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ABSTRACT: Generating sentences from a library of signs implemented through a sparse set of key 

frames derived from the segmental structure of a phonetic model of ASL has the advantage of flexibility 

and efficiency, but lacks the lifelike detail of motion capture. These difficulties are compounded when 

faced with real-time generation and display. This paper describes a technique for automatically adding 

realism without the expense of manually animating the requisite detail. The new technique layers 

transparently over and modifies the primary motions dictated by the segmental model, and does so with 

very little computational cost, enabling real-time production and display. The paper also discusses 

avatar optimizations that can lower the rendering overhead in real-time displays. 

1. Introduction 

One approach to sign language synthesis creates animations using a library of signs (Hanke, et al., 2011) 

(Delorme, Filhol, & Braffort, Animation Genreation Process for Sign Language Synthesis, 2009 ) 

(Efthimiou, et al., 2009) (Wolfe, McDonald, & Schnepp, An Avatar to Depict Sign Language: Building from 

Reusable Hand Animation, January 10-11, 2011) (Gibet, Courty, Duarte, & Le Naour, 2011). The signs are 

procedurally combined into phrases and sentences using tags akin to annotation tags used in linguistic 

analysis of sign language. In a sign language, the phonological parameters of lexical items can change 

depending on their usage, and new motions can be layered, depending on structural features of the 

discourse, such as posing questions or using constructed dialogue (Metzger, 1995) (Wilbur, 2000). 

As distinct natural languages with individual grammars and structures, sign languages are used as 

primary languages by the Deaf worldwide. Sign synthesis is a promising method both for Deaf-hearing 

communication through computer translation, and also for their study and preservation. To address 



these opportunities, a variety of projects have striven towards the goal of synthesizing animations of 

sign language. 

Such efforts have exploited a range of different animation techniques from key-frame animation 

(Delorme, Filhol, & Braffort, Animation Genreation Process for Sign Language Synthesis, 2009 ), to 

motion capture (Gibet, Courty, Duarte, & Le Naour, 2011), to procedural motion synthesis (Wolfe, Cook, 

McDonald, & Schnepp, 2011). A more complete review of the current literature on sign synthesis can be 

found in (Courty & Gibet, 2010). Many center on building sign syntheses from libraries of signs that are 

either transcribed by artists or captured from live sign performance. Sign language synthesis brings its 

own unique challenges to animation, as it often imposes rigorous requirements both on the fine detail 

of the motion, as in the fingers for handshapes, and on the flexibility of the motion for editing and 

recombination (R. Brun, Personal Communication, July 12, 2013, London, U.K.).   

Both key-frame and capture techniques are expensive and time-consuming. Motion capture requires 

specialized skills to clean up inherently noisy data and is difficult to edit.  Sign synthesis through key-

frame animation requires artists who have highly trained eyes for human motion. Both techniques 

require experts who are also highly versant in the structure of the target sign language. Because of this, 

some procedural techniques are enormously appealing as they have the potential to augment and speed 

the work of trained animators. 

The rest of this paper is organized as follows: Section 2 introduces the problem of robotic motion as it 

occurs in signing avatars. Section 3 describes a new automated system of spinal movement to alleviate 

robotic motion. Section 4 discusses optimization to aid in real-time rendering of an avatar. Section 5 

covers an experiment to evaluate the spinal system and avatar optimizations, and section 6 analyzes the 

results. Section 7 draws conclusions and suggests future directions. 

2. Challenges  

One of the great challenges of character animation in general is the management of animation keys.  

Manipulating both the poses of an avatar and the timing of movement are greatly simplified by limiting 

the number of keys that describe a motion. This is especially true in sign synthesis, where modifying 

animation keys based on linguistic rules is easier when there are fewer keys. Such sparse animation data 

correlate well to the segmental structure of the Signed Language Phonetic Annotation (SLPA) 

parameters described in (Johnson & Liddell, 2011). Of the current representations available (Sutton, 

2014) (Hanke, An overview of the HamNoSys phonetic transcription system, 2010), the SLPA model was 

found to be the best suited for this task. 

The resulting ease of manipulation is, however, counterbalanced by a lack of realism in the animation.  

The very simplicity of a sparse set of keys afforded by the linguistic parameters limits the natural 

subtlety that one can achieve in the motion. Naturalness has long been a goal in all areas of character 

animation and sign synthesis is no exception. Without the subtle motions of human signing, an avatar 

can become highly robotic. Naturalness in motion is extremely important for the acceptability of 

synthesized sign.    



Robotic signing, the equivalent of robotic synthesized speech, can be off-putting, can distract the viewer 

from the meaning, and can tire viewers in long discourse. In previous studies (Schnepp, A representation 

of selected nonmanual signals in American Sign Language, 2012), participants had no trouble 

understanding the generated sentences, however since the fine details that characterize natural motion 

were missing, the  sentences elicited comments such as “She looks stiff” or “That’s awkward” or “I 

wouldn’t sign it like that”.  

Ironically, linguistic tags offer little help for this problem, because their purpose is to abstract structure 

from the fine details of motion. The SLPA model separates sign into postural and transforming 

segments, analogous to the keys and interpolations of computer animation, though a naïve 

implementation of the model results in animation which lacks the fine details of human motion 

necessary for naturalness and believability in an avatar. The same abstraction that is essential for 

creating signed sentences as animation contributes to the awkwardness of the production.     

Unfortunately, basing animation on the abstraction of the SLPA model is only one contributor to 

awkwardness in sentence production. The following section examines these factors in depth.  

2.1 Contributing Factors to Robotic Motion 

Animations procedurally created from a library of signs based on linguistic parameters naturally create a 

sparse distribution of keys, which makes it easy to change the animations based on linguistic context. 

However, that same sparseness of keys can easily lead to robotic motion. The paucity of keys can come 

from a variety of factors, partly due to the fact that the SLPA model is underdetermined with respect to 

generating animations. Other factors have to do with ignoring kinematics and animation principles. The 

following paragraphs examine each factor in turn. 

2.1.1 Under-determination in phonetic models   

Since the extra-linguistic motions are seldom specified, creating animations by relying exclusively on 

geometric interpretations of the designations in the SLPA model will create animations where some 

joints of the avatar's body remain stationary. However, when a human produces the sign, these same 

joints would be in motion.   

