16,434 research outputs found

    Towards the design of effective freehand gestural interaction for interactive TV

    Get PDF
    As interactive devices become pervasive, people are beginning to look for more advanced interaction with televisions in the living room. Interactive television has the potential to offer a very engaging experience. But most common user tasks are still challenging with such systems, such as menu selection or text input, and little work has been done on understanding and supporting the effective design of freehand interaction with a TV in the domestic environment. In this paper, we report two studies investigating freehand gestural interaction with a consumer level sensor that is suitable for TV use scenarios. In the first study, we investigate a range of design factors for tiled layout menu selection, including wearable feedback, push gesture depth, target size and position in motor space. The results show that tactile and audio feedback have no significant effect on user performance and preference, and these results inform potential designs for high selection performance. In the second study, we investigate using freehand gestures for the common TV user task of text input. We design and evaluate two virtual keyboard layouts and three freehand selection methods. Results show that ease of use and error tolerance can both be achieved using a text entry method utilizing a dual circle layout and an expanding target selection technique. Finally, we propose design guidelines for effective, usable and comfortable freehand gestural interaction for interactive TV based on the findings.</p

    Practical, appropriate, empirically-validated guidelines for designing educational games

    Get PDF
    There has recently been a great deal of interest in the potential of computer games to function as innovative educational tools. However, there is very little evidence of games fulfilling that potential. Indeed, the process of merging the disparate goals of education and games design appears problematic, and there are currently no practical guidelines for how to do so in a coherent manner. In this paper, we describe the successful, empirically validated teaching methods developed by behavioural psychologists and point out how they are uniquely suited to take advantage of the benefits that games offer to education. We conclude by proposing some practical steps for designing educational games, based on the techniques of Applied Behaviour Analysis. It is intended that this paper can both focus educational games designers on the features of games that are genuinely useful for education, and also introduce a successful form of teaching that this audience may not yet be familiar with

    Discoverable Free Space Gesture Sets for Walk-Up-and-Use Interactions

    Get PDF
    abstract: Advances in technology are fueling a movement toward ubiquity for beyond-the-desktop systems. Novel interaction modalities, such as free space or full body gestures are becoming more common, as demonstrated by the rise of systems such as the Microsoft Kinect. However, much of the interaction design research for such systems is still focused on desktop and touch interactions. Current thinking in free-space gestures are limited in capability and imagination and most gesture studies have not attempted to identify gestures appropriate for public walk-up-and-use applications. A walk-up-and-use display must be discoverable, such that first-time users can use the system without any training, flexible, and not fatiguing, especially in the case of longer-term interactions. One mechanism for defining gesture sets for walk-up-and-use interactions is a participatory design method called gesture elicitation. This method has been used to identify several user-generated gesture sets and shown that user-generated sets are preferred by users over those defined by system designers. However, for these studies to be successfully implemented in walk-up-and-use applications, there is a need to understand which components of these gestures are semantically meaningful (i.e. do users distinguish been using their left and right hand, or are those semantically the same thing?). Thus, defining a standardized gesture vocabulary for coding, characterizing, and evaluating gestures is critical. This dissertation presents three gesture elicitation studies for walk-up-and-use displays that employ a novel gesture elicitation methodology, alongside a novel coding scheme for gesture elicitation data that focuses on features most important to users’ mental models. Generalizable design principles, based on the three studies, are then derived and presented (e.g. changes in speed are meaningful for scroll actions in walk up and use displays but not for paging or selection). The major contributions of this work are: (1) an elicitation methodology that aids users in overcoming biases from existing interaction modalities; (2) a better understanding of the gestural features that matter, e.g. that capture the intent of the gestures; and (3) generalizable design principles for walk-up-and-use public displays.Dissertation/ThesisDoctoral Dissertation Computer Science 201

    Applying psychological science to the CCTV review process: a review of cognitive and ergonomic literature

