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ABSTRACT 

The past decade witnessed rapid developments in traffic data sensing technologies in the form of 

roadside detector hardware, vehicle on-board units, and pedestrian wearable devices. The growing 

magnitude and complexity of the available traffic data has fueled the demand for data-driven 

models that can handle large scale inputs. In the recent past, deep-learning-powered algorithms 

have become the state-of-the-art for various data-driven applications. In this research, three 

applications of deep learning algorithms for traffic state estimation were investigated. Firstly, 

network-wide traffic parameters estimation was explored. An attention-based multi-encoder-

decoder (Att-MED) neural network architecture was proposed and trained to predict freeway 

traffic speed up to 60 minutes ahead. Att-MED was designed to encode multiple traffic input 

sequences: short-term, daily, and weekly cyclic behavior. The proposed network produced an 

average prediction accuracy of 97.5%, which was superior to the compared baseline models. In 

addition to improving the output performance, the model’s attention weights enhanced the model 

interpretability. This research additionally explored the utility of low-penetration connected probe-

vehicle data for network-wide traffic parameters estimation and prediction on freeways. A novel 

sequence-to-sequence recurrent graph networks (Seq2Se2 GCN-LSTM) was designed. It was then 

trained to estimate and predict traffic volume and speed for a 60-minute future time horizon. The 

proposed methodology generated volume and speed predictions with an average accuracy of 

90.5% and 96.6%, respectively, outperforming the investigated baseline models. The proposed 

method demonstrated robustness against perturbations caused by the probe vehicle fleet’s low 

penetration rate. Secondly, the application of deep learning for road weather detection using 

roadside CCTVs were investigated. A Vision Transformer (ViT) was trained for simultaneous rain 

and road surface condition classification. Next, a Spatial Self-Attention (SSA) network was 
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designed to consume the individual detection results, interpret the spatial context, and modify the 

collective detection output accordingly. The sequential module improved the accuracy of the 

stand-alone Vision Transformer as measured by the F1-score, raising the total accuracy for both 

tasks to 96.71% and 98.07%, respectively. Thirdly, a real-time video-based traffic incident 

detection algorithm was developed to enhance the utilization of the existing roadside CCTV 

network. The methodology automatically identified the main road regions in video scenes and 

investigated static vehicles around those areas. The developed algorithm was evaluated using a 

dataset of roadside videos. The incidents were detected with 85.71% sensitivity and 11.10% false 

alarm rate with an average delay of 27.53 seconds. In general, the research proposed in this 

dissertation maximizes the utility of pre-existing traffic infrastructure and emerging probe traffic 

data. It additionally demonstrated deep learning algorithms’ capability of modeling complex 

spatiotemporal traffic data. This research illustrates that advances in the deep learning field 

continue to have a high applicability potential in the traffic state estimation domain. 
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CHAPTER 1: INTRODUCTION 

1.1 Overview 

The ubiquitous deployment of traffic sensing devices, such as loop detectors, microwave 

sensors, and roadside traffic surveillance cameras results in tremendous amounts of real-time data 

streams and accumulates a colossal backlog of historical traffic data. Additionally, the increasing 

adoption of probe devices such as GPS-enable On-Board Units (OBUs) and smartphones led to an 

upsurge in probe traffic datasets. Furthermore, advances in edge and cloud computing have led to 

stronger connectivity of traffic sensors and by extension an increased availability of highly 

granular spatiotemporal traffic data. The understanding, processing, and wielding of real-time and 

historical traffic data has a profound impact on the progress of traffic state estimation research 

(Zhang et al. 2011; Zhu et al. 2018) and the development of intelligent transportation system 

applications. As a result, big data analytics has become an imperative research focus in the traffic 

state estimation domain (Veres and Moussa 2019). 

Classical traffic-data-driven transportation technology research relied on analytical 

methods, statistical models, and machine learning approaches to model and understand various 

types of traffic data (Vlahogianni, Karlaftis, and Golias 2014). However, the growing size and 

complexity of traffic data led to an increase in demand for methodologies that are capable of 

ingesting, understanding, and interpreting larger amounts of traffic data while accounting for its 

intrinsic spatiotemporal nature. In the past decade, researchers have successfully employed deep 

neural networks for a variety of data-driven applications such as pattern recognition, sequence 

modeling, object detection, and image classification (Schmidhuber 2015). Inspired by their success 

in other domains, transportation technology researchers have adopted deep neural network 
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algorithms for numerous applications. 

Various neural network models were crafted to handle different types of data. Several 

neural network subclasses have proved useful in traffic-related research. For instance, recurrent 

neural networks (RNNs) were designed to handle sequential data (Lipton, Berkowitz, and Elkan 

2015) and were therefore well-suited to model the temporal dimension of traffic data in different 

problems. Convolutional Neural Networks (CNNs) were proposed to handle computer vision task 

such as object detection and images segmentation (Li et al. 2021; Khan et al. 2020). Hence, they 

were extensively employed in vision-related traffic applications to handle image and video-based 

tasks. CNNs were also widely employed to model the spatial characteristics in traffic data by 

utilizing the convolution and pooling operations. Graph Neural Networks (GNNs) are capable of 

modeling graph-based spatial topologies (Wu et al. 2019; Shi and Yeung 2018) and were thus 

utilized in traffic research to model the spatial dimensions in larger traffic networks. As the field 

of neural networks continues to advance, it introduces more nuanced models and sophisticated 

architectures that solve various data modeling problems. As demonstrated in recent years, these 

methodologies continue to have high impact on the traffic state estimation research domain. 

In this dissertation, three traffic state estimation research objectives were studied. The 

proposed methodologies leveraged different types of spatiotemporal big traffic data and explored 

the utilization of different deep learning algorithms. The first research objective was network-wide 

traffic parameters estimation and prediction. To implement this objective, both static microwave 

traffic data and probe-vehicle data were utilized and studied as input data sources. The second 

research objective was vision-based road weather detection, where the target was to employ traffic 

surveillance cameras for the recognition of rainy weather conditions and road surface precipitation 

states. Finally, the third research objective was video-based traffic incident detection. In this 
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objective, an automatic video-based incident detection algorithm was developed and designed to 

run in real-time speed. 

1.2 Research Objectives 

1.2.1 Network-Wide Traffic Parameters Estimation and Prediction 

Traffic parameters estimation and prediction are fundamental and long studied tasks in the 

field of intelligent transportation systems. They’re essential tasks for planning applications such 

as operation planning, safety studies, and traffic scheduling. They’re additionally vital for real-

time traffic applications such as trip planning, dynamic navigation, and incident detection. Despite 

their long history in the literature, traffic parameters remain difficult to estimate and predict. The 

challenge stems from the complex non-linear relationships exhibited between traffic parameters in 

both the spatial and temporal dimensions. To address this issue, the following research tasks were 

identified: 

1. Developing a neural network architecture which is capable of modeling multiple input 

traffic sequences in order to capture the different periodic characteristics of traffic. The 

network should use the multi-sequence input to accurately predict network-wide freeway 

traffic speed for up to 60 minutes ahead. 

2. Focusing on the interpretability of the model output to understand the temporal 

dependencies between traffic parameters and verify the importance of multi-sequence input 

traffic data. 

3. Exploring the applicability of probe-vehicle data for traffic speed and volume real-time 

estimation and up to 60-minute ahead prediction on freeways. 

Two research studies were conducted in order to address and solve the research gaps in 
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network-wide traffic parameters estimation and prediction literature. The first research effort 

utilized attention-based encoder-decoder neural networks for network-wide traffic speed 

prediction. The research undertaken to achieve this task was presented at the 100th TRB Annual 

Meeting held in Washington DC 2021 and published in IEEE transaction on Intelligent 

Transportation Systems (Abdelraouf, Abdel-Aty, and Yuan 2021). This research is 

comprehensively described in Chapter 3. The second research effort employed connected probe-

vehicle data for network-wide traffic parameters estimation and prediction using a sequence-to-

sequence recurrent graph convolutional neural network. The research executed to address this 

objective was detailed in Chapter 4. 

1.2.2 Vision-Based Road Weather Detection 

Rainy weather conditions and the consequent wet road surface have an unfavorable effect 

on visibility, vehicle maneuverability, roadway infrastructure, and driver behavior and thus results 

in undesired consequences for traffic operation and safety. In order to alleviate the negative 

ramifications of inclement road weather on traffic, it must be constantly and accurately observed. 

To achieve this research objective, the following tasks were identified: 

1. Compiling an image dataset which can be employed to train a neural network algorithm 

for rain and road surface condition classification. 

2. Designing and evaluating a neural network architecture that is capable of classifying rain 

and road surface conditions using images captured from roadside cameras. The network 

should be able to utilize the spatial distribution of neighboring cameras to enhance its 

overall classification accuracy. 

This research objective was realized by utilizing roadside traffic cameras for spatial-

context-aware rain and road surface condition detection on freeways using Vision Transformers. 
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The findings of the research conducted to achieve this objective were presented at the 101th TRB 

Annual Meeting in held in Washington DC 2022 and published in IEEE Transactions on Intelligent 

Transportation Systems (Abdelraouf, Abdel-Aty, and Wu 2022). The research was thoroughly 

described in Chapter 5. 

1.2.3 Video-Based Traffic Incident Detection 

Expeditious traffic incident identification is critical for reducing potential road user 

fatalities, injuries, and property damage. The comprehensive network of roadside CCTV cameras 

on US roadways offers constant coverage of the road network and therefore can be a useful tool to 

monitor traffic incidents. However, due to the extensive number of cameras, it is unfeasible for 

human operators to constantly monitor all roadway segments simultaneously. The following 

research tasks were identified to undertake this research objective: 

1. Developing a video-based algorithm for automatic incident identification using CCTV 

cameras. 

2. Evaluating the proposed algorithm’s detection accuracy and detection delay. 

3. Assessing the algorithm’s applicability in real-time by measuring the processing 

throughput. 

This research objective was realized through the development of a real-time traffic incident 

identification algorithm using roadside CCTV cameras. The research was presented at the 101st 

TRB Annual Meeting held in Washington DC 2022. Chapter 6 delineates the findings of the 

research conducted to achieve this objective. 

1.3 Dissertation Organization 

The rest of the dissertation is organized as follows: Chapter 2 summarizes the literature 
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review and was categorized according to the three research objectives: 1) network-wide traffic 

parameters estimation and prediction, 2) vision-based road weather detection, and 3) video-based 

traffic incident identification. Chapter 3 discusses freeway traffic speed prediction by utilizing 

static microwave traffic sensors and employing a novel attention-based multi-encoder-decoder 

neural network architecture. Chapter 4 describes the research conducted for traffic speed and 

volume estimation and prediction using connected probe-vehicle data and applying a sequence-to-

sequence recurrent graph convolution network algorithm. Chapter 5 explores the utilization of 

vision transformers for spatial-context-aware rain and road surface condition detection on 

freeways. In Chapter 6, the research pertaining to real-time video-based traffic incident 

identification using roadside CCTV cameras was detailed. Finally, Chapter 7 summarizes the 

dissertation’s key findings and contributions. It additionally concludes and describes the 

implication of the conducted research. 
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CHAPTER 2: LITERATURE REVIEW 

2.1 Network-Wide Traffic Parameters Estimation and Prediction  

2.1.1 Traffic Data Sources 

Traffic flow estimation and prediction tasks have been conducted using a variety of static 

sensors such as loop detectors (Kwon, Varaiya, and Skabardonis 2003; Pan, Demiryurek, and 

Shahabi 2012; Wilkie, Sewall, and Lin 2013), microwave detectors (Abdelraouf, Abdel-Aty, and 

Yuan 2021; Ma, Tao, et al. 2015; Jin et al. 2018), and traffic cameras (Mahmoud et al. 2021a, 

2021b; Zhan, Li, and Ukkusuri 2015). For instance, Pan et al. (Pan, Demiryurek, and Shahabi 

2012) used speed, volume, and occupancy data collected from loop detectors deployed in Los 

Angeles County in order to predict traffic speed. Mahmoud et al. (Mahmoud et al. 2021a) utilized 

traffic counts collected from intersection-facing CCTV cameras in order to estimate real-time 

cycle-level traffic movements at signalized intersections based on upstream and downstream 

traffic data. Mahmoud et al. utilized the same data for predicting cycle-level traffic movements at 

signalized intersections using machine learning models (Mahmoud et al. 2021b). Despite their 

ability to provide accurate traffic flow estimations, static detectors are limited by their spatial 

distribution. Furthermore, they can be costly to set up, deploy, and maintain. 

