

Edinburgh Research Explorer

NetSentry: A deep learning approach to detecting incipient large-
scale network attacks

Citation for published version:
Liu, H & Patras, P 2022, 'NetSentry: A deep learning approach to detecting incipient large-scale network
attacks', Computer Communications, vol. 191, pp. 119-132. https://doi.org/10.1016/j.comcom.2022.04.020

Digital Object Identifier (DOI):
10.1016/j.comcom.2022.04.020

Link:
Link to publication record in Edinburgh Research Explorer

Document Version:
Publisher's PDF, also known as Version of record

Published In:
Computer Communications

General rights
Copyright for the publications made accessible via the Edinburgh Research Explorer is retained by the author(s)
and / or other copyright owners and it is a condition of accessing these publications that users recognise and
abide by the legal requirements associated with these rights.

Take down policy
The University of Edinburgh has made every reasonable effort to ensure that Edinburgh Research Explorer
content complies with UK legislation. If you believe that the public display of this file breaches copyright please
contact openaccess@ed.ac.uk providing details, and we will remove access to the work immediately and
investigate your claim.

Download date: 08. Jun. 2022

https://doi.org/10.1016/j.comcom.2022.04.020
https://doi.org/10.1016/j.comcom.2022.04.020
https://www.research.ed.ac.uk/en/publications/24ad136b-91b1-4d9d-bbbb-6d912a8a1172

Computer Communications 191 (2022) 119–132

N
n
H
S

A

K
N
D
F

1

c
a
i
c
g
l
T
M
d
s
d

p
i
N
t

h
R
A
0
(

Contents lists available at ScienceDirect

Computer Communications

journal homepage: www.elsevier.com/locate/comcom

etSentry: A deep learning approach to detecting incipient large-scale
etwork attacks
aoyu Liu, Paul Patras ∗

chool of Informatics, The University of Edinburgh, Informatics Forum, 10 Crichton St, Newington, Edinburgh, EH8 9AB, United Kingdom

R T I C L E I N F O

eywords:
etwork-based intrusion detection system
eep learning
eature augmentation

A B S T R A C T

Machine Learning (ML) techniques are increasingly adopted to tackle ever-evolving high-profile network
attacks, including Distributed Denial of Service (DDoS), botnet, and ransomware, due to their unique ability
to extract complex patterns hidden in data streams. These approaches are however routinely validated
with data collected in the same environment, and their performance degrades when deployed in different
network topologies and/or applied on previously unseen traffic, as we uncover. This suggests malicious/benign
behaviors are largely learned superficially and ML-based Network Intrusion Detection Systems (NIDS) need
revisiting, to be effective in practice. In this paper we dive into the mechanics of large-scale network attacks,
with a view to understanding how to use ML for Network Intrusion Detection (NID) in a principled way.
We reveal that, although cyberattacks vary significantly in terms of payloads, vectors and targets, their early
stages, which are critical to successful attack outcomes, share many similarities and exhibit important temporal
correlations. Therefore, we treat NID as a time-sensitive task and propose NetSentry, perhaps the first of its
kind NIDS that builds on Bidirectional Asymmetric LSTM (Bi-ALSTM), an original ensemble of sequential neural
models, to detect network threats before they spread. We cross-evaluate NetSentry using two practical datasets,
training on one and testing on the other, and demonstrate F1 score gains above 33% over the state-of-the-art,
as well as up to 3× higher rates of detecting attacks such as Cross-Site Scripting (XSS) and web bruteforce.
Further, we put forward a novel data augmentation technique that boosts the generalization abilities of a broad
range of supervised deep learning algorithms, leading to average F1 score gains above 35%. Lastly, we shed
light on the feasibility of deploying NetSentry in operational networks, demonstrating affordable computational
overhead and robustness to evasion attacks.
. Introduction

The volume of illicit network traffic continues to grown dramati-
ally, with the number of high-profile attacks including DDoS, botnet,
nd ransomware rising by over 45% annually [1], and the losses
ncurred expected to exceed 6 trillion US dollars in 2021 [2]. Effective
ountermeasures to thwart ever-evolving cyber threats are therefore ur-
ently needed. Traditional Network Intrusion Detection Systems (NIDS)
argely apply finite rules, preset by human experts, to detect anomalies.
his approach lacks flexibility and is often prone to subversion [3].
achine Learning (ML) is increasingly used to detect cyber intrusions,

ue to its ability to discover complex statistical patterns hidden in data
treams, which can aid in discriminating anomalies based on feature
ifferences [4].

ML is a powerful tool, yet adopting it meaningfully for security
urposes is not straightforward. ML techniques used in areas including
maging and natural language processing have been directly applied to
ID (e.g., [5]), without adequate analysis of their suitability for this

ask. For instance, reconstruction-based algorithms like autoencoders

∗ Corresponding author.
E-mail addresses: haoyu.liu@ed.ac.uk (H. Liu), paul.patras@ed.ac.uk (P. Patras).

were originally designed to learn to recreate benign samples that con-
tain similar patterns, e.g., the same object type in images [6]. However,
when deployed for intrusion detection, whether an autoencoder is able
to reconstruct heterogeneous benign traffic originating from various
applications is rarely discussed [7]. Secondly, widely-used evaluation
methodologies involve training and testing NID models on a single
dataset, collected in the same controlled environment. This makes it
difficult to assess if the trained models can truly generalize to previ-
ously unseen traffic mixes [8]. Moreover, detecting high-volume attacks
promptly, before a target system becomes overloaded and unable to
thwart malicious traffic with potential to cause severe damage follow-
ing early system compromise, is difficult. This capability is however
critical to the availability and revenue of online businesses [9].

In this paper, we address the above challenges and propose Net-
Sentry, a novel Deep Learning (DL)-based NIDS that reliably detects a
range of malicious traffics with similar patterns, indicative of incipient
high-impact network attacks. As such, we make the following key
contributions:
ttps://doi.org/10.1016/j.comcom.2022.04.020
eceived 22 October 2021; Received in revised form 31 March 2022; Accepted 18
vailable online 30 April 2022
140-3664/© 2022 The Author(s). Published by Elsevier B.V. This is an open acce
http://creativecommons.org/licenses/by/4.0/).
April 2022

ss article under the CC BY license

https://doi.org/10.1016/j.comcom.2022.04.020
http://www.elsevier.com/locate/comcom
http://www.elsevier.com/locate/comcom
http://crossmark.crossref.org/dialog/?doi=10.1016/j.comcom.2022.04.020&domain=pdf
mailto:haoyu.liu@ed.ac.uk
mailto:paul.patras@ed.ac.uk
https://doi.org/10.1016/j.comcom.2022.04.020
http://creativecommons.org/licenses/by/4.0/

H. Liu and P. Patras Computer Communications 191 (2022) 119–132

b
t
s

2

n
e
e
F
t
a
t
e
m
w
e
n
N

a
T
c
k
r
o
B
o
d
t
i
e

2

s
t
s
o
c
t
t
a

h
s
s
S
F

e
c
s
v
d
s
s
d
d

i
m
i
t
a
v

n
→

b
b
e
W
b
a

t
i
W
p
t
c
e

n
c
o
f
c
e
t

t

(1) We scrutinize several attack chains and identify key temporal
inter-relations between illicit traffic occurring in the wild; based
on this analysis, we design Bidirectional Asymmetric LSTM (Bi-
ALSTM), an original ensemble of sequential neural models that
effectively captures the temporal dynamics of malicious traffic
and classifies specific threats, including Denial of Service (DoS),
Port Scanning, and Brute Forcing;

(2) Since not every attack type can be distinguished accurately with
limited information available at the network layer, we introduce
a novel training technique that relies on feature augmentation
and abstract labeling. The feature augmentation scheme im-
proves the heterogeneity of cyber attacks that were collected in
a controlled environment, which helps NN models learn a more
robust decision boundary. Abstract labeling, on the other hand,
prevents overfitting by grouping similar types of attacks into one
class;

(3) We train our Bi-ALSTM on a large dataset published by the
Canadian Institute for Cybersecurity, we cross-evaluate our ap-
proach with a previously unseen dataset collected in a different
network topology, and we compare its performance against that
of state-of-the art benchmarks. Results demonstrate Bi-ALSTM
outperforms existing approaches by at least 33% in terms of F1
score;

(4) We discuss practical aspects of deploying NetSentry in real-life,
including computational overhead and robustness to a range of
evasion attacks.

To our knowledge, NetSentry is perhaps the first principled DL-
ased NIDS that tackles cyberthreats by focusing on the early stages
hat are essential to the success of large-scale and high-impact attacks
uch as botnet and ransomware.

. Threat model & Anatomy of attacks

We start from the key observation that in practice traffic flows shall
ot be considered in isolation, either as benign or malicious. There
xist important temporal correlations among different cyber attacks,
specially those with high-impact, which rarely occur independently.
or instance, assume that an adversary has zero knowledge of a po-
entially vulnerable target. Conducting a successful webshell injection
ttack has at least two pre-requisites: (i) port scanning against the
arget, so as to uncover that it runs a web serve; and (ii) web API
numerating, to verify if file upload is allowed. That is, the attacker
ust follow a certain sequence of actions (each an attack itself), which
ould create distinct network traces at various stages. We remark that
ssential correlations among different kinds of network attacks have
ot been explored before, but are potentially useful to design a reliable
IDS.

Hence, we decompose network attacks from the perspective of an
ctive adversary, and summarize them into different attack chains.
hese typically start with gathering information about a target and con-
lude when a specific technical goal was achieved. We consider three
ey attack chains, namely botnet, web intrusion, and ransomware,
evealing that they are supported by a similar methodology. While
ur attack chain view may appear on the surface related to earlier
otnet infection modeling, where attack stages are fingerprinted [10],
ur modeling approach and subsequent NIDS design are fundamentally
ifferent. This is because the attack chains we consider aim to reveal
he common stages shared by different large-scale cyber attacks, so as to
mpede a specific range of cyber intrusions by interrupting any of these

arly stages. t

120
.1. Attack chain analysis

We particularly focus on two network attack goals, which bring
evere damage to target systems. The first is to obtain system privileges
emporarily or permanently, by exploiting various security flaws. The
econd is to overload the system by occupying all its resources. Instead
f looking at each attack type individually, we investigate what pro-
esses, i.e., attack chains, an adversary must follow to achieve any of
hese goals, when having zero knowledge about a target. We consider
hree unique attack chains that are specific to botnet, web intrusion,
nd respectively ransomware, as shown in Fig. 1.1

Botnet/Mirai. Botnets are collections of Internet-accessible devices
ijacked by an attacker, and are usually employed to carry out large-
cale, high-impact DDoS attacks. Mirai is one of the most notorious in-
tances in recent years, with ∼600,000 devices infected at its peak [12].
ubsequent Mirai variants expand the attack surface to SSH, HTTPS,
TP, etc., but inherit the methodology of the canonical version.

Mirai follows a chain-like methodology that entails information gath-
ring → vulnerability scanning → privilege escalation → DDoS. Specifi-
ally, (1) TCP SYN packets are sent towards the entire IPv4 address
pace, on ports 23 and 2323 (Telnet); (2) after identifying potential
ictims, Mirai attempts to bruteforce the victims’ credentials using a
ictionary — this process is deemed as vulnerability scanning; (3) upon
uccessful login, a victim’s IP and credentials are forwarded to a report
erver that infects the victim with malicious code; (4) newly infected
evices become members of the botnet, and either participate in victim
iscovery or DDoS attacks [12].
Web intrusion. Web applications integrate a technology stack that

ncludes storage, web engines, Operating Systems (OSs), and com-
unications. Hence, various vulnerabilities are often exploited. Web

ntrusion can be jointly modeled with the Intrusion Kill Chain [13] and
he OWASP Web Penetration Guideline [14], where the former outlines

general intrusion process, while the latter provides specific attack
ectors.

The attack process entails information gathering → vulnerability scan-
ing → attacking privileged targets → exploitation; or information gathering

vulnerability scanning → privilege escalation. Web intrusion resembles
otnet and ransomware in terms of vulnerability discovering approach,
ut differs at the later stage, since exploitation is always target-specific,
.g. a XSS attack targets web app users, while SQL injection targets
eb APIs. Our focus is on the early stage when the attacker tries to

reach a trusted boundary, since later steps occur at system level and
re invisible to a NIDS.
Ransomware/WannaCry. Ransomware is a relatively new type of

hreat that blocks user access to their private data until a ransom
s paid to the attacker. For instance, by exploiting EternalBlue [15],

annaCry gains system access via the Server Message Block (SMB)
rotocol on Windows systems, encrypts user data, and spreads itself
o other hosts [16]. The attack chain of WannaCry follows a loop
onsisting of: information gathering → vulnerability scanning → privilege
scalation & exploitation → information gathering.

