2,216 research outputs found

    Preventing Distributed Denial-of-Service Attacks on the IMS Emergency Services Support through Adaptive Firewall Pinholing

    Full text link
    Emergency services are vital services that Next Generation Networks (NGNs) have to provide. As the IP Multimedia Subsystem (IMS) is in the heart of NGNs, 3GPP has carried the burden of specifying a standardized IMS-based emergency services framework. Unfortunately, like any other IP-based standards, the IMS-based emergency service framework is prone to Distributed Denial of Service (DDoS) attacks. We propose in this work, a simple but efficient solution that can prevent certain types of such attacks by creating firewall pinholes that regular clients will surely be able to pass in contrast to the attackers clients. Our solution was implemented, tested in an appropriate testbed, and its efficiency was proven.Comment: 17 Pages, IJNGN Journa

    Flooding attacks to internet threat monitors (ITM): Modeling and counter measures using botnet and honeypots

    Full text link
    The Internet Threat Monitoring (ITM),is a globally scoped Internet monitoring system whose goal is to measure, detect, characterize, and track threats such as distribute denial of service(DDoS) attacks and worms. To block the monitoring system in the internet the attackers are targeted the ITM system. In this paper we address flooding attack against ITM system in which the attacker attempt to exhaust the network and ITM's resources, such as network bandwidth, computing power, or operating system data structures by sending the malicious traffic. We propose an information-theoretic frame work that models the flooding attacks using Botnet on ITM. Based on this model we generalize the flooding attacks and propose an effective attack detection using Honeypots

    Assessing and augmenting SCADA cyber security: a survey of techniques

    Get PDF
    SCADA systems monitor and control critical infrastructures of national importance such as power generation and distribution, water supply, transportation networks, and manufacturing facilities. The pervasiveness, miniaturisations and declining costs of internet connectivity have transformed these systems from strictly isolated to highly interconnected networks. The connectivity provides immense benefits such as reliability, scalability and remote connectivity, but at the same time exposes an otherwise isolated and secure system, to global cyber security threats. This inevitable transformation to highly connected systems thus necessitates effective security safeguards to be in place as any compromise or downtime of SCADA systems can have severe economic, safety and security ramifications. One way to ensure vital asset protection is to adopt a viewpoint similar to an attacker to determine weaknesses and loopholes in defences. Such mind sets help to identify and fix potential breaches before their exploitation. This paper surveys tools and techniques to uncover SCADA system vulnerabilities. A comprehensive review of the selected approaches is provided along with their applicability

    Security, Privacy and Safety Risk Assessment for Virtual Reality Learning Environment Applications

    Full text link
    Social Virtual Reality based Learning Environments (VRLEs) such as vSocial render instructional content in a three-dimensional immersive computer experience for training youth with learning impediments. There are limited prior works that explored attack vulnerability in VR technology, and hence there is a need for systematic frameworks to quantify risks corresponding to security, privacy, and safety (SPS) threats. The SPS threats can adversely impact the educational user experience and hinder delivery of VRLE content. In this paper, we propose a novel risk assessment framework that utilizes attack trees to calculate a risk score for varied VRLE threats with rate and duration of threats as inputs. We compare the impact of a well-constructed attack tree with an adhoc attack tree to study the trade-offs between overheads in managing attack trees, and the cost of risk mitigation when vulnerabilities are identified. We use a vSocial VRLE testbed in a case study to showcase the effectiveness of our framework and demonstrate how a suitable attack tree formalism can result in a more safer, privacy-preserving and secure VRLE system.Comment: Tp appear in the CCNC 2019 Conferenc

    Exploring Russian Cyberspace: Digitally-Mediated Collective Action and the Networked Public Sphere

    Get PDF
    This paper summarizes the major findings of a three-year research project to investigate the Internet's impact on Russian politics, media and society. We employed multiple methods to study online activity: the mapping and study of the structure, communities and content of the blogosphere; an analogous mapping and study of Twitter; content analysis of different media sources using automated and human-based evaluation approaches; and a survey of bloggers; augmented by infrastructure mapping, interviews and background research. We find the emergence of a vibrant and diverse networked public sphere that constitutes an independent alternative to the more tightly controlled offline media and political space, as well as the growing use of digital platforms in social mobilization and civic action. Despite various indirect efforts to shape cyberspace into an environment that is friendlier towards the government, we find that the Russian Internet remains generally open and free, although the current degree of Internet freedom is in no way a prediction of the future of this contested space

    Distributed Denial of Service Attacks on Cloud Computing Environment‎

    Get PDF
    This paper aimed to identify the various kinds of distributed denial of service attacks (DDoS) attacks, their destructive capabilities, and most of all, how best these issues could be counter attacked and resolved for the benefit of all stakeholders along the cloud continuum, preferably as permanent solutions. A compilation of the various types of DDoS is done, their strike capabilities and most of all, how best cloud computing environment issues could be addressed and resolved for the benefit of all stakeholders along the cloud continuum. The key challenges against effective DDoS defense mechanism are also explored

    Robust and Reliable Security Approach for IoMT: Detection of DoS and Delay Attacks through a High-Accuracy Machine Learning Model

    Get PDF
    Internet of Medical Things (IoMT ) refers to the network of medical devices and healthcare systems that are connected to the internet. However, this connectivity also makes IoMT vulnerable to cyberattacks such as DoS and Delay attacks , posing risks to patient safety, data security, and public trust. Early detection of these attacks is crucial to prevent harm to patients and system malfunctions. In this paper, we address the detection and mitigation of DoS and Delay attacks in the IoMT using machine learning techniques. To achieve this objective, we constructed an IoMT network scenario using Omnet++ and recorded network traffic data. Subsequently, we utilized this data to train a set of common machine learning algorithms. Additionally, we proposed an Enhanced Random Forest Classifier for Achieving the Best Execution Time (ERF-ABE), which aims to achieve high accuracy and sensitivity as well as  low execution time for detecting these types of attacks in IoMT networks. This classifier combines the strengths of random forests with optimization techniques to enhance performance. Based on the results, the execution time has been reduced by implementing ERF-ABE, while maintaining high levels of accuracy and sensitivity
    corecore