Probe vehicle datasets pose a different set of challenges since they only represent samples 

of the vehicles on the roadway. Dataset attributes like penetration rate and sampling rate and fleet 

type affect the granularity, coverage, and driving behavior of the probe vehicle data. Hence, the 

data cannot be used to directly measure traffic parameters, particularly vehicle volume data. Most 

of the previous probe-vehicle-based research was focused on travel time estimation (Zheng and 

Van Zuylen 2013; Efentakis et al. 2013; Pfoser, Tryfona, and Voisard 2006; Wang, Zheng, and 
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Xue 2014) and travel time forecasting (Zhang et al. 2017; Zhan, Ukkusuri, and Yang 2016; Li et 

al. 2017; Derrow-Pinion et al. 2021). Derrow-Pinion et al. (Derrow-Pinion et al. 2021) described 

how Google Maps leverages its collected travel time data to accurately predict trip Estimated Time 

of Arrival (ETA). Efentakis et al. (Efentakis et al. 2013) utilized probe vehicle data from a fleet of 

2000 – 5000 vehicles sampled at 60 – 180 seconds in order to estimate the real-time segment travel 

times and derive the shortest path for each vehicle in the fleet. 

Furthermore, some previous research efforts relied on special types of vehicle fleets such 

as taxis (Li et al. 2017; Zhan et al. 2013; Wang, Zheng, and Xue 2014; Zhao, Song, et al. 2019) to 

collect probe vehicle data for traffic modeling. The vehicles in the dataset exhibit driving behavior 

patterns that may be specific to the dataset but not generalizable for all vehicles. Li et al. (Li et al. 

2017) used the trajectories of 15 taxi vehicles deployed in Shenzhen, China. Using a GPS sampling 

interval of 10 seconds, they predicted travel time on urban arterials. The authors reported that one 

of the main challenges of the taxi dataset was the inability to differentiate whether the travel time 

delay was caused by congestion or by the taxi stopping temporarily to pick up or drop off 

passengers. 

2.1.2 Traffic Modeling Methods 

2.1.2.1 Parametric Models 

In the past decades, parametric models have been used to predict traffic speed. Several 

works have implemented Autoregressive Integrated Moving Average Model (ARIMA) for time 

series prediction (Ahmed and Cook 1979; Kumar and Vanajakshi 2015; Chandra and Al-Deek 

2009). Additionally, multiple variations of ARIMA were implemented. For example, ARIMA with 

explanatory variables (ARIMAX) (Williams 2001), seasonal ARIMA (SARIMA) (Williams and 
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Hoel 2003), space-time ARIMA (Kamarianakis and Prastacos 2003), and Kohonen-ARIMA 

(KARIMA) (Van Der Voort, Dougherty, and Watson 1996). However, ARIMA models are not 

the best suited to capture the nonlinear spatiotemporal relationships of traffic speed since the model 

is built on linear regression concepts. Therefore, the implementations underutilize the learning 

data. 

2.1.2.2 Non-Parametric Models 

Conventional machine learning techniques have also been employed to tackle the speed 

prediction problem. For instance, linear conditional Gaussian Bayesian Networks (Zhu, Peng, et 

al. 2016), Support Vector Regression (SVR) (Castro-Neto et al. 2009; Hong et al. 2011; Asif et al. 

2013), k-Nearest Neighbors (k-NNs) (Chang et al. 2012; Davis and Nihan 1991) and ANNs (Ye, 

Szeto, and Wong 2012; Van Lint, Hoogendoorn, and van Zuylen 2005; Ma, Yu, et al. 2015b; Tang 

et al. 2017). Castro-Neto et al. (Castro-Neto et al. 2009) proposed an SVR model to predict short-

term traffic flow in typical and atypical traffic conditions and found that the SVR model performed 

better compared to ANNs. Davis et al. (Davis and Nihan 1991) used k-NNs to forecast freeway 

traffic and found that they produced comparable results to time-series linear regression models 

like ARIMA. Ye et al. (Ye, Szeto, and Wong 2012) used GPS data to extract speed and acceleration 

data on a road segment during irregular intervals. The data was then fed to an ANN that was used 

to forecast short-term traffic speed (60 seconds ahead). Deeper neural networks have also been 

applied to the traffic speed prediction problem. Lv et al. (Lv et al. 2014) proposed a Stacked 

Autoencoder (SAE) architecture to model the spatial and temporal traffic flow patterns. Their 

results outperformed shallow Backpropagation Neural Networks (BP-NNs) and SVR. 
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2.1.2.3 Deep Neural Network Models 

Recurrent Neural Networks (RNNs) are a class of deep learning algorithms that were 

designed to model sequential input and can possibly be utilized to construct sequential outputs. In 

the recent past, RNNs have been widely used to forecast traffic speed (Fu, Zhang, and Li 2016; 

Ma, Tao, et al. 2015; Tian and Pan 2015; Polson and Sokolov 2017; Zhao et al. 2017; Ma, Yu, et 

al. 2015a; Cui et al. 2018), especially popular variations like Long Short Term Memory (LSTM) 

(Hochreiter and Schmidhuber 1997) and Gated Recurrent Units (GRUs) (Chung et al. 2014). These 

models gained popularity due to their ability to memorize long-term sequential dependencies. Ma 

et al. (Ma, Tao, et al. 2015) was one of the first to use LSTMs for short-term traffic speed prediction 

(up to 8 minutes). The LSTM outperformed ARIMA, SVM and non-recurrent variations of neural 

networks. Zhao et al. (Zhao et al. 2017) modeled the temporal component using LSTMs and the 

special component using a correlation matrix between detector locations. Fu et al. (Fu, Zhang, and 

Li 2016) compared the performance of LSTMs and GRUs and reached slightly better results using 

GRUs. Cui et al. (Cui et al. 2018) used stacked bidirectional and unidirectional LSTMs (SBU-

LSTMs) to perform network-wide speed prediction. Bidirectional recurrent units can capture 

temporal dependencies in both chronological and reverse chronological order. 

Convolutional Neural Networks (CNNs) have been exceptionally successful at executing 

computer vision and image processing tasks in the past decade (Krizhevsky, Sutskever, and Hinton 

2012). They have since been leveraged to capture the spatial dependencies across the road network 

in speed forecasting tasks (Wu and Tan 2016; Liu et al. 2017; Ke et al. 2020; Wang et al. 2016; 

Cao, Li, and Chan 2020; Li et al. 2018; Mahmoud et al. 2021a, 2021b). For instance, a multi-

channel CNN was utilized by Ke et al. (Ke et al. 2020) to model lane-wise traffic speed and volume 
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data. The proposed method was designed to capture the spatial relationship between adjacent 

traffic lanes. Cao et al. (Cao, Li, and Chan 2020) extracted the traffic spatial features from the road 

network using CNNs and then used the derived features as input for an LSTM, which in turn 

captured the temporal correlation. Liu et al. (Liu et al. 2017) combined convolutions and LSTMs 

as a single Conv-LSTM neural network architecture (first proposed by Xingjian et al. (Xingjian et 

al. 2015)) that is capable of both learning spatial and temporal dependencies. 

Many research efforts relied on graph convolution networks (GCN) for spatial 

dependencies extraction (Wu et al. 2019; Yu, Yin, and Zhu 2017; Yu, Lee, and Sohn 2020; Zheng 

et al. 2020; Zhao, Song, et al. 2019). Graph convolutions rely on extracting spatial features by 

convolving the directed graph representation of the road network. In this representation, detectors 

are represented by nodes and adjacent detectors are connected by edges. Spatio-Temporal Graph 

Convolutional Network (STGCN) was proposed by Yu et al. (Yu, Yin, and Zhu 2017) to extract 

both spatial and temporal traffic features and subsequently using those features to predict traffic 

flow by applying graph convolution. Zhao et al. (Zhao, Song, et al. 2019) combined GCN for 

spatial modeling and GRU for temporal modeling and developed a Temporal Graph Convolution 

Network (T-GCN). T-GCN was trained and tested for traffic speed prediction using two separate 

datasets: a probe-vehicle type data, and a loop detector-based data. Guo et al. (Guo et al. 2019) 

proposed an Attention-based Spatio-Temporal Graph convolution network (ASTGCN). The 

authors used traffic flow, occupancy, and speed data collected from infrastructure-based sensors 

to predict traffic flow. 

Attention mechanisms were first introduced in the natural language processing field and 

gained popularity as a result of their ability to determine and preserve sequence-wide dependencies 

(Bahdanau, Cho, and Bengio 2014; Vaswani et al. 2017). Previous works employed attention 
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mechanism for traffic prediction (Zheng et al. 2020; Xu et al. 2020; Yu, Lee, and Sohn 2020). 

Zheng et al. (Zheng et al. 2020) developed a Graph Multi-Attention Network (GMAN) for traffic 

parameter prediction. Their proposed network employed attention in both the spatial and temporal 

domains. Their network was trained using traffic detector data for 60-minute ahead speed and 

volume prediction. Xu et al. (Xu et al. 2020) developed a spatial-Temporal transformer network 

for traffic flow forecasting. The authors modeled spatial dependencies in the network graph using 

self-attention. 

2.1.3 Summary 

Traffic parameters estimation and prediction is a long and deeply studied topic due to its 

high applicability in a wide range of intelligent transportation systems domains. In the early years, 

researchers focused on analyzing traffic parameters using classical statistical approaches. The 

technological development of traffic data collection devices led to an explosion in the availability 

of traffic data. With larger datasets to model, research efforts looked towards non-parametric 

approaches that relied less on underlying model assumptions and more towards data fitting. In the 

recent past, technical developments in computation capabilities led to the development of deep 

neural networks models with model parameters in the order of millions. As a result, numerous 

variations of deep neural networks have been employed for traffic parameter estimation and 

prediction. 

Despite the advances in deep-learning-based traffic parameters estimation and prediction, 

there are still some research gaps. Most proposed deep learning models depended on short-term 

input sequences for prediction and failed to consider the daily and weekly periodic behavior of 

traffic. Another problem posed by deep-learning-based approaches is the lack of interpretability. 

Furthermore, researchers focused on employing traffic data collected from static infrastructure-
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based sensors, while the emerging probe-vehicle traffic data was underutilized for traffic 

parameters estimation and prediction. This dissertation addresses the identified literature 

shortcomings in the first research objective covered in Chapters 3 and 4. 

2.2 Vision-Based Road Weather and Detection 

2.2.1 Rain Detection 

Various research efforts have attempted to detect rain from images or video feeds. Many 

of these efforts depend on handcrafted features extracted using different image processing 

methods. Bossu et al. (Bossu, Hautière, and Tarel 2011) proposed a method to detect rain by 

analyzing high intensity streaks in the input video stream. Mixture of Gaussians (MoG) was 

employed to segment moving objects in the foreground from the video feed background. Rain 

streaks were detected using the difference of pixel intensities between foreground objects and the 

background model. Photometrical and size-based rules were used to filter out non-streak-shaped 

foreground objects. Next, the orientations of the extracted streaks were used to construct a 

histogram of streak orientations (HOS). The shape of the output histogram was approximated using 

a uniform Gaussian distribution. Finally, the decision of whether or not rain existed in an image 

was taken by applying a goodness of fit test on the HOS of past images. Allamano et al. (Allamano, 

Croci, and Laio 2015) used rigorous mathematical analysis to calculate rainfall in a video stream. 

They detected candidate rain drop clusters by analyzing high intensity pixels in short-term 

consecutive frames. Next, they took advantage of their calibrated camera and estimated droplet 

size, velocity and position. The droplet parameters were extracted in each frame. Finally, the frame 

rate information was added to estimate rainfall in millimeters per hour. Zhang et al. (Zhang et al. 

2016) extracted sky and shadow pixels, as well as rain streaks and snowflake clusters from each 
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image. Additionally, they determined global image features like contrast and saturation. Next, the 

authors used the extracted parameters to train a Multi Kernel Learning (MKL)-based classifier to 

label an image as sunny, rainy, snowy, or hazy. Lee et al. (Lee et al. 2016) measured the hue, 

saturation, and value (HSV) amounts of rainy and non-rainy video segments. A temporal-HSV 

feature list was generated for each video segment. Similarly, edge-detection was used to count the 

number of edge pixel in every frame. For every video segment, a temporal-edge-count features list 

was generated. To determine the weather condition in a test video segment, the temporal-HSV was 

extracted and compared with the patterns of rainy and non-rainy videos. A similarity score was 

calculated between the test video and each class. 