For example, the ASL sign THINK only specifies the behavior of the strong hand (index finger extended 

and thumb and other fingers fully flexed) and contact between the index finger and the ipsilateral 

temple on the strong side of the body. The contact information determines the behavior of the strong 

arm. However, because there is no linguistically significant non-manual signal (NMS) on the spinal 

column, the torso and neck will not move during the production of the sign. The resulting animation is a 

signing “pole with arms” which does not have a natural appearance. 

2.1.2 Lack of small-scale motion  

In real life no part of the human body is ever truly stationary. Perlin addressed this by adding small 

amounts of random motion to the joints to keep the avatar alive (Perlin, 1996). However, random 



motion added to animations of sign language can interfere with the subtleties 

Moreover, the parameters of the noise must be carefully chosen or the avatar will tremble or jerk 

unrealistically. 

2.1.3 Lack of anticipation, follow
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In anticipation, a preparatory motion shifts the animated component slightly in the opposite direction 
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to see the motion, they will more likely perceive it. Second, since the anticipatory motion draws the 

moving component in the opposite direction from the intended one, the overall duration and trajectory 

is extended, thus emphasizing and drawing more attention to the motion. Figure 1 shows three frames 

from an animation of the ASL sign SUCCESS. The main motion of the head is upwards. However, there is 

a slight anticipatory downward motion.  

   

Neutral pose, anticipatory motion, followed by intended motion in the ASL sign SUCCESS.
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on examples from multiple corpora, and was reviewed for legibility by members of the Deaf community 

in the Chicago area. 

Fig. 

Initial 

Final 
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intended motion. In ASL it occurs in two

between the hands. This produces movement, however subtle, in the 

trace close-up of the wrist in the weak 

Fig. 3. Secondary action in weak hand in the ASL sign AG

Red boxes show weak hand/wrist motion.
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Fig. 2. Vertical motion in ASL sign NOW.   

Initial posture is at A. B is the anticipation.  

Final posture is at C. D is the follow-through. 

principle, secondary action, describes movement that happens in addition to the 

intended motion. In ASL it occurs in two-handed signs like WORK and AGAIN where there

movement, however subtle, in the weak hand. Fig. 3

the weak hand during the final posture of the ASL sign AGAIN

 

Secondary action in weak hand in the ASL sign AGAIN.  

Red boxes show weak hand/wrist motion. 

These principles were first applied to computer animation in the late 1980s in computer

when Disney-trained artists began using computer animation packages

features such as Cars and Ratatouille are appealing and effective in conveying 

motion and emotion through computer-assisted hand animation, they require an enormous amount of 

attention to animation detail and are expensive to produce.  

on examples from multiple corpora, and was reviewed for legibility by members of the Deaf community 

principle, secondary action, describes movement that happens in addition to the 

handed signs like WORK and AGAIN where there is contact 

3 shows a motion 

AGAIN. 

These principles were first applied to computer animation in the late 1980s in computer animated short 

trained artists began using computer animation packages 

are appealing and effective in conveying 

enormous amount of 



For sign synthesis, one must remember that these principles were generally exaggerated quite 

extensively for cartoon animation; however, they do describe physical processes that our bodies 

perform.  Therefore, while not exaggerated in the way that the Disney artists originally conceived, these 

aspects of motion are still critical to the lifelike appearance of the movement. 

2.1.4 Overuse of inverse kinematics  

A technique that facilitates quick results when animating by hand is inverse kinematics (IK). IK allows the 

animator to specify the location of the last component, or end-effector, in a hierarchy. The rotations of 

each component between the first and last are automatically computed (Tolani, Goswami, & Badler, 

2000). It is possible to specify various constraints in order to achieve a more natural body pose. While 

this technique is faster than manually adjusting each component in the hierarchy, problems arise when 

attempting to use IK for upper body motion. The result is often a marionette-like motion where the 

trajectory of the end-effector is linear, rather than a natural trajectory of an arc. Fig. 4 compares two 

implementations of a deictic point in ASL. The avatar on the left uses forward kinematics, not IK, for the 

interpolation, and the hand follows an arced trajectory. The elbow position is relatively stationary. The 

avatar on the right uses IK to create the motion. To maintain the linear trajectory, the elbow skates 

backwards in an awkward manner. The difference is marked by the yellow highlight on the elbow. 

  

Fig. 4. FK versus IK. 

In addition, IK techniques can often force joints into unrealistic configurations due to overly constraining 

the hand to a fixed position, e.g. vertical in front of the body. Hand positions are always somewhat 

approximate rather than geometrically perfect, and, especially in natural signing, comfort and efficiency 

will modify the orientation of the hand enough to make it comfortable but not too much so as to lose 

the meaning of the sign. 

2.1.5 Linear Interpolation of Joint Angles 

Linear interpolation causes unnatural and abrupt changes in velocity not found in nature. Linear joint 

interpolation leaves no room for smooth acceleration or deceleration that are the hallmark of natural 

human motion derived from muscular forces.   

This phenomenon will appear in almost every animated sign, yielding abrupt changes in speed and 

direction that give a very robotic feel to the motion.  



2.1.6 Synchronicity   

In the transition after a hold, not all body joints begin moving at the same time (Whitaker & Halas, 

2008). When turning to the side, as in a role shift, the eyes move first, followed by the head, neck, 

shoulders and spinal column. Further, there is a tendency for the hand to complete its transition to a 

new handshape well before the arm arrives at its new location as can be seen in Fig. 5 which depicts the 

ASL sign INFORM. Unfortunately, the SLPA model does not capture this internal timing in a sign. A naïve 

interpolation between postures in a sign results in a synchronous motion that is perceived as being stiff.    

 

Fig. 5. ASL sign INFORM:  

Final handshape at B; final position at C (Poor, 2008). 

2.2 Alternatives to Reducing Robotic Motion 

It is possible to overcome these challenges through careful manual animation, but this is a labor- 

intensive process requiring highly skilled artists. Moreover, the animators must have some knowledge of 

sign language; a rather rare combination. Results from such skilled animators are highly realistic, 

although time consuming and very expensive. Moreover, unless the project is structured very carefully, 

the linguistic components of the discourse can be buried in the kinetic motions produced by the 

animator as they layer on the realistic variations characteristic of human motion.    

