that are immediately
blocked, alongside the amount of samples that will be forwarded to the hardened detectors.

Table 11. Samples blocked by AppCon.

Application Blocked
Samples

Forwarded
Samples

Teams 77.84% 22.15%
OneDrive 61.79% 38.21%
OneNote 77.83% 22.16%
Skype 69.33% 30.66%

WhatsApp 90.21% 9.79%

Average 75.41% 24.59%

From this table, we appreciate that the simple integration of our method allows for blocking over
75% of the generated adversarial samples, which is a promising result.

Next, the performance of the hardened detectors on the remaining adversarial samples is reported
in Table 12; as usual, this table is paired with its corresponding boxplots displayed in Figure 8.

Table 12. Performance of the hardened detectors on the forwarded adversarial samples.

Algorithm Recall
(no-attack)

Recall
(attack)

Attack
Severity

RF 0.9691
(0.0177)

0.4418
(0.2186)

0.5456
(0.2216)

MLP 0.9247
(0.0261)

0.5644
(0.1801)

0.3871
(0.2035)

DT 0.9597
(0.0108)

0.4435
(0.2128)

0.5376
(0.2222)

WnD 0.9180
(0.0528)

0.5893
(0.1830)

0.3533
(0.2150)

AB 0.9669
(0.0174)

0.4742
(0.2233)

0.5071
(0.2383)

Average
0.9477

(0.0249)
0.5026

(0.2036)
0.4659

(0.2201)

By comparing the values in Table 12 with those obtained by the baselines in Table 8, we observe
that AppCon allows for devising detectors that are less affected by the considered evasion attacks.
For example, let us inspect the performance of the RF classifier: its adversarial Recall goes from ∼0.31
to ∼0.44, which is an improvement of nearly 50%. We stress that the complete quality of our solution
is shown through both Tables 11 and 12: in the considered scenario [11], AppCon can immediately
prevent about 75% of adversarial samples, and it improves the Detection Rate of detectors based on
different supervised ML algorithms on the remaining (about 25%) attack samples.



Symmetry 2020, 12, 653 18 of 23

(a) (b)

(c)
Figure 8. Effectiveness of AppCon against the adversarial samples. (a) Detection Rate of AppCon in
non-adversarial settings; (b) Detection Rate of AppCon in adversarial settings; (c) Attack Severity of the
evasion attacks against AppCon.

4.5. Considerations

We provide some considerations on the effectiveness of the proposed solution, with regard to (i)
its improvement over existing defensive techniques; and to (ii) possible strategies that attackers may
adopt to evade our system.

The authors of [44] propose a method to harden neural network classifiers, but the application
of this approach to neural network-based malware detectors (described in [20]) increased the false
positive rate in non-adversarial contexts by nearly 2%, which is not acceptable in modern Network
Intrusion Detection scenarios in which NIDS analyze thousands of events every second [59]. Moreover,
we highlight the study performed in [11], which considers a large array of ML-based botnet detectors
tested also on the CTU-13 dataset against adversarial samples: their results show that techniques such
as feature removal may cause drops in Precision from 96% to a worrying 81%. Another possible defense
against adversarial evasion attacks relies on re-training the algorithm on perturbed samples [21,47,74]:
however, the authors in [47,74] do not evaluate the efficacy of such strategies in non-adversarial settings,
while the detection improvements in [21] are very small (only 2%). In contrast to all these past efforts,
the values of Precision and F1-score achieved by AppCon in non-adversarial settings only differ by less
than 1% from our baseline, while significantly improving the performance in adversarial circumstances.

A skilled adversary may still be able to thwart AppCon. To do this, the following three Conditions
must be met:

1. the attacker must know (fully or partially) the set of web-applications A considered by AppCon.
Let us call this set A.

2. the attacker must know the characteristics of the traffic that A generate in the targeted
organization. We denote this piece of knowledge with CA.