We focus on the procedure ransomware uses to discover and control
ew victims (instead of the file encryption applied), as the attack is
onducted via the network. WannaCry employs repeated TCP scanning
n port 445 (serving the SMB protocol) [16]. Targets are further
ingerprinted and remote access is achieved by injecting code via a
rafted packet, which would be mishandled by SMBv1. WannaCry then
ncrypts the data on the victim machine and discovers other vulnerable
argets.

1 We note that certain sophisticated attacks may have longer attack chains
hat expand to application level [11]. However, by detecting their early stages,
heir later exploitation actions can be prevented.

H. Liu and P. Patras Computer Communications 191 (2022) 119–132

3

h
m
o
N
c

3

v
a
a
(
l
s
p
w
a
z
a
w
s
e
T
d
t

t
n
t
d
f

Fig. 1. Attack chains employed by large-scale high-impact threats, e.g., botnets, web intrusion, and ransomware. Observe that similar steps are repeated by all, which NetSentry
exploits for detection.
Fig. 2. NetSentry architecture. Feature Augmentor only applied during training. ⊕ is fusion operation detailed in Eq. (11).
t
l
a
t
l
o
c
a
A
f
a
T
s

3

f
m
t
t
d
o
t
h
t
p
F

. NetSentry Design

In what follows we present NetSentry, an original NIDS design that
arnesses the unique feature extraction capabilities of recurrent neural
odels, to detect large-scale, high-impact attacks. NetSentry builds on

ur observation of correlations between malicious traffics, and handles
ID as a time-sensitive task, leveraging an ensembling structure to
apture richer contexts and detect intrusions with high efficacy.

.1. Attack detection strategy

Our attack chains analysis revealed that information gathering,
ulnerability scanning and DoS are applied across various types of
ttacks and share the same semantic. Latent network attacks, such
s malware downloading, code injection, Cross-Site Request Forgery
CSRF), and other zero-day attacks, which can obtain system privi-
eges and proceed to exploitation, always follow massive vulnerability
canning, since this is the most efficient way to discover weak entry
oints. A common argument is that zero-day attacks are heterogeneous,
hich poses difficulties to any detection logic. However, we argue that
s long as automated activities can be recognized in time, the subsequent
ero-day attacks can be blocked, in order to minimize the chances that
ttackers may uncover weaknesses and compromise a system. As such,
e keep the scope of our detection targets narrow, yet well-directed, as

uggested in [8]. With this in mind, we design NetSentry, a NIDS that
ffectively tackles cyber intrusion by detecting risks at an early stage.
his also applies to tactics that deviate from the standard attack chains
escribed, as long as they incorporate any common stages to achieve
he same end goal.

We maintain that NID, especially of automated attacks, should be
reated as a time-sensitive task. Here we consider ‘time-sensitive’ those
etwork intrusions exhibiting temporal correlations among consecutive
raffic flows, which could potentially exert substantial impact on the
ecision-making process. This is because a single traffic flow, whose
eatures are extracted as a datum, may not fully reflect the intention of
121
he communications. A straightforward example is a TCP flow encapsu-
ating a complete HTTP request. Assume the flow is terminated quickly
fter the server responds. Without looking at previous and subsequent
raffic, it is impossible to assert whether the flow was initiated by a
egitimate user or by DoS tools. Conversely, if we observe a series
f statistically similar communications between a pair of hosts, the
onfidence of classifying them as malicious becomes higher. Network
ttacks generated with the same tool usually serve the same purpose.
lthough they would encapsulate different payloads in consecutive

lows for obfuscation or fuzzing purposes, this difference is invisible to
NIDS that only has access to protocol headers and timing information.
hus, we leverage sequential neural models in NetSentry to learn such
imilarity of successive flows generated with automated tools.

.2. System architecture

NetSentry is a NIDS that examines the statistical features of network
lows and detects illicit traffic via an ensemble of sequential neural
odels. A traffic flow is built by grouping packets according to a five-

uple (Src IP, Dst IP, Src Port, Dst Port, Protocol). Recall that automated
ools tend to initiate multiple almost identical flows towards targets
uring a short period of time. This means that the statistical features
f malicious flows share a large degree of similarity. Thus, monitoring
he similarities and discrepancies of consecutive flows between pairs of
osts plays an essential role in recognizing anomalies. To learn relevant
emporal correlations of the traffic flows and to differentiate malicious
atterns, NetSentry incorporates 4 key building blocks, as shown in
ig. 2, namely:

• Flow Aggregator & Feature Extractor: groups packets into flows
and extracts associated statistical features;

• Sequence Generator: groups flows originating from the same
pair of hosts into fixed-length sequences, to be fed as inputs to
anomaly detection logic;

H. Liu and P. Patras Computer Communications 191 (2022) 119–132

N
o

3

e
g
i
c

t
t
e
C
t
t
b

p
l
w
t
e
i
s
t
o
c
(
a
r
m
W
i
a

t
t
l
f
o

Table 1
Features used in NetSentry.

Feature type Direction Name

Timing-based
Forward Flow Inter-arrival Time (IAT)a, packets/s
Backward Flow IATa, packets/s
Bi-direction Duration, Flow IATa, packets/s, bytes/s, active timea, idle timea

Protocol-based
Forward # packets, packet lengtha, PSH counts, URG counts, header length, initial TCP window size, avg segment size, subflowb

Backward # packets, packet lengtha, PSH counts, URG counts, header length, initial TCP window size, avg segment size, subflowb,
Bi-direction Packet lengtha, flag countsc, down/up ratio, protocol

ID-based None Flow ID, src IP, dst IP, src port, dst port, timestamp

aMeans (min, max, avg, std) are computed for a given property.
bIndicates where (avg packets, avg bytes) are computed.
cIndicates (FIN, SYN, RST, PSH, ACK, URG, CWE, ECE) are counted in flows.
• Feature Augmentor: increases the variability of a fraction of mali-
cious traffic features that are non-essential in anomaly detection,
but if left unchanged may increase the risk of model becoming
trapped in local optima;

• Anomaly Detector (Bi-ALSTM): an ensemble of two asymmetric
LSTM-based neural networks operated bidirectionally, taking flow
sequences as input to detect malicious traffic.

ext, we explain the inner workings of each component, then detail
ur bidirectional sequential neural model in Section 4.

.2.1. Feature extraction
NetSentry employs a two-step process to extract numerical or cat-

gorical information (features) of the traffic observed, i.e., packet
rouping and statistics computation. The former involves aggregating
nto flows packets generated between same pairs of applications, which
an be achieved by monitoring origin, destination, and protocol fields.

Since NetSentry operates at the network layer and is not guaranteed
o have access to packet payloads, we confine consideration to features
hat encompass timing statistics and protocol information. We find that
mploying popular open-sourced tools for feature extraction, such as
ICFlowMeter [17] (which should be able to extract 80+ statistical fea-
ures), is problematic. Indeed, CICFlowerMeter uses a faulty mechanism
o identify the end of TCP flows, which results in benign traffic often
eing mislabeled as malicious, and vice versa.

With the CICFlowMeter feature extractor, if a new incoming TCP
acket has a FIN flag set, the packet is immediately deemed to be the
ast packet in that flow. Obviously, this does not strictly follow the four-
ay handshake of TCP connection teardown. We show in Fig. 3 that

he premature assessment of termination leads to mislabeling, which is
specially relevant to automated attacks such as DoS. Assume that A
s performing simple HTTP DoS attacks targeting B, quickly reusing a
ame port 8888. Also assume each time it is B who decides to terminate
he TCP connections. Then, applying the mechanism described above
n two consecutive flows from (A, 8888) to (B, 80) would generate 4
omplete flows and an incomplete one, In this case, any flows from
A, 8888) to (B, 80) should be labeled as DoS. However, Flow #2
nd #4 only consist of two packets (ACK and FIN) which cannot
eflect any malicious purpose, while Flow #3 that should be labeled as
alicious, is marked benign because of its wrongly perceived direction.
e confirm that this type of mislabeling occurs for DoS-Hulk attacks

n the publicly available CSE-CIC-IDS-2018 dataset [18] (which we use
fter correct relabeling), but further instances may exist.

We fix this logic error (along with other programming bugs encoun-
ered) in CICFlowMeter, by following a complete four-way handshake
o terminate TCP flows. The timeout mechanism is preserved for state-
ess protocols. We also note that the original tool further extracts partial
eatures that are not well-defined. Hence we revise the code and only
utput 69 features per flow, as summarized in Table 1.2

2 We will release our feature extractor’s source code upon publication.
122
Fig. 3. Incorrect flow labeling due to wrong TCP termination rules. Blue curly braces
indicate the flow is labeled correctly; red curly braces indicate mislabeling. (For
interpretation of the references to color in this figure legend, the reader is referred
to the web version of this article.)

3.2.2. Sequence generation
Network anomaly is often nuanced, as a single network flow may

be benign on its own, but observing multiple similar instances active at
the same time may strongly suggest an automated attack in progress.
Therefore, it is necessary to observe consecutive flows between hosts
(applications) to further confirm malicious activity.

As such, a sequence in NetSentry is defined as successive flows
using the same protocol between a pair of hosts, that is aggregated by
(Src IP, Dst IP, Protocol). This is because with automated attacks, many-
to-one (DoS, brute forcing) and many-to-many (port scanning) port
attacks between a pair of hosts are common. Therefore, we regard a
sequence through grouping not by the tuple used for flow aggregation,
but by the origin and destination addresses, along with protocol type.

We adopt a flexible approach to generating sequences, which is a
combination of sliding window and timeout thresholding techniques,
as described by Algorithm 1. NetSentry allows two user-defined pa-
rameters for this purpose, namely window size 𝛼 and timeout value

H. Liu and P. Patras Computer Communications 191 (2022) 119–132

T
I
n
t
r
a
o
p
t
m
i
c

3

e
c
p
e
I
D
f
f
v
l
s

r
S
T
o
o
d

ℎ

a
c
f
s

p
s
a
s
s
s
m
i

f
H
(
i
f
(
t
t
s
a
p

3

o
o
t
i
n
n
p
a

𝜃

d

ℎ

Algorithm 1 NetSentry’s sequence generation algorithm incorporating
sliding windows and timeout thresholding.
1: Inputs:

Tiemout value 𝜏, and window size 𝛼

2: Initialisation:
conn_table: A connection table storing the incoming flows
from the feature extractor.
seq_list : A FIFO list buffering the inputs for the feature
augmentor or the anomaly detector.

3: while True do
4: 𝑠𝑡𝑎𝑟𝑡_𝑡𝑖𝑚𝑒 ← 𝑛𝑜𝑤()
5: for 𝑓𝑙𝑜𝑤 from the feature extractor do
6: 𝑐𝑜𝑛𝑛_𝑡𝑎𝑏𝑙𝑒[𝑓𝑙𝑜𝑤.𝑖𝑑].𝑎𝑑𝑑(𝑓𝑙𝑜𝑤)
7: if 𝑙𝑒𝑛(𝑐𝑜𝑛𝑛_𝑡𝑎𝑏𝑙𝑒[𝑓𝑙𝑜𝑤.𝑖𝑑]) > 𝛼 then
8: 𝑠𝑒𝑞_𝑙𝑖𝑠𝑡.𝑎𝑑𝑑(𝑐𝑜𝑛𝑛_𝑡𝑎𝑏𝑙𝑒.𝑟𝑒𝑚𝑜𝑣𝑒(𝑓𝑙𝑜𝑤.𝑖𝑑))
9: end if

10: if 𝑛𝑜𝑤() − 𝑠𝑡𝑎𝑟𝑡_𝑡𝑖𝑚𝑒 > 𝜏 then
11: 𝑠𝑒𝑞_𝑙𝑖𝑠𝑡.𝑎𝑑𝑑𝐴𝑙𝑙(𝑐𝑜𝑛𝑛_𝑡𝑎𝑏𝑙𝑒.𝑟𝑒𝑚𝑜𝑣𝑒𝐴𝑙𝑙())
12: 𝑠𝑡𝑎𝑟𝑡_𝑡𝑖𝑚𝑒 ← 𝑛𝑜𝑤()
13: end if
14: end for
15: end while

𝜏, and maintains a connection table with two columns: ID and seq_list.
he ID of each flow is a 3-tuple (Src IP, Dst IP, Protocol) and for each
D, a FIFO seq_list is maintained, storing the flows with the same ID. A
ewly generated flow is added to the seq_list determined by its ID. Once
he length of any seq_list is larger than 𝛼, the elements in the list are
egarded as a sequence to be passed to the neural model. Meanwhile,
fter every 𝜏 seconds, the entire connection table is emptied regardless
f the length of the seq_lists. Any list whose length is less than 𝛼 is
added to 𝛼 for the purpose of alignment. This design is customizable:
he larger 𝛼 is, the more comprehensive the context that the ensemble
odel obtains, but the higher the memory requirements; the smaller 𝜏

s, the more timely classification can be achieved, at the cost of more
ompute resources.