The separation of linguistic motion from kinetic motion is absolutely critical if the synthesized sign is to 

be able to change according to morphological rules. It also is important if the animations will be used for 

linguistic testing, analysis and verification. The problem is that the motion in animated signs is 

influenced by both linguistics and the natural kinematics of human motion. The linguistic components of 

a sign and its containing discourse determine the gross movements of the sign, but the kinetic motions 

of the body determine the naturalness of the sign’s production. 

This separation can be achieved by using procedural methods to aid animators not only in creating 

individual signs, but also in combining and modifying them to build longer discourse.  The goal is to infer 

as much as possible by drawing on the knowledge of human kinematics to produce lifelike, convincing 

motion that adheres to the SLPA model of American Sign Language. 

Using procedural methods shortens the development cycle by aiding animators. A new technique as 

part of a procedural/hybrid system is proposed, which still relies on hand animation for the sparse keys 



following the segmental structure dictated of the SLPA model, though addresses several problems 

mentioned in the last section through procedural means. When creating an animation of an individual 

lexical item for the library, the linguistic components of the sign are recorded for each key to facilitate 

later modification and recombination. Longer discourse is then built by applying procedures dictated by 

linguistic tags to drive the automatic recombination of hand-animated signs. Finally, procedural 

techniques add the kinetic motions.  

3. A New Automated System for Spinal Movement 

The first part of the proposed solution deals with the lack of motion in the spine as the avatar's arms 

move according to the SLPA model. The proposed extension will work with any limb IK solution, either 

iterative or analytic (McDonald, et al., 2002), and is applied before running the IK solution itself. It 

assumes that the spine and collar bones of the model are not involved in the IK chain.   

While iterative IK systems do allow for the extension of the IK chain through the spine to the hips of the 

model, these systems become increasingly slower and more difficult to control as the chain becomes 

longer. Other systems separate the spine, shoulder and arm into separate IK chains that can be coupled 

to let the spine react to the arm motion more automatically (Paolo & Ronan, 2004), (Elliott, Glauert, 

Kennaway, Marshall, & Safar, 2008).  While they do avoid longer individual IK chains, such systems 

markedly increase the complexity of the computation.  

The movement of the arms and torso have different purposes in the human body, and, correspondingly, 

in animation. The motion of the torso supports arm movement and usually precedes it. Thus, the arm 

motion will follow the torso temporally. Long IK chains tend to remove this timing sequence, and in fact 

give reverse impression that the arm is pulling on or leading the torso, resulting in the aforementioned 

marionette effect. Moreover, long IK chains produce a complex collection of joint rotations that cannot 

be easily staggered temporally to reduce synchronicity. 

The application presented in this paper had three requirements that led to a more direct solution: 

1. The IK system (McDonald, et al., 2002) is an analytic solution tailored to the human arm.  An 

analytic spine solution was desired as well, so as to avoid an increased computational overhead. 

2. A solution tailored to the specific type of spine motion discussed above was desired, rather than 

a more general spine solution. It was this fact that made requirement 1) easier to satisfy. 

3. The aim was to provide a solution that allowed additional independent spine control. The 

solution serves as a starting point for the artist to speed workflow, but should not inhibit other 

scripted or automated spine motions such as role shifts. 

The last of these three requirements is critical. The new extension is intended to be an assist to 

animators, rather than to assume sole control over the spine. Animators can still control the spine 

independently of this IK extension. It provides a good first estimate for the spinal movement through an 

automated system that will enliven the spine, eliminating one of the causes of robotic motion. 



With an IK chain that solves for joint angles from the shoulder to the hand, the question becomes, 

“What kinds of movement will be most natural to use as a sensible default for the spine?”.  Humans 

move their spines in a myriad of purposeful ways, and ASL is no exception to this, as spinal non-manual 

signals are an integral part of the language.  

In the absence of purposeful spinal motion, which would normally be animated separately by the artist, 

one of the main functions of the spine is to extend and enhance the range of motion of the arm.  

Therefore, this new extension uses the reach of the arm to cue the spinal motion. The greater the 

distance of the reach, the more the spine will bend to assist the arm.  Additionally, sequencing the 

animation keys involved will eliminate the perception of the arm dragging the spine in the style of a 

marionette. This will be discussed in detail in Section 3.5. 

3.1 Movement of the Spine  

When using the motion of the spine to assist the reach of the arm, the most direct solution is to use the 

position of the end-effector's target from the IK solution. The farther that target is from the trunk of the 

body the more the spine/shoulder will bend to assist the motion, and the farther the target lies across 

the body, the more the spine will twist to facilitate the reach. Thus, the desired position of the hand will 

be assisted by both a bending action that increases the range of the hand's reach, and a twisting action 

which facilitates the lateral movement of the hand across the body. 

The magnitude of this effect is highly dependent on the distance of the arm reach, though when the 

hands are within the more proximal regions of sign space, there will be very little effect on the spine.  

This displacement should, however, increase rapidly when the hands begin to reach beyond the zone of 

comfort, and should taper off smoothly as one approaches the limit of the spine's rotation.  

The rotation of the spine will also depend equally on both hands, so the computation must consider the 

positions of both the left and right IK targets symmetrically. Moreover, the interaction of the hands with 

the spine differs for the torso bend and the torso twist. In fact, there are at least three distinct 

influences which must be blended smoothly: 

1. Reaching with one or both hands will bend the torso towards the target(s) and the effect will be 

greatest when both hands are directed towards the same target. Thus, the bend is additive for the 

two arms. 

2. Lateral motion of a hand across the body will cause the torso to twist and rotate the shoulder 

towards the direction of motion. This effect is also cumulative. If the arms go in the same direction, 

the effect will be amplified, and if in opposite directions, they will cancel each other. 

3. In addition to the torso bend, when one hand reaches out from the body, the torso will also twist 

to move the corresponding shoulder towards the target. This effect is different from the previous 

two in that equal motion between the two arms will cancel out the effect. 