Due to the superior performance exhibited by convolutional neural networks (CNNs) in 

various computer vision tasks (Simonyan and Zisserman 2014; Krizhevsky, Sutskever, and Hinton 

2012), they have been recently utilized for image and video-based rain detection. Zhu et al. (Zhu, 

Zhuo, et al. 2016) used a GoogleNet CNN architecture for weather detection. The model weights 

were initialized using the pre-trained weights on the ILSVRC dataset. The authors collected and 

labeled a weather dataset. It was used to fine-tune the CNN weights. The model was trained to 

label images using one of 4 weather labels: runny, rainstorm, blizzard, and fog. Ozcan et al. (Ozcan 

et al. 2019) collected and labeled roadway CCTV images from the state of Iowa and used image 

augmentation techniques to enrich their dataset. The authors used the dataset to train a VGG16 

CNN to label road images as clear, rainy or snowy. Haurum et al. (Haurum, Bahnsen, and 

Moeslund 2019) used a tipping-bucket rain gauge and a Laser disdrometer to measure rainfall next 

to surveillance cameras. They generated a video dataset containing video footage and matching 

rainfall measurements in millimeters. However, they modeled their problem as a binary 

classification problem and attempted to differentiate between “rain” and “no rain”. They trained a 
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3D convolutional neural network to detect rainfall from 8 consecutive video frames. Their method 

was compared with the one proposed in Bossu et al. (Bossu, Hautière, and Tarel 2011) and 

produced superior detection accuracy. Zen et al. (Zen et al. 2019) combined deep image features 

with extracted rain streaks to estimate rainfall from an image. They first collected images from 

cameras near weather sensors and used the rain gauge measurement in the weather sensors as 

ground truth. Rain streaks were extracted from each image using DID-MDN algorithm. The 

authors proposed a CNN architecture that uses the raw image features and the extracted streaks as 

input. The model was then trained end-to-end to estimate rainfall values. Sirirattanapol et al. 

(Sirirattanapol et al. 2019) trained a multi-class CNN using traffic images to detect rainy conditions 

and road surface conditions. The authors implemented a ResNet CNN architecture and used it to 

obtain multiple labels for each image. Sun et al. (Sun et al. 2020) utilized pre-trained CNNs to 

implement a 5-class weather detection system. Their proposed system detected sunny, overcast, 

rainy, snowy, and foggy conditions. They collected and manually labeled an image dataset from 

highway traffic surveillance cameras. The labeled dataset was used to train and test a 5-class deep 

convolutional neural network model which classifies input images into one of the selected weather 

classes. 

2.2.2 Road Surface Condition Detection 

While some research efforts targeted the combined objective of rain and road state 

detection (Sirirattanapol et al. 2019), others focus exclusively on detecting the road surface 

condition. Omer et al. (Omer and Fu 2010) extracted images from on-board camera videos and 

classified the images into 3 categories: dry, snow tracks, and snow. The authors extracted 2 sets of 

features to test for snow and snow tracks. The first feature group was designed to capture snow 

density. To achieve that, authors extracted a 32 bin RGB color histogram from each image. The 
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second feature set was constructed to capture edge information on the road. Hence, the images 

were transformed to grayscale, then gaussian smoothing and gradient edge masks were applied. 

Finally, an SVM classifier was trained on the extracted features to label the images using one of 

the 3 target categories. Sun et al. (Sun and Jia 2013) proposed a method to label road surface state 

as dry, light snow, or heavy snow based on a video stream input. The authors first remove the 

moving objects in the image and obtain the image background. Next, color and texture features 

were extracted for each grayscale background image. These features included the Angular Second 

Moment (ASM), which described the image texture smoothness, and Inverse Difference Moment 

(IDM), which described the image homogeneity. The pixel contrast and entropy were also 

computed. The features were used to train a Bayesian Network classifier for 3-class classification. 

Amthor et al. (Amthor, Hartmann, and Denzler 2015) constructed a reflection map from car-dash-

mounted cameras to classify the road surface state as dry, wet, or snowy. The authors sampled 

pavement pixels by identifying a static trapezoid at the bottom of the image and transforming the 

extracted shape into a square image using a homography matrix. Next, a reflection map was 

obtained from the image using a Local Binary Patterns (LBPs) texture descriptor. For 

classification, the authors proposed an Extremely Randomized Trees. The authors reported 

superior classification results compared to (Omer and Fu 2010) and (Sun et al. 2020). Qian et al. 

(Qian, Almazan, and Elder 2016) attempted to differentiate between dry, wet and snowy images 

from on-board vehicle dash cameras. As a preprocessing step, they manually annotated the region 

of interest (ROI) in each image in their dataset and created an ROI heatmap. Next, they extracted 

a histogram of textons and a histogram of luminance from the image ROIs. The extracted 

histograms were used as features to model a supervised learning problem. To solve this problem, 

the authors compared different machine learning models like Nearest Neighbors, SVM, and 
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Decision Trees. Ultimately, they were able to produce the highest classification accuracy using a 

Naïve Bayes Boosting model. 

Recently, convolutional neural networks have grown in popularity as a methodology for 

deep feature extraction and road surface condition classification from images. Roychowdhury et 

al. (Roychowdhury et al. 2018) developed a road surface classification algorithm as a first step to 

their target objective, which was road friction estimation. To detect the road surface condition, the 

hue, saturation, and value color channels (HSV) were extracted and appended to the red, green, 

and blue color channels (RGB). Furthermore, the authors annotated a segmentation mask for each 

image to mark the drivable parts of the image on the road. Histogram of gradient (HOG) features 

were extracted from the segmented drivable road surface. Two models were implemented to 

classify the road condition in images into one of 4 classes: dry, wet, slush, or ice. Firstly, the HSV 

and RGB color channels were used to train a CNN. Secondly, the HOG features were used to train 

a feed-forward neural network. The two models were compared, and the authors reported that the 

CNN achieved superior classification accuracy. Pan et al. (Pan et al. 2018) implemented a CNN 

to detect snowy road surface condition from dash-mounted cameras. Their problem was 

formulated in 3 different ways: a 2-class problem (no snow/snow), a 3-class problem (no snow/ 

light snow/ heavy snow), and a 5-class problem (no snow + 4 levels of snow). They used a VGG16 

architecture with pre-trained weights. The authors expanded on their work in (Pan et al. 2019). 

They collected another image dataset consisting of images from traffic surveillance cameras 

mounted on highways. Additionally, they focused their problem definition on 4-class road surface 

condition classification. The authors tested their VGG16 model against 3 other deep convolutional 

neural network architecture, namely ResNet50, InceptionV3, and Xception. The ResNet50 model 

produced the highest classification accuracy on both the traffic surveillance and the dash-mounted 
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datasets. Grabowski et al. (Grabowski and Czyżewski 2020) detected road surface condition based 

on 3 categories: dry, wet, snowy. They collected and manually labeled images from traffic 

surveillance cameras. The authors implemented, trained and compared the results of Resnet, 

Densenet and VGG19. All the models utilized pre-trained weights. It was found that Densenet 

produced the highest testing accuracy on the collected dataset. 

2.2.3 Summary 

Different methodologies were adopted to detect rain in images or video feeds. Many 

approaches depended on the luminosity of rain pixels. These approaches searched for rain-streak-

shaped blobs or high intensity droplet clusters in images by applying filters on images or 

segmenting the foreground in videos. The image HSL color channels and edge detection filters 

were also used as features to differentiate between rainy and non-rainy conditions. Deep neural 

networks were also employed for rain detection. Multiple CNN and 3D-CNN models were used 

to extract rain detection features from images and videos respectively. Road surface condition was 

determined in various ways. Some approaches assessed the reflectivity or calculated the luminance 

of the pavement pixels and used the reflectivity map to determine whether the road surface is wet. 

Other methods relied on color channel and edge-detection analysis. Deep features were extracted 

using CNNs and utilized for road surface condition detection. Furthermore, some authors 

combined color channel analysis with deep convolution layers to detect and classify different road 

states. 

Vision-based rain and road surface condition detection methodologies in the literature 

targeted stand-alone image classification. As part of the second research objective of this 

dissertation, the spatial relationship between different input sources has been factored into the 

proposed methodology and used to improve classification results. To the best of our knowledge, 
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this is the first effort that explores the geospatial relationship between input images for rain and 

road surface condition detection. 

2.3 Video-Based Traffic Incident Detection 

2.3.1 Anomaly Detection in Videos 

Video-based incident detection can be characterized as a spatiotemporal anomaly detection 

problem. Numerous methods have been proposed in the literature to solve the problem of video-

based anomaly detection. Most efforts attempted to model normal behavior using a set of features, 

and then classified data points as anomalous when their features deviated from the regular pattern. 

Some researches leveraged timeseries statistical models like Hidden Markov Models (Kratz and 

Nishino 2009; Hospedales, Gong, and Xiang 2009) and sparse reconstruction (Luo, Liu, and Gao 

2017; Cong, Yuan, and Liu 2011). In the recent past, deep learning techniques have been more 

commonly employed to detect anomalies. Hasan et al. (Hasan et al. 2016) used convolutional feed-

forward autoencoders for anomaly detection. They used a combination of hand-crafted-feature 

autoencoders and learned-feature autoencoders. Their autoencoders’ reconstruction costs were 

used to determine whether the input video sequence contains anomalies. Sultani et al. (Sultani, 

Chen, and Shah 2018) proposed a weakly supervised approach to classify normal and abnormal 

videos. They divided their input videos into segments and used Multiple Instance Learning (MIL) 

to assign an anomaly score to each segment. They used 3D convolutional neural networks (Tran 

et al. 2015) to extract spatiotemporal features from each video segment and transformed those 

features to an anomaly score. Furthermore, they released the UCF-Crimes dataset (Sultani, Chen, 

and Shah 2018) which contains 13 categories of videos containing abnormal events like assault, 

burglary, robbery, and vandalism. Zhong et al. (Zhong et al. 2019) used graph convolutional 
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networks (GCN) to strengthen the labels in the weakly labeled UCF-Crimes dataset and then 

solved the problem as a supervised learning anomaly detection problem. 

2.3.2 Video-Based Traffic Incident Detection 

The general definition of anomaly is subjective and has high inter-class variance. Thus, 

generic anomaly detectors lack the nuance required to focus on a specific problem such as traffic 

incident detection (Li et al. 2020). Various approaches have been proposed to tackle the more fine-

grained problem of video-based traffic incident detection. Anomaly detection in traffic videos 

involves defining normal vehicle flow behavior and conversely detecting irregular vehicle 

trajectories. The proposed approaches can be classified into 3 classes: 1) pixel-based approach, 

which relies on pixel-level feature extraction to detect anomalies in traffic cameras, 2) object-

based approach, which involve detection and tracking of objects of interest on the road scene, and 

3) hybrid approach, which leverage both pixel-level and object-level features for detecting 

incidents in traffic videos (Kumaran, Dogra, and Roy 2019). 

2.3.2.1 Pixel-Based Approach 

Pixel-based approaches have been widely used to detect incidents in traffic videos. The 

majority of pixel-based approaches relied on optical flow algorithms such as Lucas-Kanade (Lucas 

and Kanade 1981) and Farneback (Farnebäck 2003) optical flow. Optical flow estimates the 

pattern of apparent motion between one video frame and the next. It relies on pixel intensity values 

to compute a pixel-wise vector field of motion between the first frame and the second frame. The 

result is a pair of magnitude and orientation values for each pixel. However, optical flow methods 

are better suited for detecting rapid or intense changes, which generate considerable perturbations 

in the extracted motion field. Therefore, most pixel-based efforts that rely on optical flow have 
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limited their scope to traffic accident detection. 

Sadeky et al. (Sadeky et al. 2010) used Lucas-Kanade optical flow to compute a motion 

field for each frame in the input video. The output vectors were grouped by angle into a feature 

space dubbed the histogram of flow gradients (HFG). The values in the HFG were used as input 

features to a logistic regression algorithm which labeled the features as accident or not. Yun et al. 