.2.3. Feature augmentation
Since data used for ML training are largely collected in controlled

nvironments, synthetically generated attacks may not offer an ac-
urate view of network threats occurring in real-world [8], which
revents the model from learning a reliable decision boundary. For
xample, a victim HTTP server was set up to produce the CSE-CIC-
DS2018 dataset [18]; during HTTP DoS generation, during HTTP
oS generation, all flows encapsulated the same backward payloads

rom victim to attacker, resulting in little variability in payload-related
eatures (see Fig. 4, left). In reality, it is hard to predict how the
ictim would respond, and we show in Section 5 that such artificially
ow variability leads to poor generalization abilities for a range of
upervised models.

We mitigate this problem by augmenting a collection of payload-
elated features to emulate a more realistic network environment.
pecifically, we set up an HTTP victim server and an attacking client.
he client only makes single requests with the Keep-Alive header
ver one TCP connection, to emulate HTTP DoS attacks. The size
f each request and response is sampled from two discrete uniform
istributions:

ℎ𝑡𝑡𝑝 𝑟𝑒𝑞𝑢𝑒𝑠𝑡 𝑠𝑖𝑧𝑒 ∼  (100, 400),

𝑡𝑡𝑝 𝑟𝑒𝑠𝑝𝑜𝑛𝑠𝑒 𝑠𝑖𝑧𝑒 ∼  (100, 15000).

In total, we generate 2000 flows. A graphical illustration of the
ugmentation process is depicted in Fig. 5. For each sequence that
ontains single-request HTTP DoS attacks (excluding Slowloris), (1) a
low is randomly sampled from the AugBase set and expanded to

equence length 𝛼; (2) random noise 𝜎 ∼  (0, 5) is added to each

123
ayload-related cells to mimic minor differences among flows in a
equence; (3) finally, payload-related features in the original sequence
re replaced by the new features generated at Step 2. By applying
uch augmentation, the new payload features of different flows in the
ame sequence would not differ much, but the features among different
equences would look considerably different. The distributions and the
eans of a subset of payload features in the augmented set are shown

n Fig. 4 (right). We use augmented data only for training.
It is also worth noting that the augmented data need not originate

rom any real traffic, since we only change parts of the features.
owever, what the model can learn from the augmented set is that

i) payload features possess high variability within some attacks (DoS
n our case) whose logic does not rely on specific payloads, thus payload
eatures should not be utilized for decision; and (ii) the rest of features
payload-irrelevant) are more valuable in distinguishing augmented at-
acks. We choose not to remove payload-related features altogether because
hey may be important for the model to differentiate other types of attacks,
uch as Slowloris, which only sends a small amount of payload during
long span. In Section 5, we demonstrate that augmentation boosts the
erformance of several supervised models.

.2.4. Ensemble network
The sequential ensemble neural network is the critical component

f NetSentry and is responsible for detecting malicious traffic based
n the inputs provided by the sequence generator or feature augmen-
or. As explained in Section 3.1, detecting automated cyber attacks
s a time-sensitive task and hinges on temporal correlations between
etwork flows. Let 𝑋 ∶= {𝒙1,𝒙2,… ,𝒙𝛼} and 𝑌 ∶= {𝑦1, 𝑦2,… , 𝑦𝛼} de-
ote a sequence of inputs and respectively their corresponding correct
rediction. Then time-sensitive intrusion detection can be formalized
s

̃= arg max
𝜃

𝑃𝜃
(

𝑦1, 𝑦2,… , 𝑦𝑎|𝒙1,𝒙2,… ,𝒙𝑎
)

,

where the sequential model is parameterized by 𝜃.
NetSentry leverages two LSTM-based models to approximate the

probability function above. In the next section, we first introduce the
LSTM models we employ, and show both conceptually and empirically
that an ensemble of such sequential models, preferably with different
architectures, is key to improving the overall NID performance.

4. A sequential ensemble for NID

We overview the different blocks that lay foundations for our Bi-
ALSTMs, then explain the ensembling and why our approach is essential
for high-performance classification.

4.1. Long Short-Term Memory (LSTM)

As a variant of Recurrent Neural Networks (RNN), LSTM [19] incor-
porates gating functions to simulate the update of memory units along
time and has shown excellent ability to model long-term dependencies
in sequential data [20,21]. An LSTM maintains two states: a cell state
𝑐𝑡 and a hidden state ℎ𝑡, which is computed based on inputs up to
timestamp 𝑡, i.e., 𝐱1,… , 𝐱𝑡 (𝐱𝑖 ∈ R𝑑). To maintain long-term depen-
encies, the LSTM cell has input (𝑖𝑡), forget (𝑓𝑡), and output (𝑜𝑡) gates

controlling the information flowing through at different timestamps.
Gates are modeled by single-layer neural networks with parameters
𝑊𝑥𝑖,𝑊ℎ𝑖,𝑊𝑥𝑓 ,𝑊ℎ𝑓 ,𝑊𝑥𝑜,𝑊ℎ𝑜 ∈ Rℎ×𝑑 and associated biases, i.e.,

𝑖𝑡 = 𝜎
(

𝑊𝑥𝑖𝑥𝑡 +𝑊ℎ𝑖ℎ𝑡−1 + 𝑏𝑖
)

, (1)

𝑓𝑡 = 𝜎
(

𝑊𝑥𝑓𝑥𝑡 +𝑊ℎ𝑓ℎ𝑡−1 + 𝑏𝑓
)

, (2)

𝑐𝑡 = 𝑓𝑡◦𝑐𝑡−1 + 𝑖𝑡◦ tanh
(

𝑊𝑥𝑐𝑥𝑡 +𝑊ℎ𝑐 , ℎ𝑡−1 + 𝑏𝑐
)

, (3)

𝑜𝑡 = 𝜎
(

𝑊𝑥𝑜𝑥𝑡 +𝑊ℎ𝑜ℎ𝑡−1 + 𝑏𝑜
)

, (4)

𝑡 = 𝑜𝑡◦ tanh
(

𝑐𝑡
)

, (5)

H. Liu and P. Patras Computer Communications 191 (2022) 119–132
Fig. 4. Violin plots of 4 features before and after data augmentation. All values are normalized between 0 and 1.
Fig. 5. Illustration of the data augmentation process. Yellow cells denote payload features in original training data; green cells represents payload features from AugBase. 𝛴 is
a noise matrix with each element sampled from 𝜎 ∼  (0, 5). (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this
article.)
w
p
i

4

s
b
o
(

𝑖

where 𝜎 denotes the sigmoid function and ◦ represents element-wise
product. When a new input 𝑥𝑡 is given to the LSTM, the cell state 𝑐𝑡 is
updated with information from 𝑥𝑡 and the previous cell state 𝑐𝑡−1. The
proportion of 𝑥𝑡 and 𝑐𝑡−1 in the new cell state is determined by 𝑖𝑡 and
𝑓𝑡, as in Eq. (3). ℎ𝑡 can be perceived as a non-linear transformations on
𝑐𝑡, and are always used for downstream tasks, such as classification. In
NetSentry, an Multilayer Perceptron (MLP) 𝑔𝜙(⋅) is used to approximate
the probability of 𝑦𝑡 given ℎ𝑡.

When it comes to intrusion detection against automated network
attacks, the order of attack flows in a sequence is less important. Hence,
at any timestamp 𝑡, both previous inputs and subsequent inputs may be
equally highly correlated with 𝑥𝑡. The traditional LSTM can only model
temporal information unidirectionally as time evolves. In other words, the
hidden representation ℎ𝑡 only comprises the context before or at times-
tamp 𝑡. To generate more comprehensive hidden representations for
anomaly detection, a Bi-LSTM which runs two LSTMs separately (one
forward, one backward), and whose hidden states are concatenated
 𝑓

124
before given to 𝑔𝜙(⋅), can be used. The objective of Bi-LSTM is thus:

max
𝑊 ,𝑏,𝝓

𝑝(𝑦1, 𝑦2,… , 𝑦𝑎|𝒙1,𝒙2,… ,𝒙𝑎,𝑊 , 𝑏,𝝓)

= max
𝑊 ,𝑏,𝝓

𝛼
∏

𝑡=1
𝑝(𝑦𝑡|𝒙1,… ,𝒙𝛼 ,𝑊 , 𝑏,𝝓) = max

𝑊 ,𝑏,𝝓

𝛼
∏

𝑡=1
𝑔𝜙(ℎ𝑡),

here 𝑊 and 𝑏 are the weights and biases in LSTM cells and 𝝓 the
arameters of the MLP. Bi-LSTM is one of the benchmarks we consider
n evaluating our work.

.2. ConvLSTM

ConvLSTM [22] was first proposed to model spatiotemporal data,
uch as radar echo maps, whose spatial correlations cannot be extracted
y fully connected layers in LSTM. ConvLSTM tailors the convolution
peration into LSTM by replacing matrix multiplication operations in
1)–(5) with convolution, as follows:

𝑡 = 𝜎
(

𝑊𝑥𝑖 ∗ 𝑡 +𝑊ℎ𝑖 ∗ 𝑡−1 + 𝑏𝑖
)

, (6)

= 𝜎
(

𝑊 ∗  +𝑊 ∗  + 𝑏
)

, (7)
𝑡 𝑥𝑓 𝑡 ℎ𝑓 𝑡−1 𝑓

H. Liu and P. Patras Computer Communications 191 (2022) 119–132

a
T
e
b

m
w
o
i
i
w
l

c
L
t
p
W
f
s
o

4

w
c
t
c
f
a
o
r

a

e
𝑡
y
o
e
𝑂
i
t
r

f
t
f

4

a
a
t
w
t
W
r
i
r
b
b
w

h
t
u
c
n
d

𝑡 = 𝑓𝑡◦𝑡−1 + 𝑖𝑡◦ tanh
(

𝑊𝑥𝑐 ∗ 𝑡 +𝑊ℎ𝑐 ∗ 𝑡−1 + 𝑏𝑐
)

(8)

𝑜𝑡 = 𝜎
(

𝑊𝑥𝑜 ∗ 𝑡 +𝑊ℎ𝑜 ∗ 𝑡−1 + 𝑏𝑜
)

, (9)

𝑡 = 𝑜𝑡◦ tanh
(

𝑡
)

, (10)

in which ∗ denotes the convolution operator, 𝑡 ∈ R𝑑×1 is the input,
nd 𝑊𝑥𝑖,𝑊ℎ𝑖,𝑊𝑥𝑓 ,𝑊ℎ𝑓 ,𝑊𝑥𝑜,𝑊ℎ𝑜 ∈ R𝑘×𝑐 are the convolution kernels.
he above applies to a single ConvLSTM unit, which can be further
xtend to multiple layers as traditional LSTM does. A pooling layer can
e added between each two ConvLSTM layers to reduce computation.

An immediate concern is whether applying convolution-embedded
odels on network traffic data without obvious spatial information
ould be effective. In fact, Convolutional Neural Networks (CNN) not
nly gained success in computer vision [23,24], but also in areas
ncluding web traffic fingerprinting [25] and mobile traffic forecast-
ng [26]. As the sequential data we deal with are one-dimensional,
e implement a 1-D ConvLSTM, which takes inputs with channel and

ength dimensions, where channel by default equals 1.
Differences from CNN-LSTM. The CNN-LSTM, or Long-term Re-

urrent Convolutional Networks (LRCN), is a combination of CNN and
STM, first proposed for visual recognition. It differs from ConvLSTM in
hat in the former a separate CNN handles spatial information before
roviding input to LSTM. In contrast, the latter has a compact form.
hile previous studies apply CNN-LSTM to NID [27], our work is the

irst to leverage ConvLSTM and study the differences between the two
tructures. Our results in Section 5 reveal that ConvLSTM consistently
utperforms CNN-LSTM.