To build the extension, it is assumed that the coordinate system on the avatar's torso is oriented with 

the x-axis towards the right, the y-axis forward and the z-axis up. Consider the right and left articulator 



targets AR and AL, and the corresponding neutral shoulder positions SR and SL.  The displacement vectors 

from each shoulder are built to the corresponding target as  
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Let Vreach be the average of these two vectors: 
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To calculate both the bend angle and direction, the torso must be rotated in the direction of Vreach. The 

bend angle is computed by first normalizing by the arm's length, and then applying a smoothstep 

function (Wyvill, McPheeters, & Wyvill, 1986) to both mute its contribution near the body and smoothly 

clamp the effect at the end of the arm's range: 
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where c0 is a tuning parameter that that controls the magnitude of the effect, and 
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The axis of rotation is given by the cross product of the arm direction with the vertical axis vector Z = <0, 

0, 1>.   
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The matrix for a rotation of θbend about the axis abend is formed in the usual manner, and if the avatar 

uses Euler angles for joint control, the angles can be extracted as in (Shoemake, 1994). 

In the case of a reach up or down, there will be no effect, thus will be necessary to rely on the shoulder 

to extend the reach. One could extend this easily to arch the back for such a reach, however that is 

beyond the scope of the present work. 

For the twist, a more involved combination of the two wrist displacement vectors will be needed, since 

the twist depends on the x and y positions of the hand differently:  

, , , , ,  ,  0twist R x L x R y L yV V V V V= + −  

This calculation adds in the x-direction and cancels in the y.   

The twist angle is obtained by normalizing Vtwist by twice the arm length, since the x-term is a sum rather 

than an average, and taking the dot product with a constant weighting vector Vw 

 , ,  0
w w w

V X Y=  



whose components determine the amount of twist contributed by both the lateral and distal movement 

of the arms.  This dot product then passes through the same smoothstep function as before to apply the 

effect gradually when the hands are in close proximity to their respective shoulders, and to smoothly 

clamp the effect at the far range of motion: 

1 smoothstep
2

twist
twist w
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V
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L
θ
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Here again, c1 determines the overall size of the twist. 

3.2 Spreading the Effect Over the Spine 

The human spine is a chain of 24 articulating vertebrae which are seldom modeled independently in an 

avatar. Most often the articulation of the spine is approximated by three or more conventional 

rotational joints, which correspond to the major subdivisions of the spine into the cervical, thoracic and 

lumbar sections (Saladin, 2007). The present avatar has three joints in its back which correspond roughly 

to the base of the lumbar, the articulation between the lumbar and the thoracic and, finally, an 

articulation about 2/3 of the way up the thoracic region, creating lower, middle and upper spine joints.  

The cervical portion of the spine is subsumed by the neck joints which are not considered here.  

For basic bending and twisting motions, the human vertebrae rotate in concert. In the model, the 

division of the desired rotation among the set of joints in the spine is automated by weighting each 

joint's rotation according to the relative range of motion in the corresponding subdivision of the spine. 

For these ranges, see (Reese, 2010). Thus, for example, in the spine bend, one would set:  
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where the weighting coefficients wi sum to 1. These coefficients will differ for the bend and twist angles 

since the ranges of motion in the spine are different for each of these directions. It is also important to 

note that for the torso bend, these weights are easiest to apply if Euler angles are used for the torso 

rotation since they nicely correspond to the usual ranges of motion cited in most medical texts such as 

flexion-extension, bending and rotation (twist). 

3.3 Shoulder Movement 

The movement of the human shoulder is created by two primary articulations, the acromioclavicular and 

sternoclavicular joints that connect the clavicle, scapula and the rib cage (Saladin, 2007). It is most often 

approximated in an avatar using a rotational joint placed at the intersection of the spine and the neck, 

and having two primary axes of rotation. The vertical rotation allows the raising and lowering of the 

shoulder, while the anteroposterior rotation moves the shoulder forwards and backwards. While the 

clavicular joints also have a small amount of rotation along the longitudinal axis to twist the shoulder, 

this is often ignored in favor of incorporating the motion directly in the shoulder joint itself. 



The computation for automatically moving the shoulder is somewhat simpler than for the torso, due to 

the nature of the joint. Reaching out, in the 

while reaching up or down will move the

displacement vectors VR and VL as before, except that the 

for the two movements. Each is normalized and is passed through a smoothing function

where the ci determine the range of the shoulder motion.

3.4 Results of the Extension 

Fig. 6 displays an example of Paula, 

raw posture derived from the original IK limb computation. The second displays the more natu

posture achieved by the spine and shoulder extensions described above.  

Fig. 6. Reaching posture of the model. Image at left is without the IK extension. 

 Image at right is with the extension.

3.5 Timing 

The last two sections addressed one of the most important aspects of avoiding robotic behavior in the 

model.  Maintaining motion in all of the joints in the spine alleviates the "pole

gives the avatar a more life-like appearance. There is, however, one

worse by this solution when used with a set of very sparse key

at the same time and come to rest synchronously. Asynchronous timing of linguistic components of sign 

has been investigated (Filhol, 2011)

extra-linguistic motions that occur in concert with a signer's arm movements.

The human body, as a complex system of joints, bones and electrical impulses simply never moves with 

such precision and coordination. The joints begin moving in progression, separated by such short 

The computation for automatically moving the shoulder is somewhat simpler than for the torso, due to 

the nature of the joint. Reaching out, in the y-direction, from the model will rotate the shoulder forward, 

while reaching up or down will move the shoulder accordingly. The computation follows from the same 

as before, except that the y and z coordinates are considered

for the two movements. Each is normalized and is passed through a smoothing function
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determine the range of the shoulder motion. 

 

, the present avatar, reaching across her body. The first image is the 

raw posture derived from the original IK limb computation. The second displays the more natu

posture achieved by the spine and shoulder extensions described above.   

  

Reaching posture of the model. Image at left is without the IK extension. 

Image at right is with the extension. 

s addressed one of the most important aspects of avoiding robotic behavior in the 

model.  Maintaining motion in all of the joints in the spine alleviates the "pole-with-arms" syndrome and 

like appearance. There is, however, one aspect that is made somewhat 

worse by this solution when used with a set of very sparse keys. All the avatar's joints will start moving 

the same time and come to rest synchronously. Asynchronous timing of linguistic components of sign 

(Filhol, 2011). The work presented here extends these timing considerations to 

linguistic motions that occur in concert with a signer's arm movements. 