3. the attacker must be able to modify its malicious botnet communications so as to conform to CA.
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An attacker that meets all three of these conditions does not conform to the threat model
considered in this paper and that is used to devise AppCon (see Section 3.1). Regardless, we stress that,
while it may be feasible for a persistent attacker to learn A (Condition #1), obtaining CA (Condition
#2) would require far more effort as the attacker would need to gain access to systems that monitor
the behavior of the entire network to acquire such information. Finally, concerning Condition #3,
the attacker may be able to modify the malicious CnC communications to comply with CA, but this
may raise alarms by other detection mechanisms [59]. We conclude by highlighting that, as evidenced
by our experiments (see Table 11), AppCon allows protection against over 75% of the considered evasion
attempts—regardless of the attacker’s capabilities.

5. Conclusions

The application of machine learning algorithms to cybersecurity must face the problem posed
by adversarial attacks. In this paper, we propose AppCon, a novel approach that aims to improve the
resilience of cyber detectors against evasion attacks. Our solution is particularly suited to strengthen
machine learning-based network intrusion detection systems deployed in realistic environments.
The proposal combines the effectiveness of ensemble learning with the intuition that modern network
environments generate traffic from a finite set of applications; the goal is limiting the options that
an attacker can use to craft his malicious adversarial samples by tailoring the NIDS for the set
of applications used in the protected network. We evaluate the quality of AppCon through an
extensive experimental campaign in a botnet detection scenario. The results provide evidence that our
solution achieves the symmetric quality of mitigating evasion attacks while not affecting the detection
performance in non-adversarial settings, and that it is effective on multiple supervised ML algorithms.
These improvements represent a meaningful step towards the development of more secure cyber
detectors relying on machine learning. The present work presents margins for future improvements:
an enticing idea consists of evaluating the synergy of the proposed AppCon approach with other
defensive strategies, with the goal of further improving the detection rate against evasion attacks.

Author Contributions: Conceptualization: G.A. and G.R.; methodology, G.A., M.A., and G.R.; software, G.R. and
V.G.C.; validation, G.A., M.M., and V.G.C.; formal analysis, G.A., M.M.; investigation, G.A. and G.R.; resources,
M.M.; data curation, G.A. and G.R.; writing—original draft preparation, G.A.; writing—review and editing, G.A.,
M.M., V.G.C., and M.A.; visualization, G.A., V.G.C., and G.R.; supervision, M.A.; project administration, M.M.
All authors have read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Conflicts of Interest: The authors declare no conflicts of interest.

References

1. Gardiner, J.; Nagaraja, S. On the security of machine learning in malware c&c detection: A survey.
ACM Comput. Surv. 2016, 49, 59.

2. Biggio, B.; Roli, F. Wild patterns: Ten years after the rise of adversarial machine learning. Elsevier Pattern
Recogn. 2018, 84, 317–331. [CrossRef]

3. Buczak, A.L.; Guven, E. A survey of data mining and machine learning methods for cyber security intrusion
detection. IEEE Commun. Surv. Tutor. 2016, 18, 1153–1176. [CrossRef]

4. Huang, L.; Joseph, A.D.; Nelson, B.; Rubinstein, B.I.; Tygar, J. Adversarial machine learning. In Proceedings
of the 4th ACM Workshop on Security and Artificial Intelligence, Chicago, IL, USA, 21 October 2011;
pp. 43–58.

5. Biggio, B.; Nelson, B.; Laskov, P. Poisoning attacks against support vector machines. In Proceedings of the
29th International Coference on International Conference on Machine, Edinburgh, UK, 26 June–1 July 2012;
pp. 1467–1474.

http://dx.doi.org/10.1016/j.patcog.2018.07.023
http://dx.doi.org/10.1109/COMST.2015.2494502


Symmetry 2020, 12, 653 20 of 23

6. Biggio, B.; Corona, I.; Maiorca, D.; Nelson, B.; Šrndić, N.; Laskov, P.; Giacinto, G.; Roli, F. Evasion
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