(Yun et al. 2014) also used optical flow to extract a motion interaction field (MIF) in the traffic 

scene. The MIP modeled the interaction of moving blobs in the motion field. The computed 

interactions were then used to calculate a temporal abnormality score and a traffic accident was 

flagged if the score surpassed a pre-set threshold. Ullah et al (Ullah et al. 2015) extracted the 

Farneback dense optical flow motion field. They used the Enthalpy Model to compute traffic 

motion in the scene.  Smoothed Particles Hydrodynamics was applied on the calculated traffic 

motion to detect accidents. Li et al. (Li, Liu, and Huang 2016) partition their input traffic videos 

into spatiotemporal blocks. Next, SIFT features (Ng and Henikoff 2003) were computed for each 

block and then transformed into a category number of blocks (CNB) feature space. The extracted 

CNB features were used to train a Gaussian model to recognize traffic anomalies. Topic modeling 

was used by Ahmadi et al (Ahmadi, Tabandeh, and Gholampour 2016) to model normal traffic 

flow based on Lucas-Kanade optical flow vectors. The extracted vectors were indexed in a 

document of words to represent normal velocities in each range of vector orientation. Abnormal 

behavior was detected in an input frame when the extracted words were different from the normal 

traffic flow document model. Chen et al (Chen, Yu, and Li 2016) used optical flow to calculate a 

Scale Invariant Feature Transform (SIFT)-like histogram of features. They used bag of features 

(BOF) to encode their histogram into a latent feature space. A supervised extreme learning 

machine was then trained on this feature space and subsequently used to detect accidents. Yuan et 
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al. (Yuan, Wang, and Wang 2016) applied optical flow to their traffic video stream and used it to 

build 2 dictionaries that represent normal motion flow: one for magnitudes and the other for 

orientations. They used a Bayesian integration model to construct an anomaly map between the 

input stream and the normal traffic flow model. Farneback optical flow was also used by Maaloul 

et al. (Maaloul et al. 2017) to detect accidents in traffic videos. They filtered out noisy motion flow 

vectors caused by wind or camera shaking. The remaining vectors were used to model normal flow 

behavior based on vector orientations. Finally, dynamic thresholding of the optical flow vectors 

was used to detect accidents in traffic videos. Vu et al. (Vu and Pham 2017) used a convolutional 

neural network to detect lane-wise incidents based on manually marked zones in the traffic camera 

scene. SIFT features were extracted from traffic video frames by Xia et al. (Xia, Hu, and Wang 

2018). A fisher kernel was used to extract trajectories from the extracted SIFT features. 

Afterwards, a sparse topic model was used to build a dictionary of words that represent normal 

trajectories. An anomaly was flagged in the evaluation phase if anomalous words were detected in 

the extracted features. Veni et al. (Veni, Anand, and Santosh 2020) calculated the dispersion of 

vectors in the optical flow motion field and used thresholds to detect traffic accidents. Finally, Kim 

et al. (Kim, Park, and Paik 2020) trained a 3D resnets model (He et al. 2016), which is capable of 

processing multiple frames simultaneously, to detect traffic accidents from the traffic video stream. 

2.3.2.2 Object-Based Approach 

Tracking and detection algorithms are the cornerstones of object-based traffic incident 

detection. Object detection is the long-standing computer vision problem of identifying, localizing 

and classifying objects of interest in an image (Zhao, Zheng, et al. 2019). In the past few years, 

there has been a significant improvement in the performance of object detection and classification 
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in images thanks to advances in deep learning algorithms, specifically, convolutional neural 

networks (CNNs) (Krizhevsky, Sutskever, and Hinton 2012; Simonyan and Zisserman 2014; He 

et al. 2016; Szegedy et al. 2015). These developments are illustrated in the results of the ImageNet 

Large Scale Visual Recognition Challenge (ILSVRC) (Russakovsky et al. 2015). 

2.3.2.2.1 Object Detection 

Among the first algorithms to tackle CNN-based object detection was Girshick et al. 

(Girshick et al. 2014). Region-based Convolutional Neural Network (R-CNN) was introduced. R-

CNN provides a 3-stage solution to object detection: 1) region proposal generation, where 

selective search (Uijlings et al. 2013) was used to generate about 2000 object bounding boxes. 2) 

CNN-based feature extraction, where the VGG16 network architecture (Simonyan and Zisserman 

2014) was used to transform each object region proposal to a set of features. Lastly, 3) 

classification and localization, where each set of features were classified using an SVM classifier. 

Next, the bounding boxes were adjusted using bounding box regression and filtered using non-

max suppression (NMS). To improve classification accuracy, supervised pre-training was 

conducted using the ILSVRC auxiliary dataset (Russakovsky et al. 2015). R-CNN was improved 

and later reintroduced as Fast R-CNN (Girshick 2015). In Fast R-CNN, the computation time and 

space efficiency of the network were improved through a multitask loss function, which evaluated 

object classification and bounding box regression simultaneously. To improve region proposal 

generation, Ren et al. (Ren et al. 2015) replaced selective search in stage 1 of R-CNN with a region 

proposal network (RPN). RPN is a feed-forward convolutional network (FCN) which takes an 

image as an input and generates a set of rectangular proposal regions. Mask R-CNN was introduced 

to provide higher-fidelity object detection (He et al. 2017). Given the Faster R-CNN network 

architecture, Mask R-CNN adds a branch to generate pixel-wise binary object segmentation masks 
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along with the generated bounding boxes. 

The R-CNN family of networks separated the bounding box proposal stage from the 

classification and bounding box adjustment stage. In contrast, Dai et al. (Dai et al. 2016) proposed 

Region-Based Fully Convolutional Network (R-FCN), a fully convolutional network based on 

ResNet-101 (He et al. 2016) which combines both stages. They demonstrated state-of-the-art 

results on the Microsoft COCO dataset (Lin et al. 2014). Lin et al. (Lin et al. 2017) utilized the 

underlying architecture of CNNs and used pooled layers to generate a Feature Pyramid Network 

(FPN). The down-sampled CNN layers in the forward pass were combined with the corresponding 

up-sampled layers in the backwards pass to improve scale invariance in object detection in a cost-

effective manner. Single Shot Multibox Detector (SSD) was introduced by Liu et al. (Liu et al. 

2016). SSD augmented the VGG-16 architecture with several layers at the end. These layers were 

responsible for predicting the offsets and aspect ratios of default bounding boxes. 

The You Only Look Once (YOLO) object detection algorithm was proposed by Redmon 

et al. (Redmon et al. 2016) for real-time object detection. YOLO divides each input image into an 

S*S grid and calculates B bounding box detections per grid. For each bounding box, an object 

detection confidence score, center coordinates x and y, width, and height are calculated. Moreover, 

class probabilities are calculated for each target class C. YOLOv2 (Redmon and Farhadi 2017) 

was introduced as an improvement over the original YOLO algorithm. It adopted batch 

normalization layers after each convolutional layer. Furthermore, predefined bounding boxes, 

called anchor boxes, were utilized. Another improvement over YOLO was introduced in YOLOv3 

(Redmon and Farhadi 2018). YOLOv3 provided more detailed object classification by adopting 

multi-class labels. Furthermore, it provided better performance with smaller objects in an image 

by utilizing FPN-like feature pyramids. Yet another improvement over YOLO was proposed by 
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Bochkovskiy et al. (Bochkovskiy, Wang, and Liao 2020) and dubbed YOLOv4. YOLOv4 utilized 

techniques such as Weighted Residual Connections (WRC), Cross Stage Partial connections 

(CSP), and Cross Mini-Batch Normalization (CmBN). YOLOv4 achieved state-of-the-art 

detection speed and accuracy on the Microsoft COCO dataset (Lin et al. 2014). 

2.3.2.2.2 Object Tracking 

Tracking-by-detection is essential for object-based traffic incident detection. Multi-object 

Tracking (MOT) is often used. Recently, Bewly et al. (Bewley et al. 2016) proposed the simple 

online real-time tracking (SORT) algorithm. SORT depended on tracking bounding boxes 

generated from object detection algorithms. It assumed constant velocity across frames and used 

Kalman Filters (Kalman 1960) to compute each detected object’s state. To associate bounding 

boxes across consecutive frames, the Hungarian algorithm (Kuhn 1955) was utilized to match 

bounding boxes IoUs. Wojke et al. (Wojke, Bewley, and Paulus 2017) introduced deepSORT, 

which follows the same procedure as (Bewley et al. 2016) but instead of matching by bounding 

box, object association is computed using deep feature matching. 

2.3.2.2.3 Object-Based Incident Detection 

Hui et al. (Hui et al. 2014) proposed a method based on Gaussian Mixture Model to detect 

vehicles in the video frames and applied the Mean Shift algorithm to track the detected vehicles 

and extract their position, acceleration and direction. The extracted trajectories are used to 

calculate an accident score. An accident is detected if the score surpasses a pre-set threshold. Yu 

et al. (Yu et al. 2018) proposed a traffic danger recognition model based on predicted camera 

trajectories. They used Mask R-CNN and deepSORT to detect vehicles and track their trajectories. 

They used camera calibration techniques to transform the input 2D image to 3D coordinates and 

hence obtain an estimation of vehicle positions and speed on the road. Vehicles were assumed to 
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follow the projected trajectory based on speed and orientation. A danger heat map was produced 

based on vehicle proximities, given that the vehicles follows their projected paths. Chakraborty et 

al. (Chakraborty, Sharma, and Hegde 2018) used YOLOv3 and SORT to detect vehicles on the 

road and extract their trajectories. They use trajectory subsampling to transform the extracted 

variable length trajectories into a fixed-dimensional feature vector then used Principal Component 

Analysis (PCA) to further reduce the dimensionality of their descriptors. They trained a 

Contrastive Pessimistic Likelihood Estimation (CPLE), a semi-supervised learning technique, and 

Linear Discriminant Analysis (LDA) as their objective function. The classifier was trained to 

classify normal versus incident trajectories. Ijjina et al. (Ijjina et al. 2019) utilized Mask R-CNN 

to detect vehicles and Centroid Tracking algorithm to determine their trajectories. They detected 

candidate traffic accidents by computing the overlap in vehicle bounding boxes. For each 

candidate traffic accident, the scaled vehicle accelerations were calculated by dividing the 

difference in pixels between the vehicle centroids across its trajectory by the detected vehicle 

height in pixels. The angles between vehicle trajectories and the angles of rotation of each vehicle 

around its central vertical axis were also calculated. An accident score was computed using a 

weighted combination of the features mentioned above. An accident was flagged when the score 

surpassed a preset threshold. Wang et al. (Wang et al. 2020) extended the detection capability of a 

YOLOv3 object detector by training it to recognized fallen pedestrians, fallen bicycles and rolled 

over vehicles. They also calculated the intersection over union (IoU) of each detected pedestrian, 

bicycle and vehicle to determine whether they are stationary. A decision tree was trained to detect 

traffic accidents by using the number of stationary road users, the amount of time they spent 

stationary, the number of fallen pedestrians, and the number of rolled over vehicles. 
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2.3.2.3 Hybrid Approach 

Hybrid approaches combine features from pixel-based techniques and object-based 

methodology. Ren et al. (Ren et al. 2016) used background subtraction to separate vehicle pixel 

clusters from pavement pixels. The trajectories of the resulting clusters were tracked using a 

Kalman-Filter-based tracker. The trajectories were divided into spatiotemporal cells based a 

manually set length and time period. The grouped trajectories from each cell were used as a feature 

vector to train an SVM classifier. The classifier was trained to detect traffic incidents based on 

trajectories. Arceda et al. (Arceda and Riveros 2018) use YOLOv3 and correlation filter tracking 

to identify video segments that contain moving vehicles. They use violent optical flow (ViF) where 

the magnitude values are set to 1 if they are greater than a preset threshold and 0 otherwise. The 

resulting binarized magnitudes are separated into a histogram based on their direction. The 

histogram is then used to train an SVM classifier to classify normal traffic trajectories and crashes. 

