232 research outputs found

    Comparative analysis of various machine learning algorithms for ransomware detection

    Get PDF
    Recently, the ransomware attack posed a serious threat that targets a wide range of organizations and individuals for financial gain. So, there is a real need to initiate more innovative methods that are capable of proactively detect and prevent this type of attack. Multiple approaches were innovated to detect attacks using different techniques. One of these techniques is machine learning techniques which provide reasonable results, in most attack detection systems. In the current article, different machine learning techniques are tested to analyze its ability in a detection ransomware attack. The top 1000 features extracted from raw byte with the use of gain ratio as a feature selection method. Three different classifiers (decision tree (J48), random forest, radial basis function (RBF) network) available in Waikato Environment for Knowledge Analysis (WEKA) based machine learning tool are evaluated to achieve significant detection accuracy of ransomware. The result shows that random forest gave the best detection accuracy almost around 98%

    Enhancing cloud security through the integration of deep learning and data mining techniques: A comprehensive review

    Get PDF
    Cloud computing is crucial in all areas of data storage and online service delivery. It adds various benefits to the conventional storage and sharing system, such as simple access, on-demand storage, scalability, and cost savings. The employment of its rapidly expanding technologies may give several benefits in protecting the Internet of Things (IoT) and physical cyber systems (CPS) from various cyber threats, with IoT and CPS providing facilities for people in their everyday lives. Because malware (malware) is on the rise and there is no well-known strategy for malware detection, leveraging the cloud environment to identify malware might be a viable way forward. To avoid detection, a new kind of malware employs complex jamming and packing methods. Because of this, it is very hard to identify sophisticated malware using typical detection methods. The article presents a detailed assessment of cloud-based malware detection technologies, as well as insight into understanding the cloud's use in protecting the Internet of Things and critical infrastructure from intrusions. This study examines the benefits and drawbacks of cloud environments in malware detection, as well as presents a methodology for detecting cloud-based malware using deep learning and data extraction and highlights new research on the issues of propagating existing malware. Finally, similarities and variations across detection approaches will be exposed, as well as detection technique flaws. The findings of this work may be utilized to highlight the current issue being tackled in malware research in the future

    Improved Detection for Advanced Polymorphic Malware

    Get PDF
    Malicious Software (malware) attacks across the internet are increasing at an alarming rate. Cyber-attacks have become increasingly more sophisticated and targeted. These targeted attacks are aimed at compromising networks, stealing personal financial information and removing sensitive data or disrupting operations. Current malware detection approaches work well for previously known signatures. However, malware developers utilize techniques to mutate and change software properties (signatures) to avoid and evade detection. Polymorphic malware is practically undetectable with signature-based defensive technologies. Today’s effective detection rate for polymorphic malware detection ranges from 68.75% to 81.25%. New techniques are needed to improve malware detection rates. Improved detection of polymorphic malware can only be accomplished by extracting features beyond the signature realm. Targeted detection for polymorphic malware must rely upon extracting key features and characteristics for advanced analysis. Traditionally, malware researchers have relied on limited dimensional features such as behavior (dynamic) or source/execution code analysis (static). This study’s focus was to extract and evaluate a limited set of multidimensional topological data in order to improve detection for polymorphic malware. This study used multidimensional analysis (file properties, static and dynamic analysis) with machine learning algorithms to improve malware detection. This research demonstrated improved polymorphic malware detection can be achieved with machine learning. This study conducted a number of experiments using a standard experimental testing protocol. This study utilized three advanced algorithms (Metabagging (MB), Instance Based k-Means (IBk) and Deep Learning Multi-Layer Perceptron) with a limited set of multidimensional data. Experimental results delivered detection results above 99.43%. In addition, the experiments delivered near zero false positives. The study’s approach was based on single case experimental design, a well-accepted protocol for progressive testing. The study constructed a prototype to automate feature extraction, assemble files for analysis, and analyze results through multiple clustering algorithms. The study performed an evaluation of large malware sample datasets to understand effectiveness across a wide range of malware. The study developed an integrated framework which automated feature extraction for multidimensional analysis. The feature extraction framework consisted of four modules: 1) a pre-process module that extracts and generates topological features based on static analysis of machine code and file characteristics, 2) a behavioral analysis module that extracts behavioral characteristics based on file execution (dynamic analysis), 3) an input file construction and submission module, and 4) a machine learning module that employs various advanced algorithms. As with most studies, careful attention was paid to false positive and false negative rates which reduce their overall detection accuracy and effectiveness. This study provided a novel approach to expand the malware body of knowledge and improve the detection for polymorphic malware targeting Microsoft operating systems

    NetSentry: A deep learning approach to detecting incipient large-scale network attacks

    Get PDF
    Machine Learning (ML) techniques are increasingly adopted to tackle ever-evolving high-profile network attacks, including DDoS, botnet, and ransomware, due to their unique ability to extract complex patterns hidden in data streams. These approaches are however routinely validated with data collected in the same environment, and their performance degrades when deployed in different network topologies and/or applied on previously unseen traffic, as we uncover. This suggests malicious/benign behaviors are largely learned superficially and ML-based Network Intrusion Detection System (NIDS) need revisiting, to be effective in practice. In this paper we dive into the mechanics of large-scale network attacks, with a view to understanding how to use ML for Network Intrusion Detection (NID) in a principled way. We reveal that, although cyberattacks vary significantly in terms of payloads, vectors and targets, their early stages, which are critical to successful attack outcomes, share many similarities and exhibit important temporal correlations. Therefore, we treat NID as a time-sensitive task and propose NetSentry, perhaps the first of its kind NIDS that builds on Bidirectional Asymmetric LSTM (Bi-ALSTM), an original ensemble of sequential neural models, to detect network threats before they spread. We cross-evaluate NetSentry using two practical datasets, training on one and testing on the other, and demonstrate F1 score gains above 33% over the state-of-the-art, as well as up to 3 times higher rates of detecting attacks such as XSS and web bruteforce. Further, we put forward a novel data augmentation technique that boosts the generalization abilities of a broad range of supervised deep learning algorithms, leading to average F1 score gains above 35%
    • …
    corecore