    Get PDF
    As CCTV cameras are used more and more often to increase security in communities, police are spending a larger proportion of their resources, including time, in processing CCTV images when investigating crimes that have occurred (Levesley &amp; Martin, 2005; Nichols, 2001). As with all tasks, there are ways to approach this task that will facilitate performance and other approaches that will degrade performance, either by increasing errors or by unnecessarily prolonging the process. A clearer understanding of psychological factors influencing the effectiveness of footage review will facilitate future training in best practice with respect to the review of CCTV footage. The goal of this report is to provide such understanding by reviewing research on footage review, research on related tasks that require similar skills, and experimental laboratory research about the cognitive skills underpinning the task. The report is organised to address five challenges to effectiveness of CCTV review: the effects of the degraded nature of CCTV footage, distractions and interrupts, the length of the task, inappropriate mindset, and variability in people’s abilities and experience. Recommendations for optimising CCTV footage review include (1) doing a cognitive task analysis to increase understanding of the ways in which performance might be limited, (2) exploiting technology advances to maximise the perceptual quality of the footage (3) training people to improve the flexibility of their mindset as they perceive and interpret the images seen, (4) monitoring performance either on an ongoing basis, by using psychophysiological measures of alertness, or periodically, by testing screeners’ ability to find evidence in footage developed for such testing, and (5) evaluating the relevance of possible selection tests to screen effective from ineffective screener

    Airtightness of buildings — towards higher performance: Final Report — Domestic Sector Airtightness

    Get PDF
    This report constitutes milestone D11 — Final Report — Domestic Sector Airtightness of the Communities and Local Government/ODPM Project reference CI 61/6/16 (BD2429) Airtightness of Buildings — Towards Higher Performance (Borland and Bell, 2003). This report presents the overall conclusions and key messages obtained from the project through design assessments, construction observations, discussions with developers and pressurisation test results. It also summarises discussion on the airtight performance of current UK housing, the implementation and impact of current and future legislation, and identifies potential areas for future work

    Improving command selection in smart environments by exploiting spatial constancy

    Get PDF
    With the a steadily increasing number of digital devices, our environments are becoming increasingly smarter: we can now use our tablets to control our TV, access our recipe database while cooking, and remotely turn lights on and off. Currently, this Human-Environment Interaction (HEI) is limited to in-place interfaces, where people have to walk up to a mounted set of switches and buttons, and navigation-based interaction, where people have to navigate on-screen menus, for example on a smart-phone, tablet, or TV screen. Unfortunately, there are numerous scenarios in which neither of these two interaction paradigms provide fast and convenient access to digital artifacts and system commands. People, for example, might not want to touch an interaction device because their hands are dirty from cooking: they want device-free interaction. Or people might not want to have to look at a screen because it would interrupt their current task: they want system-feedback-free interaction. Currently, there is no interaction paradigm for smart environments that allows people for these kinds of interactions. In my dissertation, I introduce Room-based Interaction to solve this problem of HEI. With room-based interaction, people associate digital artifacts and system commands with real-world objects in the environment and point toward these real-world proxy objects for selecting the associated digital artifact. The design of room-based interaction is informed by a theoretical analysis of navigation- and pointing-based selection techniques, where I investigated the cognitive systems involved in executing a selection. An evaluation of room-based interaction in three user studies and a comparison with existing HEI techniques revealed that room-based interaction solves many shortcomings of existing HEI techniques: the use of real-world proxy objects makes it easy for people to learn the interaction technique and to perform accurate pointing gestures, and it allows for system-feedback-free interaction; the use of the environment as flat input space makes selections fast; the use of mid-air full-arm pointing gestures allows for device-free interaction and increases awareness of other’s interactions with the environment. Overall, I present an alternative selection paradigm for smart environments that is superior to existing techniques in many common HEI-scenarios. This new paradigm can make HEI more user-friendly, broaden the use cases of smart environments, and increase their acceptance for the average user

    Human-Computer Interaction

    Get PDF
    In this book the reader will find a collection of 31 papers presenting different facets of Human Computer Interaction, the result of research projects and experiments as well as new approaches to design user interfaces. The book is organized according to the following main topics in a sequential order: new interaction paradigms, multimodality, usability studies on several interaction mechanisms, human factors, universal design and development methodologies and tools
    corecore