Singh et al. (Singh and Mohan 2018) combined 2 methodologies to detect traffic accidents. Firstly, 

they divided their input video into spatiotemporal volumes and trained a stacked autoencoder using 

normal traffic videos. At testing time, they used the model reconstruction error to generate an 

abnormality score. Next, they use background subtraction and blob tracking to identify the 

trajectories of moving objects on the road. They calculate a collision score based on the number 

of intersecting trajectories which are followed by an interruption in trajectory flow. A one-class 

SVM was trained to detect outliers based on the intermediate representation of the autoencoder, 

the autoencoder reconstruction error, and the collision score. An accident is detected if the outlier 

score from the SVM exceeds a preset threshold.  

Since 2018, NVIDIA has published a traffic anomaly detection challenge as one of the 
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tracks of its yearly AI City Challenge (Naphade et al. 2018; Naphade et al. 2019; Naphade et al. 

2020; Naphade et al. 2021). To handle the variance between traffic incident videos, and to deal 

with the low-resolution of the video input, top-scoring research efforts across the different 

competition editions relied on the deduction that traffic anomalies lead to stationary vehicles in 

areas where traffic is expected to flow for prolonged periods of time (Zhao et al. 2021; Doshi and 

Yilmaz 2021; Aboah 2021; Li et al. 2020; Shine and CV 2020; Doshi and Yilmaz 2020; Biradar 

et al. 2019; Wang et al. 2019; Bai et al. 2019; Xu et al. 2018; Wei et al. 2018; Wu et al. 2021; Chen 

et al. 2021). Xu et al (Xu et al. 2018) operated under the assumption that every traffic anomaly 

leads to stationary vehicles on the road for a prolonged period of time. Additionally, stationary 

vehicles in an uninterrupted flow scene blended into the video background. Based on these 

assumptions, they devised a method to construct a video background based on moving window 

averaging across frames. Furthermore, they measured vehicle stopping time to eliminate normal 

stationary vehicles (like vehicles in a red light) from abnormality contention. In addition, 

anomalies were detected using vehicle trajectories. Mask R-CNN was used to get each vehicle 

segmentation mask. Vehicle trajectories were obtained using optical flow of pixels in each vehicle 

mask. The velocities of normal-flow vehicles were obtained in pixels/frame and velocities that 

were identified as outliers based on the inter-quartile range were flagged as anomalous. Xu et al. 

were the winners of the NVIDIA AI City Challenge 2018 anomaly detection track. Wang et al 

(Wang et al. 2019) used Gaussian Mixture Models to estimate background pixels and the 

foreground mask in the video stream. Consecutive foreground masks were accumulated to create 

a region of interest. If a vehicle was detected in the background pixels using the YOLOv3 detector, 

it was flagged as anomalous. Furthermore, a TrackletNet Tracker (TNT) was used to obtain the 

trajectories of stationary vehicles and obtain the starting time of the traffic anomaly event. Bai et 
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al. (Bai et al. 2019) utilized averaging-based background detection to identify stationary vehicles 

on the road. Furthermore, they detected all vehicles on the road using Faster R-CNN and overlayed 

the results of subsequent frames to obtain a heatmap of motion. The heatmap was used to identify 

the main road and eliminate the effect of stationary vehicles on auxiliary roads. Perspective 

normalization was utilized to enhance the detection of vehicles that were farther away from the 

camera. A Spatio-temporal pixel-tracking matrix was used to track stationary vehicles and signal 

a traffic anomaly. Bai et al. ranked first in the NVIDIA AI City Challenge 2019. Doshi et al. (Doshi 

and Yilmaz 2020) also leveraged averaging-based background modeling and overlayed detected 

objects to get the road heatmap. They used a YOLOv3 object detector and specified a low 

confidence score to detect small vehicles in the video frame. To eliminate false positives, the 

distance between each object centroid across frames was computed and only objects within a 

distance threshold were considered in the anomaly detection algorithm. Li et al (Li et al. 2020) 

proposed an anomaly detection algorithm using box-level tracking and pixel-level tracking. They 

first identify a main road mask using vehicle trajectories extracted by Faster R-CNN and 

deepSORT. A forward MOG2 background model was utilized to detect stationary vehicles on the 

road. Additionally, a finer backwards MOG2 background model was utilized to identify the 

starting time of the anomaly. Afterwards, Faster R-CNN was applied once more to identify the 

bounding boxes of stationary vehicles. The presence of a stationary vehicle was confirmed by 

matching the bounding box IoUs across frames. Li et al. ranked first in the NVIDIA AI City 

Challenge 2020. Aboah et al. (Aboah 2021) automatically detected road type (freeway vs. 

intersection), time of day (day vs. night), and weather conditions. Road type was detected by 

observing vehicle trajectory directions while time of day and weather were detected using the 

distribution of pixel intensities. Next, background scene estimation was performed by randomly 
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sampling video frames from each scene and extracting a road mask based on pixel intensities. 

Finally, they identified stationary vehicles in the background scene within the road mask and 

perform box level IoU tracking to identify traffic anomalies. 

While numerous approaches were proposed in the literature for video-based traffic incident 

detection, none of best-performing methodologies are suitable for real-time traffic incident 

detection with low-resolution traffic cameras. Optical flow methods are best suited to detect high 

impact traffic incidents that would cause a notable disturbance in the video motion field such as 

crashes. Low impact incidents, such as stalled or abandoned vehicles can have an adverse effect 

on safety and operations and are therefore important to detect as well. Top-scoring teams that 

solved the NVIDIA AI City Challenge – Traffic Anomaly Detection track participants proved that 

their approaches could detect traffic incidents from roadside traffic CCTV cameras with high 

accuracy. Nonetheless, the challenge did not require participants to run their algorithms in real-

time, and therefore no restriction on computation speed were placed. In fact, top-scoring teams 

applied a variety of post-processing techniques to optimize their detection performance such as 

global object matching across the input video (Li et al. 2020), post-processed video stabilization 

(Zhao et al. 2021), and cross-video frame sampling for background extraction (Aboah 2021). 

2.3.3 Summary 

Traffic incident detection can be characterized as a video-based anomaly detection 

problem. Abnormality detection in videos has long been studied in the literature. However, the 

definition of anomaly is too broad. Generic anomaly recognition algorithms lack the nuance 

required to solve the more fine-grained problem of traffic anomaly detection. Traffic anomaly 

detection was modeled by first determining normal traffic behavior using a set of features and then 

identifying instances that deviated from the modeled normalcy. Numerous methods have been 
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proposed to detect anomalies in traffic videos. Those methods can be broadly classified into pixel-

based approaches, object-based approaches, and hybrid approaches. Pixel-based approaches 

depend on dense pixel-wise feature extractors such as optical flow algorithms. The extracted pixel-

based features were often transformed using another feature generator like Histogram of Flow 

Gradients or Topic Models. Optical flow features are better suited for detecting severe changes in 

the motion flow on the road. Hence, they have been mainly utilized for traffic crash detection. As 

a result of the recent advancement in deep learning-based object detection, object-based 

approaches have increased in popularity. Object-based approaches depend on the detection and 

tracking of different road users. The extracted trajectories were often combined with methods to 

estimate speed, acceleration, and/or proximity between road users. Hybrid approaches utilized 

pixel-based features and object-based features. Pixel-based methods such as background 

subtraction, autoencoders, or optical flow, were used in tandem with object-based features such as 

heatmaps created from vehicle tracking and stationary vehicle detection. State-of-the-art video-

based traffic anomaly detection algorithms were built using hybrid techniques. A summary of 

traffic incident methodologies is provided in  

Table 2.1. Despite the recent advances in traffic incidents detection, traffic incident 

classification has not gained the same amount of attention. Some research efforts proposed incident 

classification approaches based on traffic counts or police records, but very few have attempted 

video-based traffic incident classification. 

Table 2.1 Summary of video-based traffic incident detection literature 

Reference Data Source Features Classifier 

Pixel-Based Approaches 

(Sadeky et al. 2010) 
Highway + 

Intersection CCTVs 

Lucas-Kanade optical flow + 

Histogram of Flow Gradients 
Logistic Regression 
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Reference Data Source Features Classifier 

(Yun et al. 2014) Intersection CCTVs 
Optical Flow + Motion 

Interaction Field 
Static Thresholds 

(Ullah et al. 2015) 
Highway + 

Intersection CCTVs 

Farneback Optical Flow + 

Enthalpy model 

Smoothed Particle 

Hydrodynamics 

(Li, Liu, and Huang 

2016) 

Highway + 

Intersection CCTVs 

SIFT + Category Number of 

Blocks 

Gaussian Distribution 

Model 

(Ahmadi, Tabandeh, 

and Gholampour 

2016) 

Intersection CCTVs 
Lucas-Kanade Optical Flow + 

Topic Models 

Topic Model Document 

Matching 

(Chen, Yu, and Li 

2016) 

Highway + 

Intersection CCTVs 

Optical Flow + Histogram of 

Flow Gradients 

Extreme Learning 

Machine 

(Yuan, Wang, and 

Wang 2016) 

Vehicle On-board 

Camera 
Optical flow + Topic Models 

Topic Model Document 

Matching 

(Maaloul et al. 

2017) 
Highway CCTVs 

Farneback Optical Flow + 

Histogram of Flow Gradients 
Dynamic Thresholds 

(Vu and Pham 2017) Highway CCTVs 
Manual Lane Annotation + 

CNN 
Softmax Layer 

(Xia, Hu, and Wang 

2018) 
Intersection CCTVs 

SIFT + Fisher Kernel + Topic 

Models 

Topic Model Document 

Matching 

(Veni, Anand, and 

Santosh 2020) 
Intersection CCTVs 

Optical Flow + Vector 

Dispersion 
Static Thresholds 

(Kim, Park, and 

Paik 2020) 

Highway + 

Intersection CCTVs 
3D-CNN Softmax Layer 

Object-Based Approaches 

(Hui et al. 2014) 
Vehicle On-board 

Camera 
GMM + Mean Shift Static Thresholds 

(Yu et al. 2018) Highway CCTVs 
Mask R-CNN + deepSORT + 

Camera Calibration 
Static Thresholds 

(Chakraborty, 

Sharma, and Hegde 

2018) 

Highway CCTVs 
YOLOv3 + deepSORT + 

PCA 

Contrastive Pessimistic 

Likelihood Estimation 

(Ijjina et al. 2019) 
Highway + 

Intersection CCTVs 

Mask R-CNN + Centroid 

Tracking + scaled 

acceleration 

Static Thresholds 

(Wang et al. 2020) Intersection CCTVs YOLOv3 + manual rules Decision Tree 

Hybrid Approaches 

(Ren et al. 2016) 
Highway + 

Intersection CCTVs 

Background Subtraction + 

Cluster Tracking 
SVM 

(Xu et al. 2018) 
Highway + 

Intersection CCTVs 

Background Detection + 

Mask R-CNN + optical flow 

trajectories 

Static Thresholds 
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Reference Data Source Features Classifier 

(Arceda and Riveros 

2018) 

Highway + 

Intersection CCTVs 

YOLOv3 + Violent Optical 

Flow + Histogram of Flow 

Gradients  

SVM 

(Singh and Mohan 

2018) 

Highway + 

Intersection CCTVs 

Autoencoders + Background 

Subtraction + Cluster 

Tracking 

One-Class SVM 

(Bai et al. 2019) 
Highway + 

Intersection CCTVs 

Background Detection + 

Motion Heatmap + Faster R-

CNN 

Stationary Vehicle 

Detection 

(Wang et al. 2019) 
Highway + 

Intersection CCTVs 

Background Detection + 

Motion Heatmap + YOLOv3 

Stationary Vehicle 

Detection 

(Doshi and Yilmaz 

2020) 

Highway + 

Intersection CCTVs 

Background Detection + 

Motion Heatmap + YOLOv3 

Stationary Vehicle 

Detection 

(Li et al. 2020) 
Highway + 

Intersection CCTVs 

Background Detection + 

Motion Heatmap + Faster R-

CNN + deepSORT 

Stationary Vehicle 

Detection 

(Aboah 2021) 
Highway + 

Intersection CCTVs 

Background Detection + 

Road/Weather Type + 

YOLOv5 

Decision Tree + 

Stationary Vehicle 

Detection 

 

Numerous approaches were proposed in the literature for video-based traffic incident 

detection. However, none of best-performing methodologies are suitable for real-time traffic 

incident detection with low-resolution traffic cameras. Optical flow methods are best suited to 

detect high impact traffic incidents that would cause a notable disturbance in the video motion 

field such as crashes. Low impact incidents, such as stalled or abandoned vehicles can have an 

adverse effect on safety and operations and are therefore important to detect as well. Top-scoring 

teams that solved the NVIDIA AI City Challenge – Traffic Anomaly Detection track participants 

proved that their approaches could detect traffic incidents from roadside traffic CCTV cameras 

with high accuracy. Nonetheless, the challenge did not require participants to run their algorithms 

in real-time, and therefore no restriction on computation speed were placed. In fact, top-scoring 

teams applied a variety of post-processing techniques to optimize their detection performance such 

as global object matching across the input video (Li et al. 2020), post-processed video stabilization 



34 

 

(Zhao et al. 2021), and cross-video frame sampling for background extraction (Aboah 2021). In 

the third research objective of this dissertation, a video-based traffic incident identification 

algorithm was proposed with a focus on real-time applicability. At any given frame at inference 

time, the proposed method does not make any computations based on future frames. Moreover, 

the algorithm computation time was evaluated in order to prove the applicability of the method on 

real-time traffic video feeds. In addition, the real-time delay of the detection time of traffic 

incidents was assessed. 
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CHAPTER 3: UTILIZING ATTENTION-BASED MULTI-ENCODER-

DECODER NEURAL NETWORKS FOR FREEWAY TRAFFIC SPEED 

PREDICTION 

3.1 Introduction 

Traffic speed prediction is an essential component of Intelligent Transportation Systems 

(ITS). It contributes towards crucial transportation applications like navigation guidance, traffic 

scheduling and traffic management (Zhang et al. 2011). Traffic speed prediction is a difficult 

problem since it is necessary to consider both the temporal dependency between traffic parameters 

and the spatial connection between traffic parameters at different parts of the road network. 

