665 research outputs found

    A review of the effectiveness of lower limb orthoses used in cerebral palsy

    Get PDF
    To produce this review, a systematic literature search was conducted for relevant articles published in the period between the date of the previous ISPO consensus conference report on cerebral palsy (1994) and April 2008. The search terms were 'cerebral and pals* (palsy, palsies), 'hemiplegia', 'diplegia', 'orthos*' (orthoses, orthosis) orthot* (orthotic, orthotics), brace or AFO

    Concurrent impact of bilateral multiple joint functional electrical stimulation and treadmill walking on gait and spasticity in post-stroke survivors: a pilot study

    Get PDF
    Background: Stroke causes multi-joint gait deficits, so a major objective of post-stroke rehabilitation is to regain normal gait function. Design and Setting: A case series completed at a neuroscience institute. Aim: The aim of the study was to determine the concurrent impact of functional electrical stimulation (FES) during treadmill walking on gait speed, knee extensors spasticity and ankle plantar flexors spasticity in post-stroke survivors. Participants: Six post-stroke survivors with altered gait patterns and ankle plantar flexors spasticity (4=male; age 56.8 ± 4.8 years; Body Mass Index (BMI) 26.2 ±4.3; since onset of stroke: 30.8 ±10.4 months; side of hemiplegia [L/R]: 3:3) were recruited. Intervention: Nine treatment sessions using FES bilaterally while walking on a treadmill. Main Outcome Measures: Primary outcome measures included the Modified Modified Ashworth Scale (MMAS), Timed Up and Go test (TUG), 10-m walking test, gait speed, and Functional ambulation category (FAC). Secondary outcome measures included the Step Length Test (SLT), and active range of motion (ROM) of the affected ankle and the knee. Measurements were taken at baseline (T0), at the end of last treatment (T1), and one month after the final treatment session (T2). Results: The TUG, 10-m walking test, gait speed, FAC, active ROM, and SLT all significantly improved following treatment (

    Reliability and Validity Study of the Chamorro Assisted Gait Scale for People with Sprained Ankles, Walking with Forearm Crutches

    Get PDF
    Objective The aim of this study was to design and validate a functional assessment scale for assisted gait with forearm crutches (Chamorro Assisted Gait Scale—CHAGS) and to assess its reliability in people with sprained ankles. Design Thirty subjects who suffered from sprained ankle (anterior talofibular ligament first and second degree) were included in the study. A modified Delphi technique was used to obtain the content validity. The selected items were: pelvic and scapular girdle dissociation(1), deviation of Center of Gravity(2), crutch inclination(3), steps rhythm(4), symmetry of step length(5), cross support(6), simultaneous support of foot and crutch(7), forearm off(8), facing forward(9) and fluency(10). Two raters twice visualized the gait of the sample subjects which were recorded. The criterion-related validity was determined by correlation between CHAGS and Coding of eight criteria of qualitative gait analysis (Viel Coding). Internal consistency and inter and intra-rater reliability were also tested. Results CHAGS obtained a high and negative correlation with Viel Coding. We obtained a good internal consistency and the intra-class correlation coefficients oscillated between 0.97 and 0.99, while the minimal detectable changes were acceptable. Conclusion CHAGS scale is a valid and reliable tool for assessing assisted gait with crutches in people with sprained ankles to perform partial relief of lower limbs.Telefonica Chair “Intelligence in Networks” of the University of Seville, Spai

    Development and clinical application of assessment measures to describe and quantify intra-limb coordination during walking in normal children and children with cerebral palsy

    Get PDF
    A thesis submitted in partial fulfilment of the requirements of the University of Wolverhampton for the degree of Doctor of PhilosophyThis thesis investigates coordination of the lower limb joints within the limb during walking. The researcher was motivated by her clinical experience as a paediatric physiotherapist. She observed that the pattern of lower limb coordination differed between normal children and those with cerebral palsy. Many of the currently used interventions did not appear to influence this patterning. As a precursor to evaluating the effectiveness of treatments in modifying coordination, a tool to measure coordination was required. The researcher initially investigated qualitative and then quantitative methods of measuring within limb coordination. A technique was developed that used relative angular velocity of two joints to determine when joints were in-phase, antiphasic or in stasis. The phasic parameters of hip/knee, knee/ankle and hip/ankle joints coordination were quantified. There were some significant differences between normal children and children with cerebral palsy. Asymmetry of these phasic parameters was identified, with children with cerebral palsy being more asymmetrical than normal children. The clinical utility of this technique was tested by comparing 2 groups of children before and after 2 surgical procedures. This showed some significant differences in phasic parameters between pre and post-operative data for one procedure. Low samples sizes mean that further work is required to confirm these findings. Data from this work has been used to calculate sample sizes to give an a priori power of 0.8 and further research is proposed and potential applications discussed. It is hoped that this technique will raise awareness of abnormal intra-limb coordination and allow therapists to identify key interactions between joints that need to be facilitated during walking training

