10 research outputs found

    Combining Emotion and Facial Nonamanual Signals in Synthesized American Sign Language

    Get PDF
    Conference proceedings from the the 14th international ACM SIGACCESS conference on Computers and accessibility-2012. ASSETS \u2712. Boulder, CO, USA, October 22 - 24, 2012. New York, NY, USA: ACM. 249-250

    Generating Co-occurring Facial Nonmanual Signals in Synthesized American Sign Language

    Get PDF
    Translating between English and American Sign Language (ASL) requires an avatar to display synthesized ASL. Essential to the language are nonmanual signals that appear on the face. In the past, these have posed a difficult challenge for signing avatars. Previous systems were hampered by an inability to portray simultaneously-occurring nonmanual signals on the face. This paper presents a method designed for supporting co-occurring nonmanual signals in ASL. Animations produced by the new system were tested with 40 members of the Deaf community in the United States. Participants identified all of the nonmanual signals even when they co-occurred. Co-occurring question nonmanuals and affect information were distinguishable, which is particularly striking because the two processes move an avatar’s brows in a competing manner. This breakthrough brings the state of the art one step closer to the goal of an automatic English-to-ASL translator. Conference proceedings from the International Conference on Computer Graphics Theory and Applications and International Conference on Information Visualization Theory and Applications, Barcelona, Spain, 21-24 February, 2013. Edited by Sabine Coquillart, Carlos Andújar, Robert S. Laramee, Andreas Kerren, José Braz. Barcelona, Spain. SciTePress 2013. 407-416

    Generating Co-occurring Facial Nonmanual Signals in Synthesized American Sign Language

    Get PDF
    Abstract: Translating between English and American Sign Language (ASL) requires an avatar to display synthesized ASL. Essential to the language are nonmanual signals that appear on the face. In the past, these have posed a difficult challenge for signing avatars. Previous systems were hampered by an inability to portray simultaneously-occurring nonmanual signals on the face. This paper presents a method designed for supporting co-occurring nonmanual signals in ASL. Animations produced by the new system were tested with 40 members of the Deaf community in the United States. Participants identified all of the nonmanual signals even when they co-occurred. Co-occurring question nonmanuals and affect information were distinguishable, which is particularly promising because the two processes move an avatar's brows in a competing manner. This brings the state of the art one step closer to the goal of an automatic English-to-ASL translator.

    Automated Technique for Real-Time Production of Lifelike Animations of American Sign Language

    Get PDF
    Generating sentences from a library of signs implemented through a sparse set of key frames derived from the segmental structure of a phonetic model of ASL has the advantage of flexibility and efficiency, but lacks the lifelike detail of motion capture. These difficulties are compounded when faced with real-time generation and display. This paper describes a technique for automatically adding realism without the expense of manually animating the requisite detail. The new technique layers transparently over and modifies the primary motions dictated by the segmental model, and does so with very little computational cost, enabling real-time production and display. The paper also discusses avatar optimizations that can lower the rendering overhead in real-time displays

    Evaluating importance of facial expression in american sign language and pidgin signed english animations

    No full text

    TR-2015001: A Survey and Critique of Facial Expression Synthesis in Sign Language Animation

    Full text link
    Sign language animations can lead to better accessibility of information and services for people who are deaf and have low literacy skills in spoken/written languages. Due to the distinct word-order, syntax, and lexicon of the sign language from the spoken/written language, many deaf people find it difficult to comprehend the text on a computer screen or captions on a television. Animated characters performing sign language in a comprehensible way could make this information accessible. Facial expressions and other non-manual components play an important role in the naturalness and understandability of these animations. Their coordination to the manual signs is crucial for the interpretation of the signed message. Software to advance the support of facial expressions in generation of sign language animation could make this technology more acceptable for deaf people. In this survey, we discuss the challenges in facial expression synthesis and we compare and critique the state of the art projects on generating facial expressions in sign language animations. Beginning with an overview of facial expressions linguistics, sign language animation technologies, and some background on animating facial expressions, a discussion of the search strategy and criteria used to select the five projects that are the primary focus of this survey follows. This survey continues on to introduce the work from the five projects under consideration. Their contributions are compared in terms of support for specific sign language, categories of facial expressions investigated, focus range in the animation generation, use of annotated corpora, input data or hypothesis for their approach, and other factors. Strengths and drawbacks of individual projects are identified in the perspectives above. This survey concludes with our current research focus in this area and future prospects