.3. Bidirectional asymmetric LSTM

Bi-LSTM and Bi-ConvLSTM can be perceived as ensemble models
ith two separate LSTM units. The hidden states from two units are

oncatenated so that future information is accessible at the current
imestamp 𝑡, which can potentially benefit the downstream classifi-
ation task. Since our targets are sequences with similar malicious
lows, it is the hidden states at the two ends of the structures that can
cquire most information. The hidden representations in the middle
f a sequence from two (Conv-)LSTM units yield certain amount of
edundant information when the same architecture is used.

Algorithm 2 The training algorithm for Bi-ALSTM
1: Inputs:

 ∶= {𝑆1, ..., 𝑆𝑛};𝑆𝑖 ∶= {(𝐱𝑖1, 𝑦𝑖1), ..., (𝐱𝑖𝛼 , 𝑦𝑖𝛼)},
𝜆1 ∶= 𝐿2 𝑤𝑒𝑖𝑔ℎ𝑡 𝑑𝑒𝑐𝑎𝑦, 𝜆2 ∶= 𝑙𝑒𝑎𝑟𝑛𝑖𝑛𝑔 𝑟𝑎𝑡𝑒.

2: Initialisation:
Denote ℎ𝑊𝑓𝑐

(⋅) and ℎ𝑊𝑐𝑜𝑛𝑣
(⋅) as the LSTM and ConvLSTM

unit parameterized by 𝑊𝑓𝑐 and 𝑊𝑐𝑜𝑛𝑣, and predictor 𝑔𝜙(⋅)
parameterized by 𝜙. 𝑊𝑓𝑐 , 𝑊𝑐𝑜𝑛𝑣, 𝜙 set via Xavier
initialization [28].

3: while model has not converged do
4: for 𝑆𝑖 sampled from  do
5: ⃖⃖⃖⃗𝑋𝑖 ← (𝐱𝑖1, ..., 𝐱𝑖𝛼), ⃖⃖⃗𝐲𝑖 ← (𝑦𝑖1, ..., 𝑦𝑖𝛼)
6: ⃖⃖ ⃖⃖𝑋𝑖 ← 𝑟𝑒𝑣𝑒𝑟𝑠𝑒(⃖⃖⃖⃗𝑋𝑖)
7: ⃖⃖⃖⃗𝐻 𝑖,𝑓𝑐 ← ℎ𝑊𝑓𝑐

(⃖⃖⃗𝑋𝑖)
8: ⃖⃖⃖⃗𝐻 𝑖,𝑐𝑜𝑛𝑣 ← 𝑟𝑒𝑣𝑒𝑟𝑠𝑒(ℎ𝑊𝑐𝑜𝑛𝑣

(⃖⃖�⃖�𝑖))
9: ⃖⃖⃖⃗𝐻 𝑖 ← ⃖⃖⃖⃗𝐻 𝑖,𝑓𝑐 ⊕ ⃖⃖⃖⃗𝐻 𝑖,𝑐𝑜𝑛𝑣 ⊳ Eq. (11)

10:  ← 𝑁𝐿𝐿(𝑠𝑜𝑓𝑡𝑚𝑎𝑥(𝑔𝜙(⃖⃖⃖⃗𝐻 𝑖), ⃖⃖⃗𝐲𝑖)+
𝜆1(||𝑊𝑐𝑜𝑛𝑣||

2
2 + ||𝑊𝑓𝑐 ||

2
2 + ||𝜙||22)

11: 𝜙,𝑊𝑐𝑜𝑛𝑣,𝑊𝑓𝑐 ← 𝐴𝑑𝑎𝑚(, 𝜙,𝑊𝑐𝑜𝑛𝑣,𝑊𝑓𝑐 ; 𝜆2)
12: end for
13: end while
14: return 𝑊𝑓𝑐 ,𝑊𝑐𝑜𝑛𝑣, 𝜙
125
Given the fact that different architectures are likely to exploit
different facets of input features for classification [29], we propose
Bidirectional Asymmetric LSTM (Bi-ALSTM), which consists of two
different, asymmetric LSTM units, one for forward and the other for
backward processing, to generate intermediate representations that
incorporate more comprehensive temporal contexts. The hidden states
from two different units are first linearly combined, then fed through
an activation function. Precisely, denote 𝐡𝑡𝑓𝑐 ∈ R𝑁1 as the hidden state
generated by LSTM at timestamp 𝑡, and 𝐡𝑡𝑐𝑜𝑛𝑣 ∈ R𝑁2 generated by
ConvLSTM (operated backwards). The final hidden states are formed
through the following fusion operation:

𝐡𝑡 = tanh

(

𝐔𝑐𝑜𝑛𝑣𝐡𝑡𝑐𝑜𝑛𝑣
‖𝐔𝑐𝑜𝑛𝑣𝐡𝑡𝑐𝑜𝑛𝑣‖2

+
𝐔𝑓𝑐𝐡𝑡𝑓𝑐

‖𝐔𝑓𝑐𝐡𝑡𝑓𝑐‖2

)

, (11)

where 𝐔𝑐𝑜𝑛𝑣 ∈ R𝑁×𝑁2 and 𝐔𝑓𝑐 ∈ R𝑁×𝑁1 are learnable parameters. 𝐡𝑡𝑓𝑐
nd 𝐡𝑡𝑐𝑜𝑛𝑣 are projected to the same subspace and 𝐿2-normalized, so

that in the learning process, any single unit would not easily dominate
the final results. This design allows two asymmetric LSTMs to produce
hidden states with different dimensions, meaning that two different
LSTM structures can be tuned separately and flexibly before building
the Bi-ALSTM. Finally, a single FC layer 𝑔𝜙(⋅) ∶ R𝑁 → R𝐶 with
softmax function is used to approximate the probability of the samples
belonging to each class.

Computational complexity: We first derive the time complexity
of a single-step forward pass of LSTM. Given that the time complexity
of 𝑊𝑥𝑥𝑡 is 𝑂(ℎ𝑑), it is easy to know that the time complexity inside
ach nonlinearity 𝜎 is 𝑂(ℎ𝑑 + ℎ2) = 𝑂(ℎ(𝑑 + ℎ)). Assuming 𝜎 and
𝑎𝑛ℎ have a constant time complexity, applying 𝜎 or 𝑡𝑎𝑛ℎ element-wise
ields the complexity of ℎ, which can be omitted due to the existence
f 𝑂(ℎ2). Therefore, the time complexity of a single-step forward pass
quals 𝑂(ℎ(𝑑 + ℎ)). Similarly, given that 𝑊ℎ ∗ 𝑡 has time complexity
(𝑑𝑘𝑐), the time complexity of a single-step forward pass of ConvLSTM

s 𝑂(𝑑𝑘𝑐+𝑑𝑘𝑐2) = 𝑂(𝑑𝑘𝑐2). Assume the input sequence to Bi-ALSTM has
he length 𝑛. The computational complexity of a single-layer Bi-ALSTM
esults in 𝑂(𝑛(ℎ(𝑑 + ℎ) + 𝑑𝑘𝑐2)).

We use negative log likelihood with 𝐿2 regularization as the loss
unction. Bi-ALSTM is stochastically optimized via back propagation
hrough time by the Adam algorithm. The complete training process
ollows Algorithm 2 (see [28]).

.4. Why an all-range multi-class classifier is unfeasible

Applying supervised methods for NID commonly involves training
multi-class classifier that seeks to detect as many types of malicious

ttacks as possible. However, we argue that this approach would lead
o an overfitted model because the ambiguity of the true attack labels is
idely overlooked. To understand this, consider a classifier is trained

o differentiate two types of network attacks: SQLmap fuzzing vs.
eb password Bruteforcing, both of which repetitively initiate HTTP

equests to a given API. Although the two types of attacks would
ncorporate different payloads (SQL scripts and user/password pairs
espectively), this discrepancy appears negligible on a statistical level,
ecause the contents of payloads would not be extracted. Given that
oth trigger database I/O operation, the extracted timing information
ould be hardly differentiable.

Thus if a trained model can distinguish between such attacks, it
as to be overfitted and learn a decision boundary that is unique to
he dataset, rather than truly understand the differences. Attack labels
sually indicate the purposes and techniques behind them, but when it
omes to network layer, the attack realizations, i.e., traffic flows, would
ot be clearly dissimilar. In this regards, using sequential models to
istinguish as many types of attacks as possible is unrealistic.

H. Liu and P. Patras Computer Communications 191 (2022) 119–132

D
t
o
w
e
n

5

G
f
L

4.5. Abstract labeling

Given that it is hard to correctly predict every type of automated
cyber attack with a network-based algorithm, reverting to a binary
detector seems sensible. However, since we augment DoS attacks, we
decide to use abstract labeling in order to evaluate the augmentation
technique and to avoid the aforementioned overfitting issue. Specifi-
cally, we assign a number of abstract, generic labels, including benign,

oS, portscanning and bruteforcing & fuzzing, as ground truth during
raining. On one hand, this approach can clearly illustrate the influence
f our feature augmentation technique. On the other hand, the model
ould not put effort in distinguishing the subtle differences between,
.g., DoS HOIC and DoS LOIC, which may not be separable by a
etwork-based algorithm.

. Experiments

We implement NetSentry in PyTorch and train the model on a
eForce Titan X GPU. To build the Bi-ALSTM, we use an LSTM unit

or the forward pass and a ConvLSTM unit for the backward pass. The
STM unit has the following structure: 𝑑𝑟𝑜𝑝𝑜𝑢𝑡(0.5) → 𝑙𝑠𝑡𝑚(65, 48) →

𝑙𝑠𝑡𝑚(48, 48), where the arguments in 𝑙𝑠𝑡𝑚(⋅, ⋅) denote the input size and
the hidden size. The ConvLSTM unit encompasses 𝑐𝑜𝑛𝑣𝑙𝑠𝑡𝑚1𝐷(1, 3, 3) →
𝑐𝑜𝑛𝑣𝑙𝑠𝑡𝑚1𝐷(3, 6, 3) → 𝑚𝑎𝑥𝑝𝑜𝑜𝑙(), in which the arguments in 𝑐𝑜𝑛𝑣𝑙𝑠𝑡𝑚1𝐷
(⋅, ⋅, ⋅) represent the input channel size, output channel size, and ker-
nel size. The fused hidden states are passed through: 𝑑𝑟𝑜𝑝𝑜𝑢𝑡(0.3)
→ 𝑀𝐿𝑃 (32, 5). The 𝐿2 penalty and learning rate are set to 0.5 and
0.001 respectively.

For the Flow Aggregator/Sequence Generator, apart from our TCP
termination fix (see Section 3.2.1), we set flow timeout to 30 s and
subflow duration 5 s in CICFLowMeter. The Sequence Generator uses
timeout 𝜏 = 30 s and window size 𝛼 = 10.

5.1. Datasets

We experiment with two datasets published by the Canadian Insti-
tute for Cybersecurity (CIC), as described below.

CIC-IDS-2017 [30] contains most common cyber attacks, including
bruteforcing, heartbleed, botnet, (D)DoS, Infiltration, and Web attacks.
Traces were collected in a LAN, with benign traffic generated by pro-
filing normal online behaviors of 25 users on different OSs, including
Win Vista, Win 7, Win 8, Win 10, Mac OS, and Ubuntu 12. Attacks
are produced by 4 different machines with one running Kali Linux
and three Win 8.1. The traffic collection spans 5 working days, and
in total 51.1 GB of pcap files are open-sourced. The feature sets of
the corresponding pcap files were published, but as we reveal in
Section 3.2.1, these were extracted incorrectly. Hence, we only use the
raw capture files in our experiments.

CSE-CIC-IDS2018 [18] was generated in a much larger environment
where an organizational LAN with five subnets simulated give different
departments. 450 machines act as normal users and 50 as attackers.
The dataset contains a wider range of benign traffic, including HTTPS,
HTTP, SMTP, POP3, IMAP, SSH, and FTP, and contains a larger attack
collection (17 types). The dataset spans 10 days.