Furthermore, this spatiotemporal relationship is stochastic and highly non-linear in nature, making 

it difficult to model accurately (Park et al. 2011). 

The ubiquity of traffic sensors on the road network has led to an explosion of traffic data, 

which has in turn fueled a growing body of research in data-driven modeling of the speed 

prediction problem (Vlahogianni, Karlaftis, and Golias 2014). These types of models can be 

classified into two types: classical statistical models and machine intelligence models (Van Lint 

and Van Hinsbergen 2012). Statistical models, specifically parametric models, are favored for their 

interpretability and relative simplicity. On the other hand, machine intelligence models are non-

parametric models which make little to no assumptions regarding the input variables. Hence, they 

can model strong generalizations in pattern recognition. Due to the advancement in computation 

space and time efficiency, Artificial Neural Networks (ANNs), specifically deep learning 

techniques, have been widely applied in traffic speed prediction during the past few years. They 

have since demonstrated superior performance compared to classical statistical models and 
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machine learning algorithms. 

Despite the recent achievements in deep learning-based traffic speed prediction, there are 

some major limitations in the literature. Firstly, most research efforts focus on a short-term input 

sequence, like data from the past minutes/hours, when in fact, traffic speed exhibits cyclic behavior 

across consecutive days (specifically weekdays). In addition, there’s a periodic correlation 

between traffic patterns during the same day-of-week across successive weeks (Wu, Ho, and Lee 

2004; Liu et al. 2017; Cao, Li, and Chan 2020). Failing to account for long-term sequences inhibits 

the deep learning model’s ability to generalize traffic patterns well and can limit prediction 

accuracy. Furthermore, most methods in the literature focus on 5-15 minute ahead speed 

prediction, which provides a short window for reaction to predicted traffic turbulence, and by 

extension, a limited practical advantage to potential users. 

Secondly, most research efforts treat their deep learning models as “black box” models and 

thus fail to understand the reasons behind their model’s prediction processes and results (Tang et 

al. 2017; Yu, Lee, and Sohn 2020). The lack of interpretability leads to several problems. For 

instance, it might discourage decision makers from deploying the model due to the absence of 

output explicability. Furthermore, the scarce interpretability impedes the model development, 

debugging and dissection of where performance deficiencies may be coming from. 

In this research, an attention-based multi-encoder-decoder model, dubbed Att-MED, is 

proposed to model and predict freeway traffic speed for up to a 60-minute horizon. The encoder 

component uses convolutions to model the spatial dependency, and Long-Term-Short-Memory 

(LSTM) to model the temporal dependency. Additionally, Att-MED can incorporate multiple 

encoders and is therefore able to extract traffic patterns from multiple input sequences with 

different periodicity. The decoder also uses an LSTM to model the output horizon sequentially. 
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Furthermore, attention mechanism is used as an intermediate component between the encoder and 

decoder to enhance the temporal context of the decoder. Moreover, the attention weights are 

visualized to help decipher the neural network’s prediction process. The proposed model is trained 

and tested on traffic data from January 1st, 2017, to June 30th, 2017, extracted from State Road 408 

in Orlando, Florida, USA. In summary, the contribution of this work is threefold: 

1) The methodology demonstrates an attention-based multi-encoder-decoder model (Att-MED) 

that can encode multiple input traffic sequences. This allows the model to capture the different 

periodic characteristics of traffic flow, namely short-term, daily and weekly characteristics. 

2) The Att-MED model was trained and tested for up to 60-minute-ahead network-wide speed 

prediction. The model performance was compared against baseline models. Moreover, the 

contribution of the attention layer towards prediction accuracy was quantified by implementing 

a version of the network without attention. 

3) The interpretability of the proposed model was enhanced by leveraging attention mechanisms 

to extract and visualize temporal dependencies in speed prediction. The visualization provides 

a deeper understanding of how the network operates and allows for nuanced and meticulous 

conclusions to be drawn from the results. 

3.2 Methodology 

The network proposed in this research effort tackles the problem of speed prediction by 

utilizing 3 input sequences. First, a short-term sequence of length 𝑇 (𝒳𝑡−𝑇+1, … , 𝒳𝑡−1, 𝒳𝑡 ), which 

captures the traffic features from the previous timesteps. Next, a daily sequence of length  𝐷 

(𝒳𝑑−𝐷, … , 𝒳𝑑−2, 𝒳𝑑−1), which lists the traffic features during the same time-of-day for the past 𝐷 

days. Finally, a weekly sequence of length 𝑊 (𝒳𝑤−𝑊, … , 𝒳𝑤−2, 𝒳𝑤−1 ), which captures the traffic 



38 

 

features during the same time-of-day in the same day-of-week for the past 𝑊 weeks. Each element 

𝒳 in the input sequence contains the traffic features of all road segments in the freeway network. 

The model forecasts traffic speed for the next 𝑀 timesteps (𝒴𝑡+1, 𝒴𝑡+2, … , 𝒴𝑡+𝑀). Each element 

𝒴 in the output sequence contains the network-wide traffic speed predictions (i.e., all locations in 

the freeway network). The proposed network consists of 3 main components: encoder, attention 

layer and decoder. 

3.2.1 Encoder 

The encoder combines 2 neural network algorithms: convolution is used to extract the 

spatial features between traffic detectors and LSTM is used to model the temporal dependency. 

The two modules are combined into one network architecture called Conv-LSTM. A Conv-LSTM 

accepts a 4-dimensional input of the following structure: (time sequence, features, width, length). 

Time sequence is the temporal input sequence dimension. The feature vector contains the traffic 

parameters pertaining to each specific location in the network at a given time in the sequence. 

Finally, the width and length dimensions capture the spatial characteristics of the freeway network. 

To model the last 2 dimensions, the traffic parameters at each timestep have been reshaped into a 

vector of size (width, length) where width = 1 and length = number of road segments in the freeway 

network. 

The convolution module focuses on extracting the spatial features from the road network 

and hence computes the features from each time slice separately. The module accepts a 3D tensor 

in ℝ𝐹×𝑊×L as input where the tensor represents features, width, and length. The temporal feature 

extraction, handled by the LSTM module, involves computing cell outputs 𝒞1 … 𝒞𝑇 and hidden 

states ℋ1 … ℋ𝑇 for each 3D tensor in the input sequence 𝒳1 … 𝒳𝑇 . At each time step, the LSTM 

gates 𝑖𝑡 , 𝑓𝑡  and 𝑜𝑡  decide how much information should be carried over from the previous cell 



39 

 

output 𝒞𝑡−1 and hidden state ℋ𝑡−1 and how much information can be drawn from the current input 

𝒳𝑡. Weight matrices 𝑊 and bias vectors 𝑏 are the Conv-LSTM trainable parameters, the values of 

which are determined by the backpropagation algorithm (Hecht-Nielsen 1992). In summary, the 

Conv-LSTM is governed by the following set of equations, where σ(∙) is the sigmoid function, ∗ 

denotes a convolution operation, and ⋄  computes the Hadamard product (also known as the 

element-wise product). 

𝑖𝑡 = σ(𝑊𝑥𝑖 ∗ 𝒳𝑡 + 𝑊ℎ𝑖 ∗ ℋ𝑡−1 + 𝑊𝑐𝑖 ⋄ 𝒞𝑡−1 + 𝑏𝑖) (3.1) 

𝑓𝑡 = σ(𝑊𝑥𝑓 ∗ 𝒳𝑡 + 𝑊ℎ𝑓 ∗ ℋ𝑡−1 + 𝑊𝑐𝑓 ⋄ 𝒞𝑡−1 + 𝑏𝑓) (3.2) 

𝒞𝑡 = 𝑓𝑡 ⋄ 𝒞𝑡−1 + 𝑖𝑡 ⋄ 𝑡𝑎𝑛ℎ(𝑊𝑥𝑐 ∗ 𝒳𝑡 + 𝑊ℎ𝑐 ⋄ ℋ𝑡−1 + 𝑏𝑐) (3.3) 

𝑜𝑡 = σ(𝑊𝑥𝑜 ∗ 𝒳𝑡 + 𝑊ℎ𝑜 ∗ ℋ𝑡−1 + 𝑊𝑐𝑜 ⋄ 𝒞𝑡 + 𝑏𝑜) (3.4) 

ℋ𝑡 = 𝑜𝑡 ⋄ 𝑡𝑎𝑛ℎ(𝒞𝑡) (3.5) 

To decrease the dimensionality of the Convolutional-LSTM output at each time step, the 

output is flattened and then passed to several fully connected (FC) layers with ReLU activation. 

The encoder network produces a sequential output ℰ1 … ℰ𝑇 as shown in the equations bellow. The 

full, unrolled encoder network structure is demonstrated in Figure 3.1. 

FC(1) = 𝑅𝑒𝐿𝑈(W1𝑡ℋ𝑡 + 𝑏1𝑡) (3.6) 

FC(N) = 𝑅𝑒𝐿𝑈(W𝑁𝑡FC(𝑁 − 1) + 𝑏𝑁𝑡) (3.7) 

ℰ𝑡 = 𝐹𝐶(𝑁) (3.8) 
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Figure 3.1 Encoder Neural Network Architecture 

3.2.2 Attention Layer 

The attention mechanism enhances the encoder-decoder network by allowing each step of 

the decoder to assign attention weights to the input sequence. The more relevant an encoder step 

in the sequence is, the higher the weight of the assigned attention. The proposed network utilizes 

the attention mechanism to compute the relevance of short-term, daily and weekly periodicity 

when predicting each output horizon in the output sequence. 

To compute the decoder input at timestep 𝑡, the attention energy of the encoder output at 

timestep 𝑖, denoted as 𝑒𝑡𝑖, is calculated as a function of the previous decoder hidden state 𝒮𝑡−1 and 

the output of the encoder at timestep 𝑖, denoted as ℰ𝑖. The attention energies of all the encoder 

outputs are calculated and subsequently passed through a softmax function to create attention 
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weights 𝛼𝑡𝑖. The softmax function ensures that the aggregate of the assigned attention weights 

sums to 1. Lastly, a single vector is calculated for the output attention at time 𝑡. It is computed as 

the dot product of the attention weights and the encoder outputs. The final attention layer output, 

called the context vector, is passed as input to the decoder layer. In essence, the attention weights 

are computed according to the equations below, where weight matrices 𝑊 and bias vector 𝑏 are 

the attention layer trainable parameters. The ∙ operator calculates matrix multiplication and the 

exp(∙) function computes the exponent. 