    Spatio-temporal centroid based sign language facial expressions for animation synthesis in virtual environment

    Get PDF
    Orientador: Eduardo TodtTese (doutorado) - Universidade Federal do Paraná, Setor de Ciências Exatas, Programa de Pós-Graduação em Informática. Defesa : Curitiba, 20/02/2019Inclui referências: p.86-97Área de concentração: Ciência da ComputaçãoResumo: Formalmente reconhecida como segunda lingua oficial brasileira, a BSL, ou Libras, conta hoje com muitas aplicacoes computacionais que integram a comunidade surda nas atividades cotidianas, oferecendo interpretes virtuais representados por avatares 3D construidos utilizando modelos formais que parametrizam as caracteristicas especificas das linguas de sinais. Estas aplicacoes, contudo, ainda consideram expressoes faciais como recurso de segundo plano em uma lingua primariamente gestual, ignorando a importancia que expressoes faciais e emocoes imprimem no contexto da mensagem transmitida. Neste trabalho, a fim de definir um modelo facial parametrizado para uso em linguas de sinais, um sistema de sintese de expressoes faciais atraves de um avatar 3D e proposto e um prototipo implementado. Neste sentido, um modelo de landmarks faciais separado por regioes e definido assim como uma modelagem de expressoes base utilizando as bases faciais AKDEF e JAFEE como referencia. Com este sistema e possivel representar expressoes complexas utilizando interpolacao dos valores de intensidade na animacao geometrica, de forma simplificada utilizando controle por centroides e deslocamento de regioes independentes no modelo 3D. E proposto ainda uma aplicacao de modelo espaco-temporal para os landmarks faciais, com o objetivo de observar o comportamento e relacao dos centroides na sintese das expressoes base definindo quais pontos geometricos sao relevantes no processo de interpolacao e animacao das expressoes. Um sistema de exportacao dos dados faciais seguindo o formato hierarquico utilizado na maioria dos avatares 3D interpretes de linguas de sinais e desenvolvido, incentivando a integracao em modelos formais computacionais ja existentes na literatura, permitindo ainda a adaptacao e alteracao de valores e intensidades na representacao das emocoes. Assim, os modelos e conceitos apresentados propoe a integracao de um modeo facial para representacao de expressoes na sintese de sinais oferecendo uma proposta simplificada e otimizada para aplicacao dos recursos em avatares 3D. Palavras-chave: Avatar 3D, Dados Espaco-Temporal, Libras, Lingua de sinais, Expressoes Faciais.Abstract: Formally recognized as the second official Brazilian language, BSL, or Libras, today has many computational applications that integrate the deaf community into daily activities, offering virtual interpreters represented by 3D avatars built using formal models that parameterize the specific characteristics of sign languages. These applications, however, still consider facial expressions as a background feature in a primarily gestural language, ignoring the importance that facial expressions and emotions imprint on the context of the transmitted message. In this work, in order to define a parametrized facial model for use in sign languages, a system of synthesis of facial expressions through a 3D avatar is proposed and a prototype implemented. In this way, a model of facial landmarks separated by regions is defined as a modeling of base expressions using the AKDEF and JAFEE facial bases as a reference. With this system it is possible to represent complex expressions using interpolation of the intensity values in the geometric animation, in a simplified way using control by centroids and displacement of independent regions in the 3D model. A spatial-temporal model is proposed for the facial landmarks, with the objective of define the behavior and relation of the centroids in the synthesis of the basic expressions, pointing out which geometric landmark are relevant in the process of interpolation and animation of the expressions. A system for exporting facial data following the hierarchical format used in most avatars 3D sign language interpreters is developed, encouraging the integration in formal computer models already existent in the literature, also allowing the adaptation and change of values and intensities in the representation of the emotions. Thus, the models and concepts presented propose the integration of a facial model to represent expressions in the synthesis of signals offering a simplified and optimized proposal for the application of the resources in 3D avatars. Keywords: 3D Avatar, Spatio-Temporal Data, BSL, Sign Language, Facial Expression