The human body, as a complex system of joints, bones and electrical impulses simply never moves with 

such precision and coordination. The joints begin moving in progression, separated by such short 

The computation for automatically moving the shoulder is somewhat simpler than for the torso, due to 

direction, from the model will rotate the shoulder forward, 

shoulder accordingly. The computation follows from the same 

are considered separately 

for the two movements. Each is normalized and is passed through a smoothing function: 

reaching across her body. The first image is the 

raw posture derived from the original IK limb computation. The second displays the more natural 

Reaching posture of the model. Image at left is without the IK extension.  

s addressed one of the most important aspects of avoiding robotic behavior in the 

arms" syndrome and 

aspect that is made somewhat 

s. All the avatar's joints will start moving 

the same time and come to rest synchronously. Asynchronous timing of linguistic components of sign 

. The work presented here extends these timing considerations to 

The human body, as a complex system of joints, bones and electrical impulses simply never moves with 

such precision and coordination. The joints begin moving in progression, separated by such short 



intervals that the effect is not easily noticeable. However, if this progression is missing, the avatar will 

appear robotic. The progression used arose from a human motion study with an expert mime (Sozio, 

1989), and is the following: 

1. The eye-gaze shifts to a focus point 

2. The neck turns to follow 

3. The spine and hips shift  

4. The clavicle moves 

5. The arm moves 

In terms of animation timing, these steps may be separated by only one or two frames, though the 

difference is subtly noticeable and can make a large difference in the naturalness of the motion. In fact, 

for IK systems, this progression is one of the main causes of the marionette effect mentioned earlier 

where the arm appears to drag the entire upper body. Being so used to the progression, in its absence, 

one tends to perceive that the arm is in fact leading the rest of the body.  

The timing solution itself is a simple heuristic, but requires special handling in an animation system. 

Coming into or out of any posture all that is needed is to stagger the spine, shoulder and arm joints with 

a small amount of time between key frames. At 30fps, at least one or two frames between each key 

would be desired.  For example, while the animator intends that the motion begin, for example, at 

frame 45, the system may actually start the spine motion at 43, the shoulder at 45 and the arm at 47. 

This can be done transparently if the keys in the animation are sparse, but is more difficult with many, 

tightly packed keys. The resulting effect is to break up the synchronicity of the movement and give it a 

more natural muscular appearance.  

Going further, this progression can be broken down to a finer granularity. The motion of the spine itself 

is not completely synchronous either, because the hips tend to move before the upper spine as they 

initiate the motion. So, in a large spinal motion such as occurs in a role shift for constructed dialogue, 

the shift will appear much more natural if the spinal joints are staggered slightly.  Since there is a much 

tighter relationship between the spine joints, the corresponding key distribution will also be tighter. 

3.6 Handling Held Postures 

An additional contribution to robotic behavior from the SLPA model is the representation of postural 

segments. While the model does not dictate a complete cessation of motion, it does not, and should not, 

dictate the autonomous motion that occurs while joints are at rest, however momentarily. Likewise, 

joints that are not involved in the sign, and have no linguistic specification, will remain held. An example 

of this is the set of joints in the weak hand and arm for one-handed signs. The problem is that the 

human body is simply incapable of coming completely to rest, unlike a mechanical robot. An avatar 

perfectly at rest is perceived as a still image and not a 3D animation.  

To address this, a small component of random movement (noise) is added to each of the major joints in 

the avatar as in (Perlin, 1996). This causes the avatar's joints to vary slightly over time. The challenge of 

applying this technique is in determining the amplitude and the frequency of the noise. Noise with high 



amplitude and/or frequency will give the avatar a very jittery or shaky appearance and will be worse 

than no noise application at all. The solution is to tune the noise so that its effect is just above the 

threshold of visibility, both in amplitude and frequency. The following guidelines from human anatomy 

are used to configure noise: 

1. The amplitude of the noise should decrease for more distal joints since the muscles are generally 

smaller. 

2. The frequency of the noise should increase for more distal joints.  This can be seen, for example, in 

the trembling of an extended hand as one attempts to hold it still.   

3. The amplitude of the noise will be greater when a part of the body is not under purposeful control.  

For example, in a one-handed sign, the strong hand will have random motion with much smaller 

amplitude than the weak hand.      

4. Optimizing the Avatar for Real-Time Display 

The goal of efficient real-time display has guided the formation of the techniques presented here for 

extending the analytic IK algorithm to the Avatar’s torso. Rather than working with more traditional 

optimization based or iterative techniques, the present models are analytic in nature with extremely low 

computational overhead for the rendering system, as all the following components have computational 

complexity of O(1):   

1. The analytic IK method for the human arm 

2. The extension of the IK method to the torso 

3. The noise algorithm 

 

The purpose of these techniques is to aid an animator in the time-consuming task of creating animation 

containing motion that is naturally lifelike. Creating such motion is a skill that requires years to master. 

Even for skilled practitioners, animating a sign can require many hours to complete. Automatically  

livening the torso of the Avatar serves as an aid to the animators, shortening the animation process. The 

system automatically calculates some of the base movement that the animator can then build on.   

One of the overarching long-term goals of this research is to make life easier for the animator by 

extending these techniques and combining them with other models of human motion to automatically 

increase the naturalness of the generated sign. Such effort saving techniques will, however, come with 

an increased burden on computer hardware. Reducing the rendering complexity of the scene gives us 

additional processor and GPU overhead that can be used to incorporate such techniques. To this end, 

ways that could simultaneously lower the rendering complexity and better balance the real-time 

performance of the system without sacrificing the visual fidelity of the avatar have been investigated. 

ASL synthesis places unique burdens on avatars due to the high fidelity required to communicate the full 

range of ASL's expressiveness. One of the primary challenges is the range of facial NMS which form key 

linguistic components in ASL at all levels. In fact, facial NMS can radically change the meaning of 

individual lexical items as well as whole phrases in addition to their more universal role in human 

communication to express affect.  Because of this, the fidelity of the avatar's facial model is paramount, 



and non-realtime ASL rendering systems will often ironically use more polygons for the face, mouth and 

tongue than they do on the arms and hands of the model. Consider the initial composition of the avatar 

that has been long used in this project for offline rendering. The head, hair, teeth and eyelashes 

contained over 70% of the avatar's polygons. In particular, the eyelashes are important for facial NMS as 

they emphasize the eyes.  