𝑒𝑡𝑖 = 𝑊𝑡𝑖 ∙ tanh(𝑊𝑠𝑡 ∙ 𝒮𝑡−1 + W𝑒𝑖 ∙ ℰ𝑖) + 𝑏𝑡𝑖 (3.9) 

𝛼𝑡𝑖 =
exp(𝑒𝑡𝑖)

∑ exp(𝑒𝑡𝑘)𝐾
𝑘=1

 (3.10) 

𝐶𝑋𝑇𝑡 = ∑ 𝛼𝑡𝑖ℰ𝑡𝑖

𝐼

𝑖=1

 (3.11) 

3.2.3 Decoder 

The decoder layer consists of an LSTM neural network which computes the output 

sequence 𝒴1 … 𝒴𝑇 . The network uses the context vector 𝐶𝑋𝑇𝑡 as input at each output timestep 𝑡. 

The LSTM computes its internal hidden state 𝒮𝑡 and sends it to the attention unit of the next 

timestep. The 𝑖𝑡 , 𝑓𝑡  and 𝑜𝑡  LSTM gates decide how much information to use from the context 

vector and how much to use from the previous decoder timesteps. The output of each decoder cell 

𝒴𝑡 is a vector in ℝ𝑁  where 𝑁 is the number of detectors on the road network. This enables the 

LSTM to predict network-wide traffic speed at each output timestep. 

𝑖𝑡 = 𝜎(𝑊𝑖𝑥 ∙ 𝐶𝑋𝑇𝑡 + 𝑊𝑖𝑠 ∙ 𝒮𝑡−1 + 𝑊𝑖𝑐 ∙ 𝑐𝑡−1 + 𝑏𝑖) (3.12) 

𝑓𝑡 = σ(𝑊𝑓𝑥 ∙ 𝐶𝑋𝑇𝑡 + 𝑊𝑓𝑠 ∙ 𝒮𝑡−1 + 𝑊𝑓𝑐 ∙ 𝑐𝑡−1 + 𝑏𝑓) (3.13) 
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𝑐𝑡 = 𝑓𝑡 ⋄ 𝑐𝑡−1 + 𝑖𝑡 ⋄ 𝑡𝑎𝑛ℎ(𝑊𝑐𝑥 ∙ 𝐶𝑋𝑇𝑡 + 𝑊𝑐𝑠 ∙ 𝒮𝑡−1 + 𝑏𝑐) (3.14) 

𝑜𝑡 = σ(𝑊𝑜𝑥 ∙ 𝐶𝑋𝑇𝑡 + 𝑊𝑜𝑠 ∙ 𝒮𝑡−1 + 𝑊𝑜𝑐 ∙ 𝑐𝑡 + 𝑏𝑜) (3.15) 

𝒮𝑡 = 𝑜𝑡 ⋄ 𝑡𝑎𝑛ℎ(𝑐𝑡) (3.16) 

𝒴𝑡 = 𝑊𝑦𝑠 ∙ 𝒮𝑡 + 𝑏𝑦 (3.17) 

To summarize, the decoder computes the output sequence according to the above set of 

equations. As mentioned above, 𝜎(∙) is the sigmoid function, ∙ denotes matrix multiplication and 

⋄  calculates the Hadamard product. Matrices 𝑊  and vectors 𝑏  are the decoder trainable 

parameters. 

3.2.4 Att-MED Network 

To model the multi-input-sequence to output-sequence problem, the Att-MED model 

constructs 3 encoders: short-term, daily and weekly. Each encoder extracts the spatiotemporal 

parameters of its assigned input sequence. Next, the encoder outputs are concatenated and 

subsequently used as an input to the attention layer. The attention layer weighs the importance of 

each value in each input sequence and computes a combined context vector, which is then passed 

as an input to the decoder network. Each decoder LSTM cell forwards its hidden state as an input 

to the next attention unit. Figure 3.2 illustrates how the network computes the network-wide traffic 

speed as an output sequence by encoding multiple input sequences. 
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Figure 3.2 Att-MED network architecture 

3.3 Experimentation 

3.3.1 Data Preparation 

The experiment studied traffic speed along State Road 408, an east-west freeway in 

Orlando, Florida, USA. Furthermore, the study focuses on the east-bound direction. There are 52 

Microwave Vehicle Detection System (MVDS) sensors in the selected area, which are spaced 0.4 

miles apart on average. The total length of the covered route is 20.8 miles. Fig. 3 depicts their 

distribution along the freeway. The microwave sensors record spot speed, total volume and average 

occupancy every 60 seconds. The MVDS historical data has been archived on the Regional 
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Integrated Transportation Information System (RITIS) and has been downloaded for this study 

from the RITIS website. 

The time range of the historical data used for this study is January 1st, 2017, to June 30th, 

2017. To take advantage of the daily traffic patterns, the study focuses on speed prediction during 

weekdays. Based  on the Speed-Density-Flow traffic relationship, 2 of the detected traffic 

parameters can be used to compute the third (Hall, Allen, and Gunter 1986). Therefore, to diminish 

the potential irreducible error that may be caused by detector inaccuracies, only speed and volume 

were chosen as traffic features. Speed and volume data were aggregated to 5-minute intervals. The 

summary statistics of the per-segment aggregated features are presented in Table 3.1. The collected 

traffic dataset was split into a training set, a validation set, and a testing set into a ratio of 

50%:25%:25%, respectively. The validation set was utilized in the deep learning models. 

Table 3.1 Input variables summary statistics 

 Min Max Mean 
Standard 

Deviation 

Speed (mph) 0.00 149.08 65.35 6.37 

Volume 0.00 416.00 141.59 116.23 

 

3.3.2 Performance Metrics 

The experiment used three widely applied evaluation metrics to qualify the performance of 

each model. They are Mean Absolute Error (MAE), Root Mean Square Error (RMSE) and Mean 

Absolute Percentage Error (MAPE). In the following equations, 𝒴̂𝑖 refers to a prediction made by 

the model while 𝒴𝑖 refers to its corresponding ground-truth value. The total number of data points 

used for evaluation is denoted as 𝑛. 
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𝑀𝐴𝐸 =  
1

𝑛
∑|𝒴𝑖 − 𝒴̂𝑖|

𝑛

𝑖=0

 (3.18) 

𝑅𝑀𝑆𝐸 =  √
1

𝑛
∑(𝒴𝑖 − 𝒴̂𝑖)2

𝑛

𝑖=0

 (3.19) 

𝑀𝐴𝑃𝐸 =  
100

𝑛
∑

|𝒴𝑖 − 𝒴̂𝑖|

𝒴𝑖

𝑛

𝑖=0

 (3.20) 

3.3.3 Baseline Models 

The experiment target was to, at a given time t, predict the speed values of the next time 

increments up to 60 minutes. Since the processed data has been resampled as 5-minute intervals, 

the objective equated to predicting the speed values of the next 12 timesteps. Moreover, each 

MVDS detector represented a road segment in the experiment. The results of our model are 

compared against the following models: 

• ARIMA: Auto-regressive integrated moving average. 

• SVR: Support Vector Regression using a radial basis function (RBF) kernel. 

• ANN: A deep, feed forward neural network. The hyperparameters are the number of layers 

and the number of units per layer. 

• Bi-LSTM: An encoder-decoder Bidirectional LSTM network. The hyperparameters are the 

number of units in the encoder and decoder layers. 

• Conv-LSTM: A sequence-to-sequence model which uses a convolutional LSTM network as 

an encoder and an LSTM as a decoder. The number of Conv-LSTM units, kernel size, as well 

as the number of LSTM units are the model hyperparameters. 

As for the Att-MED model, the number of units in the Conv-LSTM encoder cells, LSTM 
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decoder cells as well as the number of encoder FC layers are considered hyperparameters. To 

include both traffic speed and volume in the input space, and to accommodate the shape of the 

freeway network displayed in Fig. 3, the features, width, and length input parameters were 

assigned sizes 2, 1, and 52, respectively. Furthermore, to enable network-wide speed detection, the 

size of the model’s output at each prediction timestep was set to 52.  

All neural network models were implemented using Tensorflow 2.2.1 (Abadi et al. 2016). 

The hyperparameters were tuned using the random search implementation of the Keras-Tuner 

package (O'Malley et al. 2019). The tuner used validation loss as a comparison metric to avoid 

optimizing the hyperparameters to overfit the training data. Furthermore, the Adam optimizer 

(Kingma and Ba 2014) was employed, and the loss function was set to MAE. The models ran for 

250 epochs. Early stopping was utilized to prevent overfitting by monitoring the validation loss. It 

prevents overtraining by monitoring the trend of the validation loss. If the validation loss 

deteriorates for a certain number of epochs, the training process is halted even if the training loss 

continues to decrease. 

3.3.4 Prediction Results 

Tables Table 3.2 and Table 3.3 show the prediction results of the proposed model and 

baseline models on the testing dataset for the 52 road segments. Table 3.2 displays the short-term 

results (5min/10min/15min), while Table 3.3 focuses on longer term predictions 

(30min/45min/60min). The results indicate that the SVR model was not able to model the temporal 

dependency correctly. The ARIMA model was able to produce good short-term results, but the 

performance quickly deteriorated when predicting farther time horizons, indicating that it’s unable 

to handle long-term temporal dependencies. The Att-MED, Bi- LSTM and Conv-LSTM models 

performed better than the basic ANN, highlighting the importance of capturing the temporal 
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dependency provided by the recurrent neural networks structure. Furthermore, the proposed model 

and the Conv-LSTM’s convolution modules were able to model the spatial dependencies in the 

road network. 

Table 3.2 Short-term speed prediction results 

Model 
5-minutes 10-minutes 15-minutes 

MAE RMSE MAPE MAE RMSE MAPE MAE RMSE MAPE 

ARIMA 1.580 2.946 2.721 1.716 3.419 3.030 1.953 3.814 3.315 

SVR 2.610 5.369 4.075 2.609 5.262 4.077 2.613 5.269 4.081 

ANN 1.634 2.927 2.794 1.847 3.420 3.153 1.871 3.635 3.220 

Bi-LSTM 1.810 3.730 3.023 1.852 3.750 3.344 1.959 3.867 3.380 

Conv-

LSTM 
1.605 2.979 2.656 1.699 3.181 2.835 1.865 3.398 2.998 

Att-MED 1.451 2.553 2.240 1.476 2.617 2.320 1.539 2.674 2.404 

Table 3.3 Long-term speed prediction results 

Model 
30-minutes 45-minutes 60-minutes 

MAE RMSE MAPE MAE RMSE MAPE MAE RMSE MAPE 

ARIMA 2.157 4.752 4.080 2.433 5.486 4.752 2.689 6.106 5.375 

SVR 2.617 5.281 4.088 2.630 5.305 4.108 2.649 5.345 4.138 

ANN 2.075 4.028 3.602 2.140 4.363 3.752 2.295 4.770 5.450 

Bi-LSTM 2.044 4.210 3.567 2.154 4.472 3.751 2.254 4.684 3.949 

Conv-

LSTM 
1.976 3.885 3.353 2.067 4.091 3.542 2.120 4.180 3.643 

Att-MED 1.582 2.801 2.548 1.671 3.034 2.703 1.777 3.376 2.899 

 

Att-MED generated superior results to all the baseline models for every prediction horizon. 

This outcome illustrates the significance of the daily and weekly traffic parameter periodicity as 

input in addition to the short-term periodicity. Furthermore, attention is needed to regulate the 

weight of each input sequence during prediction. Figure 3.3 depicts the results of the proposed 

model with and without the attention layer. The results indicate that the attention mechanism 

balanced between the input sequences to minimize the prediction error. 
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Figure 3.3 Prediction results for the proposed model with and without attention (a) MAE (b) 

RMSE (c) MAPE 

3.3.5 Attention Visualization 

Neural network models are often criticized for operating as “black boxes” and lacking 

interpretability. To increase model explainability, the attention weights assigned to prediction 

samples were extracted and visualized. Figure 3.4 (a), (b) and (c) map the attention weights of the 

Att-MED model when making a prediction of a morning peak sample (9:00 am), off-peak sample 

(1:00 pm) and nighttime sample (3:00 am), respectively. In order to avoid the potential training 

bias associated with the training and validation sets, the visualized attention weights were 

calculated for input data sampled from the testing set. The chosen values for T, D and W were 12, 

5 and 2, respectively. Since attention weights pass through a softmax function, the aggregate value 

of each column in the plots is 1. It can be determined that the model relied on weekly periodicity 

while making predictions during peak hour. The model relied more on both daily and weekly cyclic 

characteristics to forecast the speed of off-peak samples. In contrast, the model shifted more focus 

toward short-term traffic features to make predictions during nighttime. 
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Figure 3.4 Attention weights of proposed model predictions during (a) morning peak hour 

sample (9 am) (b) off-peak hour sample (1 pm) (c) nighttime sample (3 am) 

Figure 3.5 illustrates a sample of daily and weekly traffic speed patterns on State Road 408 

milepost 09.6. Figure 3.5 (a) indicates that, during the morning peak, Friday and Thursday patterns 

differ slightly from the rest of the weekdays. On the other hand, weekly peak traffic rhythm seems 

to be closer as demonstrated by Figure 3.5 (b). This pattern validates the model’s choice to focus 

on weekly traffic patterns when making predictions during peak hours. The same can be said for 

nighttime traffic, which exhibits high variability across both daily and weekly cycles. The model 

chose to focus the attention weights on short-term features due lack of strong cyclic traffic patterns 

during nighttime. As for off-peak hours, specifically between the morning and evening peak, Fig. 