    Data-driven Synthesis of Animations of Spatially Inflected American Sign Language Verbs Using Human Data

    Full text link
    Techniques for producing realistic and understandable animations of American Sign Language (ASL) have accessibility benefits for signers with lower levels of written language literacy. Previous research in sign language animation didn’t address the specific linguistic issue of space use and verb inflection, due to a lack of sufficiently detailed and linguistically annotated ASL corpora, which is necessary for modern data-driven approaches. In this dissertation, a high-quality ASL motion capture corpus with ASL-specific linguistic structures is collected, annotated, and evaluated using carefully designed protocols and well-calibrated motion capture equipment. In addition, ASL animations are modeled, synthesized, and evaluated based on samples of ASL signs collected from native-signer animators or from signers recorded using motion capture equipment. Part I of this dissertation focuses on how an ASL corpus is collected, including unscripted ASL passages and ASL inflecting verbs, signs in which the location and orientation of the hands is influenced by the arrangement of locations in 3D space that represent entities under discussion. Native signers are recorded in a studio with motion capture equipment: cyber-gloves, body suit, head tracker, hand tracker, and eye tracker. Part II describes how ASL animation is synthesized using our corpus of ASL inflecting verbs. Specifically, mathematical models of hand movement are trained on animation data of signs produced by a native signer. This dissertation work demonstrates that mathematical models can be trained and built using movement data collected from humans. The evaluation studies with deaf native signer participants show that the verb animations synthesized from our models have similar understandability in subjective-rating and comprehension-question scores to animations produced by a human animator, or to animations driven by a human’s motion capture data. The modeling techniques in this dissertation are applicable to other types of ASL signs and to other sign languages used internationally. These models’ parameterization of sign animations can increase the repertoire of generation systems and can automate the work of humans using sign language scripting systems

    Data-Driven Synthesis and Evaluation of Syntactic Facial Expressions in American Sign Language Animation

    Full text link
    Technology to automatically synthesize linguistically accurate and natural-looking animations of American Sign Language (ASL) would make it easier to add ASL content to websites and media, thereby increasing information accessibility for many people who are deaf and have low English literacy skills. State-of-art sign language animation tools focus mostly on accuracy of manual signs rather than on the facial expressions. We are investigating the synthesis of syntactic ASL facial expressions, which are grammatically required and essential to the meaning of sentences. In this thesis, we propose to: (1) explore the methodological aspects of evaluating sign language animations with facial expressions, and (2) examine data-driven modeling of facial expressions from multiple recordings of ASL signers. In Part I of this thesis, we propose to conduct rigorous methodological research on how experiment design affects study outcomes when evaluating sign language animations with facial expressions. Our research questions involve: (i) stimuli design, (ii) effect of videos as upper baseline and for presenting comprehension questions, and (iii) eye-tracking as an alternative to recording question-responses from participants. In Part II of this thesis, we propose to use generative models to automatically uncover the underlying trace of ASL syntactic facial expressions from multiple recordings of ASL signers, and apply these facial expressions to manual signs in novel animated sentences. We hypothesize that an annotated sign language corpus, including both the manual and non-manual signs, can be used to model and generate linguistically meaningful facial expressions, if it is combined with facial feature extraction techniques, statistical machine learning, and an animation platform with detailed facial parameterization. To further improve sign language animation technology, we will assess the quality of the animation generated by our approach with ASL signers through the rigorous evaluation methodologies described in Part I
    corecore