Table 1:  Polygon counts for main avatar components 

Object Polygon Count 

Eyelashes 17,356  

Tongue and Teeth 8,929  

Hair 8,088  

Head and Face 6,180  

Sweater 8,300  

Hands (each) 3,922  

 

Unfortunately, such complexity presents challenges for real-time display, both in the raw number of 

polygons and in the number of discrete sub-objects contained in the model. Real-time systems are best 

optimized when large collections of polygons can be pushed to the renderer all at once (Shreiner, 

Sellers, Kessenich, & Licea-Kane, 2013). 

The goal was thus to optimize the avatar for real-time display, though without any noticeable reduction 

in fidelity. The first effort, which focused on the model's hair, drives home the restrictiveness of this 

goal. The hair seemed a promising candidate for optimization because it is not linguistically significant 

and contains 12% of model's polygons. An attempt was made to optimize the polygonal meshes by 

merging the closest vertices using a standard mesh decimation tool. Although this optimization 

eliminated 6,000 polygons, the results were not judged aesthetically acceptable. The profile of the hair 

had a jagged appearance (Fig. 7). Since it was not possible to find an acceptable balance between 

polygon reduction and appearance, it was decided that the hair should be left alone turning attention to 

the eyelashes, the smallest objects on the model, but which used the highest percentages of the 

polygons.  

     

Fig. 7.  Hair before and after optimization. 



4.1 Optimizing eyelashes and teeth

Eyelashes are important linguistically, because the eyes are involved in a large number of NMS, and 

eyelashes emphasize the perimeters of the eye apertures, making them more visible. 

modeled as a set of individual extruded 3D tubes. 

environment, though not practical for real

eyelash polygons are concentrated in a very small portion of the model that in turn occupies a limited 

area of the final render.  

To optimize the eyelashes the individually modeled lashes 

used texture and opacity mapping to convey the appearance of individual lashes. The curved surface 

followed the contour of the original

surface would suffer the disadvantage of billboarding where the object will disappear when se

on. To create realistic variation in lash length and thickness, an artist drew an opacity map that 

determined which parts of the surface would be visible. 

Fig. 8.  Geometry

The revised version of the eyelashes had only 660 polygons in comparison to over 17,000 polygons in 

the initial version. Additionally, the revi

were more natural in appearance (Fig

Fig. 9. 

Similar to the eyelashes, the teeth contained a high number of polygons in a small, hard t

a small display area in the final render. The 

mimicking the contours of the original teeth model (

as in the original the appearance of teeth 

opacity map. Both maps were created from a c

Optimizing eyelashes and teeth 

Eyelashes are important linguistically, because the eyes are involved in a large number of NMS, and 

eyelashes emphasize the perimeters of the eye apertures, making them more visible. They were

extruded 3D tubes. This was satisfactory in an offline rendering 

not practical for real-time rendering. In the current avatar, the thousands of 

eyelash polygons are concentrated in a very small portion of the model that in turn occupies a limited 

To optimize the eyelashes the individually modeled lashes were replaced with four curved surface

mapping to convey the appearance of individual lashes. The curved surface 

original lashes (Fig. 8) and allows the lashes to be seen from all angles. A flat 

surface would suffer the disadvantage of billboarding where the object will disappear when se

. To create realistic variation in lash length and thickness, an artist drew an opacity map that 

determined which parts of the surface would be visible.  

     

Geometry and opacity map of optimized eyelashes. 

The revised version of the eyelashes had only 660 polygons in comparison to over 17,000 polygons in 

the initial version. Additionally, the revised model replaced the somewhat regular lashes with ones that 

Fig. 9).   

     

 Eyelashes before and after optimization. 

Similar to the eyelashes, the teeth contained a high number of polygons in a small, hard t

a small display area in the final render. The newly optimized version of the teeth is a curved surface 

mimicking the contours of the original teeth model (Fig. 10). Instead of attempting to model each tooth 

as in the original the appearance of teeth was created through the application of a texture map and an 

opacity map. Both maps were created from a composite of renders from the original model

Eyelashes are important linguistically, because the eyes are involved in a large number of NMS, and 

They were initially 

s was satisfactory in an offline rendering 

In the current avatar, the thousands of 

eyelash polygons are concentrated in a very small portion of the model that in turn occupies a limited 

curved surfaces and 

mapping to convey the appearance of individual lashes. The curved surface 

and allows the lashes to be seen from all angles. A flat 

surface would suffer the disadvantage of billboarding where the object will disappear when seen edge-

. To create realistic variation in lash length and thickness, an artist drew an opacity map that 

 

The revised version of the eyelashes had only 660 polygons in comparison to over 17,000 polygons in 

regular lashes with ones that 

 

Similar to the eyelashes, the teeth contained a high number of polygons in a small, hard to see area with 

optimized version of the teeth is a curved surface 

). Instead of attempting to model each tooth 

through the application of a texture map and an 

original model. 



Fig. 10.  Geometry 

Through the optimization process the number of polygons in the teeth 

440. For normal viewing purposes the optimized teeth appear essentially the same as the originals (

11).   

Fig. 11

4.2 Lighting 

Careful choices in lighting techniques can help a viewer perceive 

up rendering times. Even lighting can enhance facial features and thus the legibility of facial NMS. 

Unfortunately, each additional light 

system. The lighting calculations for 

(Phong, 1975) which incurs a modest computational cost

lights. Initially, six lights were used, which 

To address this, the authors had to revisit 

point lighting”, which removes unflattering shadows from the subject’s face

facial features that are key to NMS. This system employs the use of a fill light and key light to illuminate 

the subject directly, and a third light to either provide 

silhouette. Usually, the key light is placed in front of the subject to serve as the primary illumination. A 

fill light placed to the side of the subject eliminates distracting shadows, and the third light is si

an accent to open or close specific shadows

For the current avatar, three lights 

the rendering system. To compensate, 

the original and optimized lighting. A nice side effect of the new setup was the removal of the 

symmetry previously cast along the vertical axis of the face.

     

Geometry and texture maps of optimized teeth. 

