340 research outputs found

    Research Issues in Image Registration for Remote Sensing

    Get PDF
    Image registration is an important element in data processing for remote sensing with many applications and a wide range of solutions. Despite considerable investigation the field has not settled on a definitive solution for most applications and a number of questions remain open. This article looks at selected research issues by surveying the experience of operational satellite teams, application-specific requirements for Earth science, and our experiments in the evaluation of image registration algorithms with emphasis on the comparison of algorithms for subpixel accuracy. We conclude that remote sensing applications put particular demands on image registration algorithms to take into account domain-specific knowledge of geometric transformations and image content

    Monitoring global vegetation

    Get PDF
    An attempt is made to identify the need for, and the current capability of, a technology which could aid in monitoring the Earth's vegetation resource on a global scale. Vegetation is one of our most critical natural resources, and accurate timely information on its current status and temporal dynamics is essential to understand many basic and applied environmental interrelationships which exist on the small but complex planet Earth

    Proceedings of the Third Annual Symposium on Mathematical Pattern Recognition and Image Analysis

    Get PDF
    Topics addressed include: multivariate spline method; normal mixture analysis applied to remote sensing; image data analysis; classifications in spatially correlated environments; probability density functions; graphical nonparametric methods; subpixel registration analysis; hypothesis integration in image understanding systems; rectification of satellite scanner imagery; spatial variation in remotely sensed images; smooth multidimensional interpolation; and optimal frequency domain textural edge detection filters

    Small-Area Population Estimation: an Integration of Demographic and Geographic Techniques

    Get PDF
    Knowledge of detailed and accurate population information is essential to analyze and address a wide variety of socio-economic, political, and environmental issues and to support necessary planning practices for both public agencies and the private sector. However, such important data are generally only available once every decade through the National Census. Moreover, populations in some rapidly-developing areas may increase quickly, such that this ten-year frequency does not meet the needs of these areas. Therefore, a cost-effective method for population estimation is necessary. To address this issue, this research integrated geographic, sociological, and demographic theories and exploited remotely sensed imagery and geographic information system (GIS) datasets to derive better population estimates at the census block level, the finest level of the national census. Specifically, three new approaches have been proposed in this dissertation to assist in the improvement of small-area population estimation accuracy. First, existing remotely sensed and GIS data have been adopted to estimate two major components of a demographic framework, including the redistribution of newly built dwelling units from the aggregated geographic level to the census block level and the estimation of persons per household (PPH) at such a fine scale. Second, in addition to the use of existing data, new urban environmental indicators were also extracted and employed to improve population estimation. In particular, to implement the automatic enumeration for individual housing units, a new spectral index, biophysical composition index (BCI), has been proposed to derive impervious surface information, a desirable urban environmental parameter. Third, using the extracted high-resolution urban environmental information and GIS data, a new bottom-up method was developed for small-area population estimation at the census block level by incorporating these high-resolution data into the demographic framework. Analyses of the results suggest three major conclusions. First, existing GIS spatial factors, together with demographic information, can assist in improving the accuracy of small-area population estimation. Second, the BCI has a closer relationship with impervious surface area than do other popular indices. Moreover, it was shown to be the most effective index of the four evaluated for separating impervious surfaces and bare soil, which consequently might assist in more accurately deriving fractional land cover values. Third, the use of the new environmental indicators extracted from remote sensing imagery and GIS data and the integration of demographic and geographic approaches has significantly improved the estimation accuracy of housing unit (HU) numbers, PPH, and population counts at the census block level. Therefore, this research contributes to both the remote sensing and applied demography fields. The contribution to the remote sensing field lies in the development of a novel spectral index to characterize urban land for monitoring and analyzing urban environments. This index provided more significant separability between impervious surfaces and bare soil than did other existing indices. Moreover, three major contributions have been made in the field of applied demography: 1) the generation of accurate HU estimates using high-resolution remote sensing and GIS datasets, 2) the development of a model to derive an accurate PPH estimate, and 3) the improvement of small-area population estimation accuracy through the integration of geographic and demographic approaches

    Earth Resources: A continuing bibliography with indexes

    Get PDF
    This bibliography lists 475 reports, articles and other documents introduced into the NASA scientific and technical information system between January 1 and March 31, 1984. Emphasis is placed on the use of remote sensing and geophysical instrumentation in spacecraft and aircraft to survey and inventory natural resources and urban areas. Subject matter is grouped according to agriculture and forestry, environmental changes and cultural resources, geodesy and cartography, geology and mineral resources, hydrology and water management, data processing and distribution systems, instrumentation and sensors, and economical analysis

    Earth Resources: A continuing bibliography with indexes, issue 36

    Get PDF
    This bibliography lists 576 reports, articles, and other documents introduced into the NASA Scientific and Technical Information System between October 1 and December 31, 1982. Emphasis is placed on the use of remote sensing and geophysical instrumentation in spacecraft and aircraft to survey and inventory natural resources and urban areas. Subject matter is grouped according to agriculture and forestry, environmental changes and cultural resources, geodesy and cartography, geology and mineral resources, hydrology and water management, data processing and distribution systems, instrumentation and sensors, and economic analysis

    Accuracy comparison of Pléiades satellite ortho-images using GPS device based GCPs against TerraSAR-X-based GCPs

    Get PDF
    Conducting single frame orthorectification on satellite images to create an ortho-image requires four basic components, namely an image, a geometric sensor model, elevation data (for example a digital elevation model (DEM)) and ground control points (GCPs). For this study, orthorectification entailed the use of a single scene Pléiades primary panchromatic image, applying the Pléiades rigorous geometric model, utilising a high-quality 2 m DEM and using GCPs that were acquired from two different collection methods. The application of these different GCPs to the execution of orthorectification encompassed the aim of this paper, which was to investigate and compare the positional accuracies of ortho-images under two scenarios. Firstly, GCPs were manually collected through fieldwork utilising a Trimble GeoExplorer 6000 series handheld GPS device and secondly, by utilising TerraSAR-X based GCPs that were acquired from Airbus Defence and Space. The objective of this study was to determine the geolocation accuracy of a high-resolution satellite ortho-image when different types of ground control are used. This required the execution of two orthorectification tests where only the type of GCPs differed. The results of these tests were interesting since it highlighted the difference in positional accuracy when utilising various sources of ground control to perform orthorectification on satellite imagery. The comparison results showed that utilising the manual GCPs produced a better positional accurate ortho-image as opposed to using the TerraSAR-X based GCPs. Nonetheless, the TerraSAR-X based GCPs still produced a sub 2 m accurate ortho-image, which is more than sufficient for the production of most geospatial products.Keywords: orthorectification, digital elevation model (DEM), ground control point (GCP), high-resolution satellite imagery, TerraSAR-X based GCPs, WorldDEM™, Airbus Defence and Spac

    Earth resources: A continuing bibliography, issue 46

    Get PDF
    This bibliography lists 467 reports, articles and other documents introdcued into the NASA scientific and technical information system between April 1 and June 30, 1985. Emphasis is placed on the use of remote sensing and geophysical instrumentation in spacecraft and aircraft to survey and inventory natural resources and urban areas. Subject matter is grouped according to agriculture and forestry, environmental cultural resources geodesy and cartography, geology and mineral resources, hydrology and water management, data processing and distribution systems, instrumentation and sensors, and economical analysis
    • …
    corecore