5 research outputs found

    Weather Classification by Utilizing Synthetic Data.

    Get PDF
    Weather prediction from real-world images can be termed a complex task when targeting classification using neural networks. Moreover, the number of images throughout the available datasets can contain a huge amount of variance when comparing locations with the weather those images are representing. In this article, the capabilities of a custom built driver simulator are explored specifically to simulate a wide range of weather conditions. Moreover, the performance of a new synthetic dataset generated by the above simulator is also assessed. The results indicate that the use of synthetic datasets in conjunction with real-world datasets can increase the training efficiency of the CNNs by as much as 74%. The article paves a way forward to tackle the persistent problem of bias in vision-based datasets

    A Deep Learning Approach for Spatiotemporal-Data-Driven Traffic State Estimation

    Get PDF
    The past decade witnessed rapid developments in traffic data sensing technologies in the form of roadside detector hardware, vehicle on-board units, and pedestrian wearable devices. The growing magnitude and complexity of the available traffic data has fueled the demand for data-driven models that can handle large scale inputs. In the recent past, deep-learning-powered algorithms have become the state-of-the-art for various data-driven applications. In this research, three applications of deep learning algorithms for traffic state estimation were investigated. Firstly, network-wide traffic parameters estimation was explored. An attention-based multi-encoder-decoder (Att-MED) neural network architecture was proposed and trained to predict freeway traffic speed up to 60 minutes ahead. Att-MED was designed to encode multiple traffic input sequences: short-term, daily, and weekly cyclic behavior. The proposed network produced an average prediction accuracy of 97.5%, which was superior to the compared baseline models. In addition to improving the output performance, the model\u27s attention weights enhanced the model interpretability. This research additionally explored the utility of low-penetration connected probe-vehicle data for network-wide traffic parameters estimation and prediction on freeways. A novel sequence-to-sequence recurrent graph networks (Seq2Se2 GCN-LSTM) was designed. It was then trained to estimate and predict traffic volume and speed for a 60-minute future time horizon. The proposed methodology generated volume and speed predictions with an average accuracy of 90.5% and 96.6%, respectively, outperforming the investigated baseline models. The proposed method demonstrated robustness against perturbations caused by the probe vehicle fleet\u27s low penetration rate. Secondly, the application of deep learning for road weather detection using roadside CCTVs were investigated. A Vision Transformer (ViT) was trained for simultaneous rain and road surface condition classification. Next, a Spatial Self-Attention (SSA) network was designed to consume the individual detection results, interpret the spatial context, and modify the collective detection output accordingly. The sequential module improved the accuracy of the stand-alone Vision Transformer as measured by the F1-score, raising the total accuracy for both tasks to 96.71% and 98.07%, respectively. Thirdly, a real-time video-based traffic incident detection algorithm was developed to enhance the utilization of the existing roadside CCTV network. The methodology automatically identified the main road regions in video scenes and investigated static vehicles around those areas. The developed algorithm was evaluated using a dataset of roadside videos. The incidents were detected with 85.71% sensitivity and 11.10% false alarm rate with an average delay of 27.53 seconds. In general, the research proposed in this dissertation maximizes the utility of pre-existing traffic infrastructure and emerging probe traffic data. It additionally demonstrated deep learning algorithms\u27 capability of modeling complex spatiotemporal traffic data. This research illustrates that advances in the deep learning field continue to have a high applicability potential in the traffic state estimation domain
    corecore