Self-collected traffic – since FTP-Bruteforce and DoS-SlowHTTPTest
attacks were erroneously collected in CSE-CIC-IDS2018, the generated
traffic merely contains SYN and RST packets. To mitigate this, we
collected FTP-bruteforcing traffic ourselves, generating 4050 flows. We
decide not to collect DoS-SlowHTTPTest traffic, since a similar type of
attack, i.e., DoS-Slowloris, exists in CSE-CIC-IDS2018. We remove the
mislabeled traffic and merge the self-collected traffic with the CSE-CIC-
IDS2018 dataset. In the rest of our paper, we use CSE-CIC-IDS2018
to refer to the merged dataset. We employ our revised version of
CICFlowMeter to generate network flows based on the pcap files. The
statistics of both datasets are shown in Table 2.
126
Table 2
Statistics of datasets used for experimentation. ID-based features in Table 1 not included
in the training; ‘protocol’ is hot-encoded. Thus, only 65 features used in total.

Features # Instances Anomaly ratio Automated attack ratio

IDS-2017 69 2,607,289 0.2 0.189
IDS-2018 69 8,786,169 0.1806 0.1802

5.2. Cross-evaluation

We adopt a rigorous evaluation methodology, aiming to show the
true generalization ability of our design, by cross-evaluation. Nor-
mally, a dataset is split into training and testing subsets, and the results
on the test set compared across different algorithms. However, network
environments are heterogeneous and data collected in one environment
may not accurately reflect the diversity seen in practice. To test if an
algorithm can truly distinguish the same type of malicious traffic in
a different network topology, we also evaluate it on a second, unseen
dataset. CSE-CIC-IDS2018 is split into training (70%) and test (30%)
sets. To maintain time consistency, training data is selected from events
that took place before the test data. CIC-IDS-2017 is purely used for
cross-evaluation, after the model was trained on the former.

5.3. Benchmarks

For comparison, we implement a range of benchmarks, includ-
ing basic ML/DL structures (MLP, CNN, autoencoder, RIPPER [31],
Decision Tree); state-of-the-art anomaly/intrusion detectors, i.e., One
Class Neural Nets (OC-NN) [32], Kitsune/KitNET [7] and Deep Autoen-
coding Gaussian Mixture Model (DAGMM) [33]; and three Bi-LSTM
variants [27].

OC-NN [32] and DAGMM [33] are offline semi-supervised algo-
rithms for general anomaly detection. OC-NN aims to learn a mapping
for the benign samples to a kernel space where the majority of them
can be enclosed by a hypersphere. During the testing phase, the dis-
tances from the samples to the center of the hypersphere represent the
anomaly score of the data. Different from OC-NN, DAGMM models the
benign data from a probabilistic perspective with a mixture of Gaussian
distributions. The negative probability of the data being sampled from
the Probabilistic Density Function (PDF) represents the anomaly score.

Kitsune [7] is an online semi-supervised NIDS. It uses an ensemble
of shallow autoencoders to learn the features of benign data in different
subspaces; a final autoencoder fits the correlations of the reconstruction
errors from the shallow autoencoders. The neural architecture is named
KitNET. During testing, the reconstruction errors are computed to
represent the degree of abnormality. For a fair comparison, KitNET is
trained in an offline manner with more than one epoch.

For semi-supervised algorithms (OC-NN, DAGMM, KitNET and Au-
toencoder), an anomaly ratio 𝛼 needs to be preset, indicating the
proportion of anomalous samples, and during the testing phase, the
data with the top 𝛼 × 100% of the anomaly scores are classified as
anomalous. The anomaly ratio is set to 0.189 and 0.1802 on CIC-IDS-
2017 and CSE-CIC-IDS2018 respectively, which is the same percentage
of automated attacks in the two datasets.

RIPPER [31] and Decision Tree are two basic machine learning
models, where the first one aims to generate a simple ruleset for
classifications while the second embeds rules in a tree by recursively
finding the best splits.

The structures of Bi-LSTM and Bi-ConvLSTM resemble the units in
Bi-ALSTM. For CNN-Bi-LSTM, an extra CNN block, with the structure:
𝐶𝑜𝑛𝑣1𝐷(1, 3, 3) → 𝑀𝑎𝑥𝑃𝑜𝑜𝑙𝑖𝑛𝑔 → 𝐶𝑜𝑛𝑣1𝐷(3, 6, 3) → 𝑀𝑎𝑥𝑃𝑜𝑜𝑙𝑖𝑛𝑔, is
implemented. The arguments in 𝐶𝑜𝑛𝑣1𝐷(⋅, ⋅, ⋅) represent input channels,
output channels, and kernel sizes.

Prior to testing, we retrain all benchmarks with all the features in
the CSE-CIC-IDS2018 dataset, which is richer than the datasets used for
training in the original papers.

H. Liu and P. Patras Computer Communications 191 (2022) 119–132

c
p
i
a
b

t
m
c
f
t
F
b

f
t
e

a
M
i
r
c
b

c

5

s
3
a
a

Table 3
Precision, recall, and F1 score for Bi-ALSTM and benchmarks. NB: only supervised
algorithms can be trained with augmented data and only HTTP (D)DoS attacks are
augmented; semi-supervised methods only require benign traffic for training.

Algorithm CSE-CIC-IDS2018 CIC-IDS-2017 (X-eval)

Precision Recall F1 Precision Recall F1

RIPPER 0.9983 0.0981 0.1786 0.0873 0.0106 0.0190
Decision Tree 0.9989 0.9990 0.9990 0.5385 0.3717 0.4398
MLP 0.9989 0.9962 0.9976 0.6736 0.4631 0.5435
CNN 0.9947 0.9951 0.9949 0.7705 0.6344 0.6958
Autoencoder 0.7783 0.7500 0.7639 0.4362 0.4197 0.4278
OC-NN 0.9722 0.5310 0.6868 0.7844 0.5136 0.6208
Kitsune 0.6310 0.6081 0.6193 0.4086 0.3932 0.4007
DAGMM 0.8666 0.8253 0.8454 0.4159 0.3116 0.3576
Bi-LSTM 0.9990 0.9979 0.9985 0.7258 0.4209 0.5317
CNN-Bi-LSTM 0.9996 0.9982 0.9989 0.8813 0.3750 0.5261
Bi-ConvLSTM 0.9984 0.9971 0.9977 0.8721 0.9693 0.9178
Bi-ALSTM 0.9994 0.9990 0.9992 0.9116 0.9446 0.9275

Algorithm + CSE-CIC-IDS2018 CIC-IDS-2017 (X-eval)

augmentation Precision Recall F1 Precision Recall F1

RIPPER 0.9980 0.0934 0.1709 0.4998 0.1837 0.3687
Decision Tree 0.9989 0.9993 0.9991 0.5897 0.8556 0.6914
MLP 0.9989 0.9963 0.9976 0.7540 0.8690 0.8071
CNN 0.9925 0.9847 0.9886 0.7453 0.8687 0.8021
Bi-LSTM 0.9991 0.9956 0.9973 0.8555 0.9777 0.9125
CNN-Bi-LSTM 0.9996 0.9966 0.9981 0.8479 0.9683 0.9041
Bi-ConvLSTM 0.9996 0.9975 0.9985 0.8728 0.9780 0.9222
Bi-ALSTM 0.9997 0.9976 0.9987 0.9190 0.9800 0.9485

5.4. Evaluation metrics

The average precision, recall and F1 score are commonly used
to evaluate the performance of anomaly detection algorithms. These
metrics can be measured based on the True Positives (TP), False Pos-
itives (FP), True Negatives (TN) and recall are computed as 𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛
= 𝑇𝑃∕(𝑇𝑃 +𝐹𝑃), 𝑟𝑒𝑐𝑎𝑙𝑙 = 𝑇𝑃∕(𝑇𝑃 +𝐹𝑁). The precision indicates how
likely the algorithm would give true alarms, and the recall measures
how sensitive the algorithm is towards anomalies. There exists a trade-
off between precision and recall, and to obtain an overall performance
measure, their harmonic average is computed, i.e., the F1 score: 𝐹1 =
2 × 𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 × 𝑟𝑒𝑐𝑎𝑙𝑙

𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑟𝑒𝑐𝑎𝑙𝑙 .

We do not measure accuracy i.e., the percentage of the correctly
lassified samples, which is unlikely to reveal the algorithms’ true NID
erformance: consider a dataset with 80% benign and 20% malicious
nstances; a model that classifies everything as benign has the same
ccuracy as a model that correctly recognizes all but 20% of the
enign traffic.

For the ML-based algorithms that output an anomaly score for each
est instance rather than just the predicted class, system administrators
ay choose a threshold higher than 0.5, which guarantees that the

lassifier has a lower False Positive Rate (FPR). We plot the ROC curve
or sequential models, to evaluate their performance when the anomaly
hreshold is varied in [0, 1]. The ROC curve is obtained by plotting the
alse Positive Rate (TPR) against FPR. The closer to 1 the AUC is, the
etter the classifier performs.

Given that our datasets consist of multiple types of cyber attacks, we
urther plot the Empirical Cumulative Distribution Function (ECDF) of
he anomaly score with respect to each type of traffic on the crossed
valuated dataset, to illustrate the confidence of each sequential model.

Beyond the metrics for classification performance, we also care
bout the computational overhead of our design, and therefore report
ACs, the number of parameters and the concurrent processing capac-

ty of each model on a edge GPU. MACs and the parameter numbers
eveal the complexity of different algorithms at a micro level, while the
oncurrent processing capacity on GPU can reflect the computational

ottlenecks. b

127
5.5. Performance without augmented data

We summarize our comparison in terms of threat detection perfor-
mance between our Bi-ConvLSTM/-ALSTM models and the benchmarks
considered, in Table 3. In the upper half, the different algorithms are
trained on non-augmented data. The performance of the benchmark
algorithms and those adopted by our NetSentry is similar on the CSE-
CIC-IDS2018 dataset, most of them attaining average metrics above
0.99. CNN-Bi-LSTM slightly outperforms other algorithms in terms of
precision, while Bi-ALSTM yields the highest recall and F1 score. An
interesting finding is that the semi-supervised algorithms for general
anomaly detection may not be suitable for network intrusion detection.
Autoencoder, OC-NN and DAGMM cannot compete with basic super-
vised ML algorithms. One of the core assumptions for semi-supervised
anomaly detection is that the algorithm can learn the characteris-
tics of benign data, by estimating the probability, reconstructing the
benign samples or finding an appropriate hyper-boundary enclosing
them. However, network traffic is highly heterogeneous, serving with
different protocols various applications, such as email, web browsing,
streaming, etc. It remains questionable whether the aforementioned
assumption holds on such a large range of ‘benign data’. Besides,
detecting malicious traffic, especially automated attacks (which is our
objective), appears to be a time-sensitive task. Therefore, observing a
single instance may be insufficient to make reliable decisions. Con-
sequently, existing anomaly detection algorithms tend to ignore this,
which leads to modest results.

The advantage of Bi-ConvLSTM and Bi-ALSTM can be clearly seen on
cross-evaluation results, where our models maintain consistently competitive
performance. Both attain F1 scores above 90%, while other supervised
algorithms, including Bi-LSTM and CNN-Bi-LSTM exhibit a significant
performance drop (F1 score around 50%). We notice that though both
CNN-LSTM and ConvLSTM are proposed to handle spatiotemporal data,
there is an obvious difference in performances, both in terms of F1 score
(Table 3) and ROC (Fig. 6) on intrusion detection. As shown in Fig. 7(a),
(b), Bi-LSTM and CNN-Bi-LSTM do not learn a reliable decision bound-
ary between benign traffic and DoS attacks without the augmented
data. Bi-ConvLSTM clearly outperforms them, yet still exhibits a high
probability of classifying DoS as port scanning attacks, as illustrated in
Fig. 7(c), whereas Bi-ALSTM is the most reliable (Fig. 7(d)).

5.6. Performance with augmented data

The data augmentation procedure we propose is highly effective
in helping the models generalize well. When the supervised models are
trained with the augmented dataset, a remarkable performance gain can be
observed in the cross-evaluation results (Table 3, bottom half). The F1
scores of the benchmarks increase by at least 16%, and Bi-LSTM and
CNN-Bi-LSTM even jump to 90%. The improvements of Bi-ConvLSTM
and Bi-ALSTM are less noticeable since outstanding results can be
achieved even without augmented data, but still, the former reaches
the highest recall and Bi-ALSTM is the most robust in terms of overall
performance.