Through the optimization process the number of polygons in the teeth was reduced from over 8000 to 

purposes the optimized teeth appear essentially the same as the originals (

     

11.  Teeth before and after optimization. 

Careful choices in lighting techniques can help a viewer perceive the avatar more clearly as well as speed 

Even lighting can enhance facial features and thus the legibility of facial NMS. 

Unfortunately, each additional light places increased computational burden on a real-time rendering 

for the current avatar are based on the Phong Illumination Model 

which incurs a modest computational cost that increases linearly with the number of 

, which provided even lighting, but slowed real-time 

the authors had to revisit a technique in practical portrait photography called “three 

ting”, which removes unflattering shadows from the subject’s face, while emphasizing

. This system employs the use of a fill light and key light to illuminate 

the subject directly, and a third light to either provide subtle highlights or emphasize the subject’s 

the key light is placed in front of the subject to serve as the primary illumination. A 

fill light placed to the side of the subject eliminates distracting shadows, and the third light is si

an accent to open or close specific shadows (Napoli & Gloman, 2007). 

 were found insufficient due to the lack of simulated

To compensate, a fourth light was added. Fig. 12 contains sample renderings of 

the original and optimized lighting. A nice side effect of the new setup was the removal of the 

symmetry previously cast along the vertical axis of the face. 
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Fig. 12.  Comparison of lighting setups, at left initial lighting and at right optimized lighting

A final optimization was achieved by 

time and memory costs of additional shadow computations

These optimizations provided a reduction 

These originally comprised 70% of the av

reducing the number of point-lights from 6 to 4 reduced the computational load 

configuration by a third and resulted in higher fidelity lighting on the avatar 

avatar appeared in an evaluation, described in the next section, 
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and natural?   
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5.1 Stimuli 

The test stimuli were sentences from a complete story about a childhood memory as listed in Fig. 13.  

Fig. 14 lists the five sentences in the stimuli as glossed ASL. A complete story is necessary to provide 

context for such linguistic processes as indexing, agreement verbs, and role shifts. Without the proper 

context, these lose their meaning. All of the sentences were grammatically correct. All verbs were 

conjugated and all NMS were present, including syntactic markers. In addition, the sentences contained 

appropriate pragmatics.  

A panel of language experts reviewed several versions of the sentences before approving their final 

form. The panel consisted of three nationally certified interpreters and two native ASL users, including a 

linguist.  

I remember when I was small, I lost my little toy car.  I looked  

everywhere for it. I was so sad. But, surprise!  My brother bought  

me a new one. It was big and blue.  Blue is my favorite color.  I was  

so happy!  

Fig. 13. Story for Evaluation Study (English). 

 

1. LOOKING-BACK REMEMBER ME SMALL, HAVE LITTLE   T-O-Y   C-A-R.   

2. I LOST WHERE.  I SEARCH, SEARCH, CAN’T FIND -- SAD.    

3. BUT SURPRISE -- MY BROTHER GET NEW C-A-R, BIG, BLUE, GIVE-ME.   

4. INFORM-YOU BLUE MY FAVORITE COLOR.   

5. FINALLY HAVE C-A-R   AGAIN -- HAPPY!  

Fig. 14. Story for Evaluation Study (glossed). 

Two versions of each sentence in the story were generated. The control version did not have the 

automatically-generated spinal movement and the treatment the second version did. All of the 

manually-animated poses were present in both versions. If the artist had included an overt spinal pose, 

it was included in both versions of the animation. In addition, both versions included noise, so the spine 

was not entirely stationary, even in the control stimuli. Only the automated aspects of spinal movement 

were missing from the control stimuli. The stimuli are available for viewing at 

http://asl.cs.depaul.edu/video/McDonaldUAIS2015.avi. 

5.2 Participants 

Participants were all adults fluent in ASL. The invitation to participate was posted on several Deaf 

newsgroups as a link to a video, which contained the fingerspelled URL address for the test. 



5.3 Procedure 

The tests were performed online, using SignQUOTE (Schnepp, Wolfe, Shiver, McDonald, & Toro, 2011), 

which facilitates online testing exclusively in ASL. Participants used their own computer, equipped with a 

web cam, to complete the test.  

Participants viewed the informed consent, and indicated their consent by continuing on with the study 

and filling out a brief pre-test questionnaire. In the first section of the test, they viewed the story, one 

sentence at a time, and rated each sentence. They could view a sentence as many times as they wished. 

All of the sentences in this portion of the test included the automated spine movement (See Fig. 15 for a 

screen shot of the SignQUOTE interface). 

 

Fig. 15. Test stimulus for part 1. 

In the second section of the test, participants again viewed the story, one sentence at a time, but saw 

two versions of the sentence, presented side-by-side, as in Fig. 16. To avoid experimental bias, the 

positions of the two stimuli were varied, so the control sometimes appeared on the left and sometimes 

on the right. Participants could view each of the two stimuli as many times as they wished, as both 

stimuli had their own play/pause/rewind buttons. 



 

Fig. 16. Stimulus for part 2. 

5.4 Measures 

For the first section of the test, participants rated each sentence for clarity, grammaticality, 

understandability and naturalness on a five-point Likert scale. Error! Reference source not found.Table 

2 contains a back translation of the questions and the rating scales. For the second section of the test, 

participants clicked the button corresponding to the animation they preferred. 

Table 2: Back translation of questions and rating scales for part 1 

1. Rate the clarity of the sentence. 

Very confusing ● ● ● ● ● 

 

Very clear 

 

2. How grammatical was the sentence? 

Full of errors, unacceptable ● ● ● ● ● 

 

Perfectly correct 

 

3. How understandable was the sentence? 

Very hard ● ● ● ● ● 

 

Very easy 

 

4. How natural was the motion? 

Robotic ● ● ● ● ● 

 

Very human-like 

 

 

5.5 Results 

In total, 22 participants completed the test. The demographic breakdown was as follows: 

• 19 deaf, one hard-of-hearing, and two hearing participants   



• All participants identified either ASL (16 participants) or Pidgin Signed English (6 participants) as 

their preferred language   

• 17 had used ASL all their lives, 3 had used ASL between 5 and 15 years, and two between 1 to 2 

years 

• 17 of the 22 were born deaf 

For part 1 of the test, participants viewed each of the five sentences in the story in turn and answered 

the questions in Error! Reference source not found.Table 2. The results for the four questions are 

displayed in Fig. 17 as Tukey box-and-whisker plots. The median value in each sentence is displayed as a 

dark-blue circle, the range between the first (25%) and third (75%) quartiles is displayed as a thick box, 

and the overall range is given by the whisker lines. The data in this table show that: 

• With the exception of sentence 3, over 75% of participants rated clarity as a 3 or above, with 

50% rating them as clear to very clear 

• With the exception of sentence 3, over 75% of participants rated grammaticality as a 3 or above, 

with 50% rating them as correct or perfectly correct 

• With the exception of sentence 3, over 75% of participants rated understandability as a 3 or 

above, with 50% rating them as easy or very easy to understand 

• Over 50% of participants rated every sentence as human-like or very human-like.  