    Development and evaluation of an evidence-based and individually defined physical therapy approach for ambulant children with bilateral spastic cerebral palsy

    Get PDF
    status: publishe

    The Relationship between Gait Velocity and Walking Pattern in Hemiplegic Patients

    Get PDF
    Abstract: Background Gait speed represents a functional predictor and an impairment severity index in stroke survivors; gait analysis parameters are descriptors of walking strategies used to compensate for the muscle impairment such as vaulting, circumduction and hip hiking. The aim of this study was to assess if there is a relationship between the gait compensatory strategy and gait speed of progression. Methods A sample of 30 patients with post-stroke hemiparesis was assessed for gait compensatory patterns through gait analysis and videorecording. BMI, pain-VAS, Barthel Index, Nottingham Extended ADL Scale, Motricity Index, lower limb muscles strength and aROMs were also included in the assessment. Results In 19 patients it was possible to identify one or more compensatory strategies; in 11 patients no specific gait pattern was found. The vaulting and hip hiking combined gait strategy had an effect on gait speed. Gait speed was directly related to Barthel Index, Nottingham Extended ADL Scale, Motricity Index of the paretic side and in particular with quadriceps and iliopsoas strength and hip extension aROM. Gender, age and paretic side did not influence gait speed. Conclusion Compensatory gait strategies influence gait speed but studies with larger sample size are needed to better highlight their impact

    Asymmetry index in muscle activations

    Get PDF
    Gait asymmetry is typically evaluated using spatio-temporal or joint kinematics parameters. Only a few studies addressed the problem of defining an asymmetry index directly based on muscle activity, extracting parameters from surface electromyography (sEMG) signals. Moreover, no studies used the extraction of the muscle principal activations (activations that are necessary for accomplishing a specific motor task) as the base to construct an asymmetry index, less affected by the variability of sEMG patterns. The aim of this study is to define a robust index to quantitative assess the asymmetry of muscle activations during locomotion, based on the extraction of the principal activations. SEMG signals were analyzed combining Statistical Gait Analysis (SGA) and a clustering algorithm that allows for obtaining the muscle principal activations. We evaluated the asymmetry levels of four lower limb muscles in: (1) healthy subjects of different ages (children, adults, and elderly); (2) different populations of orthopedic patients (adults with megaprosthesis of the knee after bone tumor resection, elderly subjects after total knee arthroplasty and elderly subjects after total hip arthroplasty); and (3) neurological patients (children with hemiplegic cerebral palsy and elderly subjects affected by idiopathic Normal Pressure Hydrocephalus). The asymmetry index obtained for each pathological population was then compared to that of age-matched controls. We found asymmetry levels consistent with the expected impact of the different pathologies on muscle activation during gait. This suggests that the proposed index can be successfully used in clinics for an objective assessment of the muscle activation asymmetry during locomotion

    Gait Asymmetry Post-Stroke: Determining Valid and Reliable Methods Using a Single Accelerometer Located on the Trunk

    Get PDF
    Asymmetry is a cardinal symptom of gait post-stroke that is targeted during rehabilitation. Technological developments have allowed accelerometers to be a feasible tool to provide digital gait variables. Many acceleration-derived variables are proposed to measure gait asymmetry. Despite a need for accurate calculation, no consensus exists for what is the most valid and reliable variable. Using an instrumented walkway (GaitRite) as the reference standard, this study compared the validity and reliability of multiple acceleration-derived asymmetry variables. Twenty-five post-stroke participants performed repeated walks over GaitRite whilst wearing a tri-axial accelerometer (Axivity AX3) on their lower back, on two occasions, one week apart. Harmonic ratio, autocorrelation, gait symmetry index, phase plots, acceleration, and jerk root mean square were calculated from the acceleration signals. Test–retest reliability was calculated, and concurrent validity was estimated by comparison with GaitRite. The strongest concurrent validity was obtained from step regularity from the vertical signal, which also recorded excellent test–retest reliability (Spearman’s rank correlation coefficients (rho) = 0.87 and Intraclass correlation coefficient (ICC21) = 0.98, respectively). Future research should test the responsiveness of this and other step asymmetry variables to quantify change during recovery and the effect of rehabilitative interventions for consideration as digital biomarkers to quantify gait asymmetry
    • 

    corecore