Observing confusion matrices in the second column in Fig. 7, all
models reveal roughly the same pattern, as opposed to the correspond-
ing results on the first. This confirms that augmentation encourages
models to learn associating timing info rather than payload features in the
lassification task.

.7. Impact of feature arrangement

We investigate the influence of the feature arrangement and kernel
ize on the performance of ConvLSTM. For this, we experiment with

different kernel sizes, namely (3, 5, 7), and two sets of feature
rrangements. Specifically, the 1D feature vectors are logically ordered
nd randomly shuffled. Note that most of the features listed in Ta-
le 1 are computed for forward traffic only, backward traffic only,

H. Liu and P. Patras Computer Communications 191 (2022) 119–132

a
a
e
w
t
d

s
H
g
t
o
i
b

k
a
c
t
3
s

5

b
F
b
t
c
5
d
b

(
t
o
a
t
o
i
l
o
o
t
(

Fig. 6. ROC curves of LSTM-based algorithms. AUC behind labels. Models trained w/o (left) and w/augmented data (right).
nd bidirectionally. Logically ordered features means that they follow
n alternating order of forward, backward, and bi-direction. In each
xperiment, we train both unidirectional ConvLSTM and Bi-ConvLSTM
ith the augmented dataset for 10 epochs and repeat the process 5

imes. The mean and error bars of the F1 score on the cross-evaluation
ataset (CIC-IDS-2017) are illustrated in Fig. 8.

Intuitively, one might expect ConvLSTM would only work with
equential data possessing clear spatial information, such as videos.
owever, we find that ConvLSTM is robust to 1D traffic features re-
ardless of their arrangement. Indeed, the results in Fig. 8 demonstrate
hat there is no significant gap between the model trained with logically
rdered features or randomly shuffled ones. For most cases, the mean
n the former case is slightly higher than in the latter, while the error
ars show a large degree of overlap.

We also find that although F1 scores tend to rise sightly with larger
ernel sizes when the ConvLSTM is trained with the ordered feature
rrangement, this increase is not significant. Considering the growth in
omputation overhead with using a larger kernel size, we argue that
raining both Bi-ConvLSTM and Bi-ALSTM with a kernel size equal to

(which was also the case for the results presented in Table 3) is
ufficient.

.8. Performance gains of Bi-ALSTM

Bi-ALSTM not only yields the highest overall detection rate (recall),
ut also reliably detects each type of cyber attacks, as illustrated in
ig. 9. Both Bi-LSTM and Bi-ConvLSTM have difficulty recognizing web
ruteforcing, XSS, and Slowloris attacks, whereas Bi-ALSTM attains up
o 3× higher detection rates. The only exception is SQL injection, which
annot be detected by all the algorithms. This is because there are only
3 instances of this attack, merely accounting for 0.0006% of the entire
ataset, which is insufficient for the model to learn a reliable decision
oundary for classification.

We evaluate the quality of the anomaly scores approximated by Bi-
Conv)LSTM and Bi-ALSTM. The anomaly score is the value output by
he model. Since the activation function of the last layer is softmax, the
utput is squeezed between [0, 1] and the higher the value, the more
nomalous a flow is regarded. System administrators routinely cus-
omize an anomaly threshold to lower the FPR. Fig. 10 plots the ECDF
f each type of traffic in CIC-IDS-2017 given by the three algorithms,
n which the blue line corresponds to benign traffic. The black dashed
ine is the threshold that sets the FPR to 1.5%, and the area under the
ther lines to the left of the threshold line represents the proportion
f attacks that would be misclassified. We find that Bi-ALSTM delivers
he lowest False Negative Rate (FNR) (2.63%) compared with Bi-LSTM
10.17%) and Bi-ConvLSTM (5.87%).
128
Table 4
Computation overhead in terms of MACs per inference instance and number of
parameters for each model. The last column presents the number of flows (in millions)
an edge GPU (Jetson Nano) can process per second.

Model MACs(k) Parameters(k) Edge GPU (Mflow/s)

MLP 5.7 5.8 41.4
CNN 3.2 1.5 73.7
Autoencoder 10.3 10.6 22.9
OC-NN 5.2 5.2 45.4
Kitsune 0.7 0.8 337.1
DAGMM 5.3 5.4 44.5
Bi-LSTM 102.2 100.7 2.3
CNN-Bi-LSTM 116.8 112.7 2.0
Bi-ConvLSTM 51.8 2.7 4.5
Bi-ALSTM 66.8 41.4 3.5

5.9. Computational overhead

While NetSentry is primarily designed as an offline NIDS, employing
it for online NID is also feasible. Table 4 details the MACs the bench-
mark models and our Bi-ConvLSTM/-ALSTM structures require for a
single traffic flow inference, as well as their number of parameters.
(CNN-)Bi-LSTM are the most computationally expensive, given that
multiple fully-connected layers are embedded in the LSTM unit. In
contrast, Bi-ConvLSTM/-ALSTM are relatively lightweight, both involving
fewer computations and parameters. Deploying NetSentry as an online
system next to routers or organizational gateways equipped with a GPU
or TPU should thus be straightforward.

Given that edge AI platforms are now available, e.g., Nvidia Jetson
Nano [34], running NetSentry on constrained small-business/home
routers is within reach. Results in Table 4 reveal that Bi-ConvLSTM/-
ALSTM can handle 4.5/3.5 Mflows per second, which confirms our
practicality assessment.

Another key merit of NetSentry is that the system inherently an-
alyzes consecutive traffic between pairs of hosts, which is easy to
integrate into an Intrusion Prevention System (IPS), without the need
for collecting statistics of potentially malicious hosts until reaching full
confidence about decisions to enforce. Recall that our system directly
gives prediction results about the traffic flows generated between two
hosts during a short interval, offering comprehensive contexts to the
IPS with low FP risks. Dynamic firewall rules can also be updated
effortlessly, since the atomic processing input of NetSentry originates
from the same pair of hosts.

6. Discussion

Lastly, we discuss the robustness of our system against different
evasion attacks.

IP Spoofing: IP addresses can be spoofed with little effort, which is
also a common approach to generating DDoS attacks. Flow-based NIDS

H. Liu and P. Patras Computer Communications 191 (2022) 119–132
Fig. 7. Normalized confusion matrices (row values add to 1) for LSTM-based models
cross-evaluated on CIC-IDS-2017. Models trained with/without augmented dataset
(left/right). B represents Benign, D DoS, BF Bruteforcing and Fuzzing, and PS
PortScaning. Numbers on diagonals are recalls.

may be ineffective in preventing such traffic because ‘identities’ are
changed frequently. However, it is worth noting that IP spoofing can
only be used to initiate stateless DDoS, given that any responses from
the victim is not guaranteed to be routed back to the attacker. Existing
countermeasures such as TCP half-open and ICMP threshold are capable
of mitigating those issues. For application-layer DDoS, attackers must
control the real IP addresses to maintain the states, where NetSentry
will not be fooled.
129
Fig. 8. The F1 scores attained by (Bi-)ConvLSTM with different kernel sizes and
different order of features.

Traffic Encryption: Traffic Encryption was proposed for evasion
attacks [35], whereby malicious payload is hidden in an encrypted
channel. This is however only effective against NIDS that examine the
syntax of network communications, such as BotHunter [10]. NetSentry
is designed to extract and analyze timing- and protocol-based statistics.
That said, manipulation of payload contents cannot bypass our design.

Adversarial Perturbations: Adding small perturbations to input
data may lead to misclassification by ML models [36]. Nevertheless,
the existing adversarial attacks often require access to model gradients,
structures, or numerous queries for weight approximation. In reality, a
ML-based NIDS would not disclose the details of its neural model and
tolerate countless queries. Zhang et al. demonstrate the possibility of
attacking ML-based intrusion detection algorithms by heuristic-based
methods without knowing model’s information [37], but it would still
take 100∼11,000 queries to generate one adversarial sample. Note that
NetSentry is intended for continuous and repetitive network attacks,
meaning that similar queries would trigger alarms much earlier than
discovering a valid adversarial sample.

Adversarial perturbations are likely to modify every individual fea-
ture to create malicious samples, which is not always practical in the
networking domain, since the modified flows are not guaranteed to
stem from any real traffic. Consider instead a more pragmatic attack
scenario where the adversary slows the attack speed by increasing
the time between the packets sent. To evaluate the potential impact
of this adaptive attack on NetSentry, we first pre-process both CSE-
CIC-IDS2018 and CIC-IDS-2017 datasets as follows: (1) we group the
packets belonging to malicious activity in the pcap traces into flows;
(2) in each flow, we alter the timestamps of the attacker’s packets by
expanding the time gap between the previously received/sent packet
and the current one, by a fixed multiplier 𝑚 ∈ {1, 2, 4, 8} (packets are
not delayed if 𝑚 = 1); and (3) we alter the timestamps of the victim’s
packets to ensure the time gaps between these and the attacker’s
packets still match those in the original flows.

PortScan attacks are excluded from both datasets because the ma-
jority only consists of 1–2 packets, and applying the logic above will
not change their timestamps at all. We choose a set of multipliers
𝑚 ∈ {1, 2, 4, 8}, where the attacker’s packets are not delayed if 𝑚 =
1. As such, We obtain three altered versions of the CSE-CIC-IDS2018
and CIC-IDS-2017 dataset. Each variant of CSE-CIC-IDS2018 is split
into a training set (70% of samples) and a test set (30%), and we
augment all the training sets as detailed in Section 3.2.3, then retrain
the Bi-ALSTM. The altered CIC-IDS-2017 datasets are used for cross
evaluation. We measure the Percentage Error (PE) with respect to the
F1 score, to understand to what extent the model would degrade when

H. Liu and P. Patras Computer Communications 191 (2022) 119–132

d

𝑚

Fig. 9. Detection rate (recall) of each type of traffic evaluated on CSE-CIC-IDS2018 (top) and CIC-IDS-2017 (bottom).
Fig. 10. ECDF of the anomaly scores with respect to each type of traffic in CIC-IDS-2017 given by Bi-LSTM, Bi-ConvLSTM and Bi-ALSTM. All models trained with augmented
ataset. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
Table 5
Percentage Error wrt. F1 score. Attacker’s packets slowed down by factors {1, 2, 4, 8}.
= 1 for original timing.

m Test (CSE-CIC-IDS-2018)

1 2 4 8

Train
(IDS-2018)

1 0 −0.08% −0.02% −0.02%
2 −0.32% 0 −0.16% −0.24%
4 −0.35% 0 0 −0.01%
8 −0.09% +0.2% 0 0

m Cross test (CIC-IDS-2017)

1 2 4 8

Train
(IDS-2018)

1 0 −0.05% −0.11% −0.58%
2 +0.1% 0 +0.2% −0.39%
4 0 −0.01% 0 −0.35%
8 −0.49% −0.56% −0.11% 0

facing malicious traffic that is purposely slowed down by different
factors, to attempt evasion. Formally, PE wrt. F1 score is defined as:

𝑃𝐸𝐹1
𝑖,𝑗 =

𝐹1𝑖,𝑗 − 𝐹1𝑖,𝑖
𝐹1𝑖,𝑖

× 100%,

where the first subscript denotes the multiplier 𝑚 = 𝑖 applied in the
dataset used for model training, and the second subscript to slow-down
factor in the set used for testing. As shown in Table 5, we find that
the maximum PE on the CSE-CIC-IDS2018 is never above 0.35% and
the maximum PE on CIC-IDS-2017 is below 0.58%. This demonstrates
that manipulating the attack timing has no effective impact on the detection
performance of the proposed NetSentry.
130
7. Related work

Network intrusion detection has been the focus of extensive re-
search in the security community. In what follows, we briefly discuss
the most relevant work related to ours, highlighting limitations of
prior approaches and similarities with the proposed NetSentry, where
appropriate.

Defenses through Offensive Footprint Profiling. Modeling the
unique malicious nature of network anomalies is effective for detection.
BotHunter [10] builds infection dialogs to describe the dynamic pro-
cess of Botnet infection, then employs modularized detection engines
to identify the footprint of each stage in an attack. BotSniffer [38]
identifies bot activity by highlighting the spatiotemporal correlations of
Command and Control (C&C) traffic originating from pre-programmed
behaviors. Profiling malicious code execution paths plays an important
role in detecting malware [39,40]. Likewise, stealth DDoS amplifica-
tion can be fingerprinted by its unique two-stage behavior (i.e., scan
and attack) [41]. These contributions demonstrate that modeling the
potential links between different attack phases has merit in practice.
Unlike previous works, here we reveal how different stages are common
between different large-scale attacks and why breaking their sequence is
essential to thwarting intrusions.