  

  

Fig. 17. Results from part 1 of test. 



Error! Reference source not found.Table 3 displays the responses from part 2 of the test as A/B 

preferences. In the test instrument, the A/B order of the control stimulus varied, however the responses 

given below have been re-ordered to make the data more readable. The last row of the table contains 

the results of a binomial test expressing the probability that the results could be due to random chance. 

In all cases, participants preferred the spine movement at least as well as the control, and in three of the 

sentences (2, 3, 4) their preference for the spine movement was statistically significant (p < 0.05).  

Table 3: Preferences from Part 2 of test 

 S1 S2 S3 S4 S5 

Control 11 4 6 3 9 

Spine Movement 11 18 16 19 13 

Binomial p-value 0.5840 0.0021 0.0262 0.0004 0.2617 

 

6. Discussion and Conclusions 

The data from the first part of the test address the research question "Does the automated spine system 

generate movement that is clear, correct, understandable, and natural?".  Participants perceived the 

majority of the sentences in a positive light. The results were particularly strong for clarity and 

understandability where over half of the participants rated all sentences as either clear or very clear and 

easy or very easy to understand
1
. Also, sentences received favorable ratings in grammaticality with the 

exception of sentence 3. This may be due in part to the fact that the structure of this sentence was more 

complex. Sentence 3 was the only one where the signer was not the subject of the sentence, and the 

only one that contained both direct and indirect objects. These results compare favorably to results 

from similar user studies of generated ASL (Kacorri, Lu, & Huenerfauth, 2013) (Huenerfauth, Lu, & 

Rosenberg, 2011). 

English: My brother bought me a new one. It was big and blue. 

ASL: BUT SURPRISE -- MY BROTHER GET NEW C-A-R, BIG, BLUE, GIVE-ME. 

Fig. 18. Sentence 3 of the test stimuli. 

Overall, the ratings for naturalness were lower than for the other three measures with 50 percent of the 

respondents rating all of the sentences as neutral or above. It may be that naturalness is the most 

demanding criterion of all. This is analogous to synthesized speech. It is possible to understand a 

grammatical synthetic voice message clearly, such as an automated airline flight notification sent to a 

person’s phone, but it would not be perceived as natural. Although lower than the other three, this 

result still compares favorably with prior tests of naturalness in key-frame and procedurally generated 

animations of sign language avatars.  

Data from the second part of the test yield insights into the second research question, “Does the 

addition of movement from an automated spine system produce animation that is preferable to 

                                                           
1
 Recall that a median of 3.5 on an integer 5-point Likert scale indicates that 50% were either a 4 or a 5. 



animations without it?". In the majority of cases, the answer appears to be “yes”.  Responses from 

participants showed a statistically significant preference (p < 0.05) for the added spinal movement 

sentences 2, 3 and 4. 

For sentences 1 and 5, however, the responses showed no statistically significant preference for either 

version, although a majority of participants preferred the added spinal movement in sentence 5. This 

may be due to the fact that, in these sentences, the spinal motion caused by the system was largely in 

the forward-back direction. In contrast, the other three sentences had more lateral and twisting motion, 

which is more apparent from a front camera view. Another contributing factor in sentence 1 may have 

been its placement as the first video in the sequence. Participants may have needed acclimation to the 

side-by-side video comparison. Further study is indicated, and perhaps in future tests a warm-up 

exercise may be appropriate. 

It is notable that, in all the cases that involved lateral motion of the body, a significant majority of 

participants judged the automated spine algorithm favorably. Recall that the automated spine system is 

not intended to be a sole solution for spine animation, but an aid to animators, or a supplement to other 

procedurally generated techniques. This user test indicates that the system would be highly beneficial in 

both of these roles. 

7. Summary and Future Work 

The techniques described in the present work address two of the many causes of robotic motion that 

can arise from implementing the SLPA model of ASL in procedurally-based synthesis systems. 

First, this new approach can serve as an extension to any limb IK system, and aids artists by 

automatically rotating the torso and spine of an avatar to support the specified arm motions from the 

linguistic model. The approach staggers the timing of the keys to reduce the marionette effect arising 

from completely synchronous joint movement. The second technique addresses the complete lack of 

motion in held joints. Careful applications of Perlin noise to rotational joints can enliven the avatar even 

when the linguistic model specifies that an avatar hold a pose, or a joint's motion is unspecified. These 

techniques have the potential for both aiding manual animation and also for supplementing 

procedurally generated avatar movements systems such as (Hanke, et al., 2011), (Delorme, Filhol, & 

Braffort, Animation Genreation Process for Sign Language Synthesis, 2009 ). 

Both of these techniques still present opportunities for further study. For example, it is possible that 

basing the shoulder and torso extension on the position of the avatar's elbow rather than the IK end-

effector would yield more realistic motions. The elbow's position is more closely related to the shoulder, 

having only a single bone segment between them.   

Moreover, both the torso and the noise methods presented in this paper would benefit greatly from a 

detailed study of motion-capture data and application of a comfort model similar to the one presented 

in (Delorme, Modelisation du squelette pour la generation realiste de postures de la lange de signes 

francaise, 2011). Such a model has the potential to increase the naturalness of the generated spine 

motions by incorporating data from captured human motion. The present model was formed through 



close collaboration between computer scientists and animators, though could benefit from both 

improvement and validation though a data-driven study.  

The authors are studying the other causes of robotic motion mentioned here, and intend to address 

them in the future. 
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