Time-invariant ML for NID. DL-based NIDSs learn illicit traffic
patterns through a spectrum of algorithms, replacing the explicit attack
modeling methodology introduced previously. In detecting anomalies,
such algorithms largely performing analysis on a per-sample basis,
i.e., using statistical features of a traffic flow, to determine its nature,
rather than exploring any potential correlations in network traffic.

Supervised Learning approaches, including RIPPER [31], Support Vector

H. Liu and P. Patras Computer Communications 191 (2022) 119–132

a
i

Machine (SVM) [42], and Random Forest [43], treat anomaly detec-
tion as a classification problem, seeking a decision boundary between
benign and malicious traffic. Semi-supervised Learning methods discard
anomalous samples during training, and only learn patterns of benign
traffic. Kitsune [7] learn to reconstruct benign data via encoder ()
nd decoder () networks. Samples with high reconstruction errors,
.e., ‖𝑥−((𝑥))‖2, are deemed as malicious. One-Class Deep SVDD [32]

believes benign samples can be enclosed by a hyper-sphere, whereas
anomalous ones are distinct from the center. Thus, Deep SVDD learns
a non-linear transformation that maps innocuous samples into a feature
space where the majority of them can be surrounded by a small hyper-
sphere. Statistical approaches assume that benign data in nature are
densely distributed in the feature space, while anomalies (outliers) are
scattered. Dense areas can be approximated by Deep Gaussian Mixture
models [33] or Generative Adversarial Networks [44].

Time-sensitive ML for NID relies on temporal context along with
a sample, to detect any intrusion. NIDS that employ this approach
are sparse. More commonly, it is Host-based Intrusion Detection Sys-
tems (HIDS) [45–48] that utilize time-sensitive models, such as LSTM
and RNN, because the target data (system calls, logs and security
events) present obvious semantic meaning and potential temporal de-
pendencies. Attention-based Graph Neural Networks [49] can also be
used to model high-dimensional time-series data and spot anomalies.
Alternatively, USAD [50] handles time-sensitive tasks by segmenting
time-series data into fixed-size windows, and uses adversely trained
autoencoders to detect intrusions or anomalies. Recent studies attempt
to model temporal correlations within network attacks and propose
a range of RNN-based algorithms [51,52]. However, an appropriate
threat model detailing what temporal information is relevant to NID
is missing. Moreover, the training inputs are often randomly sam-
pled, which suppresses relevant temporal information and makes NID
effectiveness questionable. Our NetSentry design sets to address this
particular issue and takes a dynamic view to cyber attacks, so as to identify
possible temporal relationships that exist among different types of attacks,
thereby building a well-directed defensive approach.

8. Future work

As we discuss in Section 6, existing adversarial attacks on NIDS
add perturbations to the statistical features of traffic flows. There is no
guarantee that perturbed features can be mapped back to a sequence
of packets to be transmitted in practice. It remains unclear whether
conducting adversarial attacks by directly shaping consecutive packet
sizes and inter-arrival times can deceive ML-based NIDS. We deem this
topic as important, since it could further shed light on the robustness
and reliability of our method.

On the other hand, Bi-ALSTM is a supervised algorithm that de-
mands a significant amount of data for training, but acquiring up-to-
date datasets is not always feasible, given the stealth nature of cyber
attacks. Unfortunately, existing semi-supervised algorithms still focus
on per-flow classification and neglect temporal context, resulting in
the undesirable performance seen in Table 3 (Autoencoder, OC-NN,
Kitsune, DAGMM). Instead of approximating the distribution of benign
flows, estimating the stochastic process of consecutive benign traffic
may provide higher reliability, which is also an interesting topic for
future study.

9. Conclusions

In this paper, we show that large-scale network threats with po-
tential high-impact can be tackled in their early stages, if correctly
recognizing the unique temporal dependencies of malicious flows, and
we propose NetSentry to effectively detect such incipient attacks. Net-
Sentry incorporates a novel data augmentation technique to enhance
the generalization ability of supervised algorithms and we design an

ensemble Bi-ALSTM as the core intrusion detection logic. Extensive

131
results demonstrate that our ensemble structure outperforms a wide
range of benchmarks, attaining up to 3× higher detection rates, un-
der different network environments. Finally, we discuss computation
overhead and robustness to evasion attacks, making the case for the
feasibility of deploying NetSentry alongside threat prevention logic in
real-world settings.

Declaration of competing interest

The authors declare that they have no known competing finan-
cial interests or personal relationships that could have appeared to
influence the work reported in this paper.

Acknowledgments

This material is based upon work supported by Arm Ltd and Scot-
land’s Innovation Centre for sensing, imaging and Internet of Things
technologies (CENSIS).

References

[1] Spamhaus Botnet Threat Update: Q1-2021. https://www.spamhaus.org/news/
article/809/spamhaus-botnet-threat-update-q1-2021.

[2] C. Ventures, Global cybercrime damages predicted to reach $6 trillion annu-
ally by 2021, 2020, https://cybersecurityventures.com/cybercrime-damages-6-
trillion-by-2021/.

[3] L. Bilge, T. Dumitraş, Before we knew it: An empirical study of zero-day attacks
in the real world, in: Proc. ACM CCS, 2012.

[4] A.L. Buczak, E. Guven, A survey of data mining and machine learning methods
for cyber security intrusion detection, IEEE Commun. Surv. Tutor. 18 (2) (2016)
1153–1176.

[5] Z. Lin, et al., IDSGAN: Generative adversarial networks for attack generation
against intrusion detection, 2019, arXiv:1809.02077.

[6] Y. Xia, et al., Learning discriminative reconstructions for unsupervised outlier
removal, in: Proc. IEEE ICCV, 2015.

[7] Y. Mirsky, et al., Kitsune: an ensemble of autoencoders for online network
intrusion detection, in: NDSS, 2018.

[8] R. Sommer, V. Paxson, Outside the closed world: On using machine learning for
network intrusion detection, in: IEEE S & P, 2010.

[9] Cyberint Research, British airways flight to DDoS lands with cyber tur-
bulence, 2020, https://blog.cyberint.com/british-airways-flight-to-ddos-l{and}s-
with-cyber-turbulence.

[10] G. Gu, et al., Bothunter: Detecting malware infection through ids-driven dialog
correlation, in: USENIX Security, 2007.

[11] L. Iffländer, et al., Hands off my database: Ransomware detection in databases
through dynamic analysis of query sequences, 2019, arXiv preprint arXiv:1907.
06775.

[12] M. Antonakakis, et al., Understanding the mirai botnet, in: USENIX Security,
2017.

[13] E.M. Hutchins, et al., Intelligence-driven computer network defense informed by
analysis of adversary campaigns and intrusion kill chains, in: Leading Issues in
Information Warfare & Security Research, 2011.

[14] E. Saad, et al., OWASP web security testing guide version 4.1, 2019.
[15] C.C. Vulnerabilities, Exposures, CVE-2017-0144, 2016, https://cve.mitre.org/cgi-

bin/cvename.cgi?name=CVE-2017-0144.
[16] D.-Y. Kao, S.-C. Hsiao, The dynamic analysis of wannacry ransomware, in: Proc.

ICACT, 2018.
[17] C.I. for Cybersecurity, CICFLOWMETER, 2018, https://www.unb.ca/cic/

research/applications.html#CICFlowMeter.
[18] T.C.S. Establishment, C.I. for Cybersecurity, A realistic cyber defense dataset

(CSE-CIC-IDS2018), 2018, https://registry.opendata.aws/cse-cic-ids2018/.
[19] S. Hochreiter, J. Schmidhuber, Long short-term memory, Neural Comput. 9 (8)

(1997) 1735–1780.
[20] I. Sutskever, O. Vinyals, Q.V. Le, Sequence to sequence learning with neural

networks, Adv. Neural Inf. Process. Syst. 27 (2014).
[21] S. Kumar, D. Kumar, P.K. Donta, T. Amgoth, Land subsidence prediction using

recurrent neural networks, Stoch. Environ. Res. Risk Assess. 36 (2) (2022)
373–388.

[22] S. Xingjian, et al., Convolutional LSTM network: A machine learning approach
for precipitation nowcasting, in: NeurIPS, 2015.

[23] K. He, X. Zhang, S. Ren, J. Sun, Deep residual learning for image recognition, in:
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition,
2016, pp. 770–778.

[24] J. Yang, S. Xiao, A. Li, W. Lu, X. Gao, Y. Li, Msta-net: Forgery detection by
generating manipulation trace based on multi-scale self-texture attention, IEEE
Trans. Circuits Syst. Video Technol. (2021).

https://www.spamhaus.org/news/article/809/spamhaus-botnet-threat-update-q1-2021
https://www.spamhaus.org/news/article/809/spamhaus-botnet-threat-update-q1-2021
https://www.spamhaus.org/news/article/809/spamhaus-botnet-threat-update-q1-2021
https://cybersecurityventures.com/cybercrime-damages-6-trillion-by-2021/
https://cybersecurityventures.com/cybercrime-damages-6-trillion-by-2021/
https://cybersecurityventures.com/cybercrime-damages-6-trillion-by-2021/
http://refhub.elsevier.com/S0140-3664(22)00133-5/sb4
http://refhub.elsevier.com/S0140-3664(22)00133-5/sb4
http://refhub.elsevier.com/S0140-3664(22)00133-5/sb4
http://refhub.elsevier.com/S0140-3664(22)00133-5/sb4
http://refhub.elsevier.com/S0140-3664(22)00133-5/sb4
http://arxiv.org/abs/1809.02077
http://refhub.elsevier.com/S0140-3664(22)00133-5/sb7
http://refhub.elsevier.com/S0140-3664(22)00133-5/sb7
http://refhub.elsevier.com/S0140-3664(22)00133-5/sb7
http://refhub.elsevier.com/S0140-3664(22)00133-5/sb8
http://refhub.elsevier.com/S0140-3664(22)00133-5/sb8
http://refhub.elsevier.com/S0140-3664(22)00133-5/sb8
https://blog.cyberint.com/british-airways-flight-to-ddos-l{and}s-with-cyber-turbulence
https://blog.cyberint.com/british-airways-flight-to-ddos-l{and}s-with-cyber-turbulence
https://blog.cyberint.com/british-airways-flight-to-ddos-l{and}s-with-cyber-turbulence
http://refhub.elsevier.com/S0140-3664(22)00133-5/sb10
http://refhub.elsevier.com/S0140-3664(22)00133-5/sb10
http://refhub.elsevier.com/S0140-3664(22)00133-5/sb10
http://arxiv.org/abs/1907.06775
http://arxiv.org/abs/1907.06775
http://arxiv.org/abs/1907.06775
http://refhub.elsevier.com/S0140-3664(22)00133-5/sb12
http://refhub.elsevier.com/S0140-3664(22)00133-5/sb12
http://refhub.elsevier.com/S0140-3664(22)00133-5/sb12
http://refhub.elsevier.com/S0140-3664(22)00133-5/sb13
http://refhub.elsevier.com/S0140-3664(22)00133-5/sb13
http://refhub.elsevier.com/S0140-3664(22)00133-5/sb13
http://refhub.elsevier.com/S0140-3664(22)00133-5/sb13
http://refhub.elsevier.com/S0140-3664(22)00133-5/sb13
http://refhub.elsevier.com/S0140-3664(22)00133-5/sb14
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2017-0144
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2017-0144
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2017-0144
https://www.unb.ca/cic/research/applications.html#CICFlowMeter
https://www.unb.ca/cic/research/applications.html#CICFlowMeter
https://www.unb.ca/cic/research/applications.html#CICFlowMeter
https://registry.opendata.aws/cse-cic-ids2018/
http://refhub.elsevier.com/S0140-3664(22)00133-5/sb19
http://refhub.elsevier.com/S0140-3664(22)00133-5/sb19
http://refhub.elsevier.com/S0140-3664(22)00133-5/sb19
http://refhub.elsevier.com/S0140-3664(22)00133-5/sb20
http://refhub.elsevier.com/S0140-3664(22)00133-5/sb20
http://refhub.elsevier.com/S0140-3664(22)00133-5/sb20
http://refhub.elsevier.com/S0140-3664(22)00133-5/sb21
http://refhub.elsevier.com/S0140-3664(22)00133-5/sb21
http://refhub.elsevier.com/S0140-3664(22)00133-5/sb21
http://refhub.elsevier.com/S0140-3664(22)00133-5/sb21
http://refhub.elsevier.com/S0140-3664(22)00133-5/sb21
http://refhub.elsevier.com/S0140-3664(22)00133-5/sb22
http://refhub.elsevier.com/S0140-3664(22)00133-5/sb22
http://refhub.elsevier.com/S0140-3664(22)00133-5/sb22
http://refhub.elsevier.com/S0140-3664(22)00133-5/sb24
http://refhub.elsevier.com/S0140-3664(22)00133-5/sb24
http://refhub.elsevier.com/S0140-3664(22)00133-5/sb24
http://refhub.elsevier.com/S0140-3664(22)00133-5/sb24
http://refhub.elsevier.com/S0140-3664(22)00133-5/sb24

H. Liu and P. Patras Computer Communications 191 (2022) 119–132
[25] P. Sirinam, et al., Deep fingerprinting: Undermining website fingerprinting
defenses with deep learning, in: Proc. ACM CCS, 2018.

[26] C. Zhang, et al., Multi-service mobile traffic forecasting via convolutional long
short-term memories, in: Proc. IEEE International Symposium on Measurements
& Networking, 2019.

[27] K. Jiang, et al., Network intrusion detection combined hybrid sampling with
deep hierarchical network, IEEE Access 8 (2020).

[28] X. Glorot, Y. Bengio, Understanding the difficulty of training deep feedforward
neural networks, in: Proc. AISTATS, 2010.

[29] M. Raghu, T. Unterthiner, S. Kornblith, C. Zhang, A. Dosovitskiy, Do vision
transformers see like convolutional neural networks? Adv. Neural Inf. Process.
Syst. 34 (2021).

[30] I. Sharafaldin, et al., Toward generating a new intrusion detection dataset and
intrusion traffic characterization, in: ICISSP, 2018.

[31] W. Lee, S. Stolfo, Data mining approaches for intrusion detection, in: USENIX
Security Symposium, 1998.

[32] L. Ruff, et al., Deep one-class classification, in: International Conference on
Machine Learning, 2018, pp. 4393–4402.

[33] B. Zong, Q. Song, M.R. Min, W. Cheng, C. Lumezanu, D. Cho, H. Chen, Deep
autoencoding Gaussian mixture model for unsupervised anomaly detection, in:
ICLR, 2018.

[34] NVIDIA, Jetson nano | NVIDIA developer, 2019, https://developer.nvidia.com/
embedded/jetson-nano.

[35] E. Stinson, J.C. Mitchell, Towards systematic evaluation of the evadability of
bot/botnet detection methods, WOOT 8 (2008).

[36] K.T. Co, et al., Procedural noise adversarial examples for black-box attacks on
deep convolutional networks, in: ACM CCS, 2019.

[37] C. Zhang, et al., Tiki-taka: Attacking and defending deep learning-based intrusion
detection systems, in: ACM CCSW, 2020.

[38] G. Gu, et al., Botsniffer: Detecting botnet command and control channels in
network traffic, in: Network and Distributed System Security Symposium (NDSS),
2008.

[39] C. Kolbitsch, et al., Effective and efficient malware detection at the end host, in:
USENIX Security Symposium, Vol. 4, 2009, pp. 351–366.
132
[40] A. Naderi-Afooshteh, et al., Malmax: Multi-aspect execution for automated
dynamic web server malware analysis, in: ACM CCS, 2019.

[41] J. Krupp, et al., Identifying the scan and attack infrastructures behind
amplification ddos attacks, in: Proc. ACM CCS, 2016.

[42] Y. Yi, et al., Incremental SVM based on reserved set for network intrusion
detection, Expert Syst. Appl. 38 (6) (2011) 7698–7707.

[43] P. Sangkatsanee, et al., Practical real-time intrusion detection using machine
learning approaches, Comput. Commun. 34 (18) (2011) 2227–2235.

[44] D. Li, D. Chen, B. Jin, L. Shi, J. Goh, S.-K. Ng, Mad-gan: Multivariate anomaly de-
tection for time series data with generative adversarial networks, in: International
Conference on Artificial Neural Networks, Springer, 2019, pp. 703–716.

[45] M. Du, et al., Lifelong anomaly detection through unlearning, in: Proc. ACM
CCS, 2019.

[46] Y. Shen, et al., Tiresias: Predicting security events through deep learning, in:
Proc. ACM CCS, 2018.

[47] Y. Su, Y. Zhao, C. Niu, R. Liu, W. Sun, D. Pei, Robust anomaly detection for
multivariate time series through stochastic recurrent neural network, in: Proc.
ACM SIGKDD International Conference on Knowledge Discovery & Data Mining,
2019, pp. 2828–2837.

[48] Y. Liu, S. Garg, J. Nie, Y. Zhang, Z. Xiong, J. Kang, M.S. Hossain, Deep
anomaly detection for time-series data in industrial iot: A communication-
efficient on-device federated learning approach, IEEE Internet Things J. 8 (8)
(2020) 6348–6358.

[49] A. Deng, B. Hooi, Graph neural network-based anomaly detection in multivariate
time series, in: AAAI, Vol. 35, 2021, pp. 4027–4035.

[50] J. Audibert, P. Michiardi, F. Guyard, S. Marti, M.A. and Zuluaga, USAD:
unsupervised anomaly detection on multivariate time series, in: Proceedings of
the 26th ACM SIGKDD International Conference on Knowledge Discovery & Data
Mining, 2020, pp. 3395–3404.

[51] A. Diro, N. Chilamkurti, Leveraging lstm networks for attack detection in
fog-to-things communications, IEEE Commun. Mag. 56 (9) (2018) 124–130.

[52] Z. Li, Z. Qin, A semantic parsing based lstm model for intrusion detection, in:
ICONIP, 2018.

http://refhub.elsevier.com/S0140-3664(22)00133-5/sb27
http://refhub.elsevier.com/S0140-3664(22)00133-5/sb27
http://refhub.elsevier.com/S0140-3664(22)00133-5/sb27
http://refhub.elsevier.com/S0140-3664(22)00133-5/sb29
http://refhub.elsevier.com/S0140-3664(22)00133-5/sb29
http://refhub.elsevier.com/S0140-3664(22)00133-5/sb29
http://refhub.elsevier.com/S0140-3664(22)00133-5/sb29
http://refhub.elsevier.com/S0140-3664(22)00133-5/sb29
http://refhub.elsevier.com/S0140-3664(22)00133-5/sb30
http://refhub.elsevier.com/S0140-3664(22)00133-5/sb30
http://refhub.elsevier.com/S0140-3664(22)00133-5/sb30
http://refhub.elsevier.com/S0140-3664(22)00133-5/sb31
http://refhub.elsevier.com/S0140-3664(22)00133-5/sb31
http://refhub.elsevier.com/S0140-3664(22)00133-5/sb31
http://refhub.elsevier.com/S0140-3664(22)00133-5/sb32
http://refhub.elsevier.com/S0140-3664(22)00133-5/sb32
http://refhub.elsevier.com/S0140-3664(22)00133-5/sb32
http://refhub.elsevier.com/S0140-3664(22)00133-5/sb33
http://refhub.elsevier.com/S0140-3664(22)00133-5/sb33
http://refhub.elsevier.com/S0140-3664(22)00133-5/sb33
http://refhub.elsevier.com/S0140-3664(22)00133-5/sb33
http://refhub.elsevier.com/S0140-3664(22)00133-5/sb33
https://developer.nvidia.com/embedded/jetson-nano
https://developer.nvidia.com/embedded/jetson-nano
https://developer.nvidia.com/embedded/jetson-nano
http://refhub.elsevier.com/S0140-3664(22)00133-5/sb35
http://refhub.elsevier.com/S0140-3664(22)00133-5/sb35
http://refhub.elsevier.com/S0140-3664(22)00133-5/sb35
http://refhub.elsevier.com/S0140-3664(22)00133-5/sb36
http://refhub.elsevier.com/S0140-3664(22)00133-5/sb36
http://refhub.elsevier.com/S0140-3664(22)00133-5/sb36
http://refhub.elsevier.com/S0140-3664(22)00133-5/sb37
http://refhub.elsevier.com/S0140-3664(22)00133-5/sb37
http://refhub.elsevier.com/S0140-3664(22)00133-5/sb37
http://refhub.elsevier.com/S0140-3664(22)00133-5/sb38
http://refhub.elsevier.com/S0140-3664(22)00133-5/sb38
http://refhub.elsevier.com/S0140-3664(22)00133-5/sb38
http://refhub.elsevier.com/S0140-3664(22)00133-5/sb38
http://refhub.elsevier.com/S0140-3664(22)00133-5/sb38
http://refhub.elsevier.com/S0140-3664(22)00133-5/sb39
http://refhub.elsevier.com/S0140-3664(22)00133-5/sb39
http://refhub.elsevier.com/S0140-3664(22)00133-5/sb39
http://refhub.elsevier.com/S0140-3664(22)00133-5/sb40
http://refhub.elsevier.com/S0140-3664(22)00133-5/sb40
http://refhub.elsevier.com/S0140-3664(22)00133-5/sb40
http://refhub.elsevier.com/S0140-3664(22)00133-5/sb42
http://refhub.elsevier.com/S0140-3664(22)00133-5/sb42
http://refhub.elsevier.com/S0140-3664(22)00133-5/sb42
http://refhub.elsevier.com/S0140-3664(22)00133-5/sb43
http://refhub.elsevier.com/S0140-3664(22)00133-5/sb43
http://refhub.elsevier.com/S0140-3664(22)00133-5/sb43
http://refhub.elsevier.com/S0140-3664(22)00133-5/sb44
http://refhub.elsevier.com/S0140-3664(22)00133-5/sb44
http://refhub.elsevier.com/S0140-3664(22)00133-5/sb44
http://refhub.elsevier.com/S0140-3664(22)00133-5/sb44
http://refhub.elsevier.com/S0140-3664(22)00133-5/sb44
http://refhub.elsevier.com/S0140-3664(22)00133-5/sb48
http://refhub.elsevier.com/S0140-3664(22)00133-5/sb48
http://refhub.elsevier.com/S0140-3664(22)00133-5/sb48
http://refhub.elsevier.com/S0140-3664(22)00133-5/sb48
http://refhub.elsevier.com/S0140-3664(22)00133-5/sb48
http://refhub.elsevier.com/S0140-3664(22)00133-5/sb48
http://refhub.elsevier.com/S0140-3664(22)00133-5/sb48
http://refhub.elsevier.com/S0140-3664(22)00133-5/sb49
http://refhub.elsevier.com/S0140-3664(22)00133-5/sb49
http://refhub.elsevier.com/S0140-3664(22)00133-5/sb49
http://refhub.elsevier.com/S0140-3664(22)00133-5/sb51
http://refhub.elsevier.com/S0140-3664(22)00133-5/sb51
http://refhub.elsevier.com/S0140-3664(22)00133-5/sb51
http://refhub.elsevier.com/S0140-3664(22)00133-5/sb52
http://refhub.elsevier.com/S0140-3664(22)00133-5/sb52
http://refhub.elsevier.com/S0140-3664(22)00133-5/sb52

	NetSentry: A deep learning approach to detecting incipient large-scale network attacks
	Introduction
	Threat model Anatomy of attacks
	Attack chain analysis

	NetSentry Design
	Attack detection strategy
	System architecture
	Feature extraction
	Sequence generation
	Feature augmentation
	Ensemble network

	A sequential ensemble for NID
	LSTM
	ConvLSTM
	Bidirectional asymmetric LSTM
	Why an all-range multi-class classifier is unfeasible
	Abstract labeling

	Experiments
	Datasets
	Cross-evaluation
	Benchmarks
	Evaluation metrics
	Performance without augmented data
	Performance with augmented data
	Impact of feature arrangement
	Performance gains of Bi-ALSTM
	Computational overhead

	Discussion
	Related work
	Future work
	Conclusions
	Declaration of competing interest
	Acknowledgments
	References