6 indicates that traffic speed exhibits a similarity across daily and weekly patterns. Fig. 5b 

demonstrates that this similarity was captured by the attention weights. 
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Figure 3.5 (a) Daily and (b) weekly trends of traffic speed at freeway milepost 09.6 

Figure 3.6 (a), (b) and (c) map the attention weights throughout a sample day for 5-minute, 

30-minute and 60-minute attention horizons, respectively. Like Figure 3.4, the data samples used 

for visualization were extracted from the testing set. The plots illustrate the model’s choice to focus 

on weekly periodic characteristics during evening peak hours and a combination of daily and 

weekly cyclic features for off-peak hours. It can also be observed from Figure 3.6, as well as Figure 

3.4 (a) and (b), that the model relied more on short-term features when forecasting speed for a 

shorter output horizon. As the model makes farther predictions, it relies more on daily and weekly 

features. Shorter horizons are inherently easier to predict, given that there is less variability 

between the prediction and short-term features. Furthermore, assigning more weight to short-term 

features allows the model to react to atypical conditions like crashes, especially for shorter-horizon 

speed forecasting which would be impacted the most by sudden abnormalities in traffic conditions. 

On the contrary, longer-term traffic forecasting is inherently more stochastic. Given that there’s 

more variability between short-term traffic features and longer prediction horizons, the attention 

layer assigned a heavier weight to daily and weekly patterns. 



51 

 

 

Figure 3.6 Attention weights of the prediction of a sample time segment for (a) 5-minute (b) 30-

minute and (c) 60-minute output horizons 

3.4 Conclusion 

The architecture of the proposed Att-MED model is composed of multiple components. 

The encoder used convolutions and a recurrent neural network cells to capture the spatiotemporal 

relationship of the input sequence. The usage of multiple encoders helped capture the cyclic daily 
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and weekly traffic patterns and facilitated their use as additional input features. The attention layer 

enabled the use of multiple encoders, and by extension, multiple traffic sequence inputs. Attention 

balanced between the different encoder outputs and regulated their contribution towards prediction 

at each output horizon. Finally, the LSTM decoder modeled the temporal relationship of the output 

sequence. Training the attention-based multi-encoder decoder network end-to-end produced 

superior 60-minute ahead prediction accuracies compared to the baseline models. Furthermore, the 

attention layer enhanced the interpretability of the model outputs. The model prediction decisions 

were further studied and validated by comparing against the real traffic patterns. The attention 

weights confirmed the significance and contribution of the daily and weekly input sequences 

towards speed prediction. The attention weight maps quantified the value of periodic features, 

especially for longer-horizon prediction. 

Accurate 60-minute ahead traffic speed prediction has many useful applications. For 

regular commuters and connected vehicles, it can be used for trip planning, routing and preemptive 

rerouting in case of predicted congestions. It can also be applied in traffic management, especially 

during peak hours. In practice, 60-minute ahead prediction gives traffic operators plenty of time 

to react to predicted traffic turbulence. Additionally, in contrast to traditional deep learning 

models, attention weight visualization enhances the interpretability of the proposed model, which 

allows operators to make nuanced, informed, and explainable decisions. 
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CHAPTER 4: SEQUENCE-TO-SEQUENCE RECURRENT GRAPH 

CONVOLUTIONAL NETWORKS FOR TRAFFIC ESTIMATION AND 

PREDICTION USING CONNECTED PROBE VEHICLE DATA 

4.1 Introduction 

Traffic parameters estimation, is indispensable for various fundamental transportation 

applications such as transportation planning, traffic incident detection, and conducting traffic 

operation and safety studies (Mahmoud et al. 2021a). Currently, most traffic data, such as traffic 

volume and speed, is collected using sensing hardware infrastructure such as inductive loop 

detectors, radar detectors, or roadside cameras. While these sensors can provide accurate 

measurements, they have several drawbacks. Firstly, the hardware sensors are expensive and time 

consuming to setup and deploy, especially on a large scale. Secondly, sensors are prone to 

hardware failure or network outage, which leads to data loss and high maintenance costs. Thirdly, 

the sensor spatial distributions are usually limited in order to minimize deployment cost. This 

problem entails that a single sensor downtime leads to missing traffic data for an entire road 

segment. 

Recent advances in vehicular networking technology can disrupt the traditional traffic 

estimation methods. Newer vehicles are equipped with network-enabled on-board units (OBUs) 

which are capable of real-time vehicle-to-everything (V2X) communication with external agents. 

The V2X communication paradigm facilitates real-time sampling of per-vehicle location, speed, 

and heading data. When collected from a fleet of connected probe vehicles, the sampled data can 

provide enough information for infrastructure-free traffic flow estimation. Utilizing connected 

probe vehicle for traffic estimation can resolve many shortcomings of infrastructure-based data 
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collection methods. It can be used to derive traffic parameters without the dependence on pre-

deployed infrastructure, meaning that new roadway segments and remote areas can be covered 

more quickly and inexpensively. Moreover, the decentralized nature of probe vehicle data 

sampling means that there’s no single point of failure that can lead to missing data. A single road 

segment is covered by multiple vehicles and therefore sampled using various sensors. 

In addition to traffic flow estimation, probe-vehicle data can be utilized for short-term 

traffic prediction. Traffic parameters prediction is essential for numerous data-driven Intelligent 

Transportation System (ITS) applications such as route optimization, dynamic navigation, and 

traffic scheduling (Zhang et al. 2011). Traditional traffic prediction methods depend on 

infrastructure-based data as input, and hence suffer from the same shortcomings as static 

infrastructure-based traffic estimation. 

Traffic network modeling has long been studied in the literature. However, most studies 

utilized infrastructure-based data for traffic estimation and prediction (Kwon, Varaiya, and 

Skabardonis 2003; Pan, Demiryurek, and Shahabi 2012; Wilkie, Sewall, and Lin 2013; 

Abdelraouf, Abdel-Aty, and Yuan 2021; Ma, Tao, et al. 2015; Jin et al. 2018; Mahmoud et al. 

2021b). Probe vehicle data presents a different set of challenges when employed for traffic 

modeling. Probe vehicle data only captures the traffic parameters from a sample of the vehicles on 

the road. It is easier for probe vehicle data to estimate traffic speed, however it cannot be directly 

used to infer traffic volume. Therefore, in previous research efforts, most authors focused on 

utilizing probe vehicle data for travel time estimation and prediction (Zheng and Van Zuylen 2013; 

Efentakis et al. 2013; Pfoser, Tryfona, and Voisard 2006; Wang, Zheng, and Xue 2014; Zhang et 

al. 2017; Zhan, Ukkusuri, and Yang 2016; Li et al. 2017; Derrow-Pinion et al. 2021). Nevertheless, 

traffic volume is a vital traffic parameter. It is an imperative measurement that can be further used 
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to derive other traffic parameters, namely traffic flow and traffic density. 

Traffic estimation and prediction are complex problems due to the stochastic nonlinear 

relationships between traffic parameters in both spatial and temporal dimensions. Many 

methodologies have been utilized such as parametric statistical modeling (Ahmed and Cook 1979; 

Kumar and Vanajakshi 2015; Chandra and Al-Deek 2009) and machine learning-based methods 

(Castro-Neto et al. 2009; Ye, Szeto, and Wong 2012; Van Lint, Hoogendoorn, and van Zuylen 

2005). However, due to advancements in computation time and efficiency, and due to the 

availability of large traffic datasets, deep neural networks-based methods have been widely applied 

in recent years. Deep learning methods have demonstrated superior traffic model compared to 

traditional machine learning and statistical modeling methods (Zheng et al. 2020; Zhao, Song, et 

al. 2019; Wu et al. 2019). 

In this research effort, a sequence-to-sequence neural-network-based methodology for 

traffic estimation and prediction was proposed. The neural network consists of an encoder-decoder 

architecture which combines Graph Convolution Networks (GCN) for spatial modeling and Long-

Short-Term-Memory networks (LSTM) for capturing temporal dependencies. The model performs 

traffic estimation and up to 60-minute ahead traffic prediction in the form of traffic speed and 

traffic volume. Moreover, the methodology generates traffic volume and speed estimations and 

predictions for all modeled road segment locations concurrently. The methodology utilizes 

connected probe vehicle data in the form of Wejo vehicle movement data (Wejo 2021a). Wejo 

provides probe vehicle movement data which was curated from multiple commercial cars Original 

Equipment Manufacturers (OEM) (Wejo 2021b). The proposed methodology was validated using 

Microwave Vehicle Detection System (MVDS) traffic sensors deployed at 182 locations 

distributed across 4 different freeways in Orlando, Florida, for a period of 14 days. Subsequently, 
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the results were compared against baseline models. In summary, the contributions of the proposed 

research are threefold: 

1) A deep neural network methodology was used to perform road-network-wide infrastructure-

free traffic volume and speed estimation and up to 60-minutes ahead prediction. The outputs 

were validated using traffic data collected from roadside microwave sensors as the ground 

truth. 

2) Seq2seq GCN-LSTM, a sequence-to-sequence deep neural network architecture was 

developed and proposed. The method employs Graph Convolution Networks and Long Short-

Term Memory to model traffic parameters in the spatial and temporal dimensions, respectively. 

3) The penetration rate of the probe vehicle data was manually varied in order to measure its 

effect on the proposed model’s traffic estimation and prediction capabilities. 

4.2 Data Description 

In this research effort, connected probe vehicle data from the Wejo dataset was used to 

estimate and predict network-wide traffic speed and volume. Roadside sensor-based data from 

Microwave Vehicle Detection System (MVDS) detectors was additionally collected and regarded 

as the ground truth. The distribution of the study area basemap is illustrated in Figure 4.1. The data 

was collected from 182 segments distributed across 4 expressways in Orlando, Florida for 14 days: 

SR-408, SR-417, SR-528, and Florida Turnpike. The total length of the roadways covered by the 

study was 112.4 miles. The road segmentation was defined by the availability of MVDS data. Each 

location marked in Figure 4.1 signifies the location of an MVDS detector. As illustrated, each of 

the expressways intersects with two others, indicating a strong spatial correlation between the 

traffic parameters across the roadway segments. The proposed model was trained using probe 
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vehicle data features as input variables and the MVDS data as the output. The resulting trained 

model was able to make infrastructure-free network-wide traffic speed and volume estimations 

and prediction purely based on probe vehicle data. 

 

Figure 4.1 Study area map and sensor locations 

4.2.1 Raw Data 

4.2.1.1 Connected Probe Vehicle Data 

The Wejo connected probe vehicle datapoints located on the study area expressways were 

collected. The Wejo fleet consists of commercial vehicles, meaning that the vehicles in the dataset 

represent a varied sample of the vehicles on the road. Furthermore, vehicle-to-cloud (V2C) 

communication was used to send the vehicles’ information from the fleet directly to the Wejo 

servers. The dataset consisted of approximately 61.3 million GPS points generated from 580,864 

unique trips. Each datapoint contained location information (latitude, longitude), timestamp, 

speed, heading, and journey ID. The sampling interval of the probe vehicle data was 3 seconds. 
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4.2.1.2 Microwave Sensor Data 

The MVDS data was collected from the 182 detectors shown in Figure 4.1. The data was 

downloaded from the Regional Integrated Transportation Information System (RITIS). The 

microwave sensors detected spot vehicle speed. Consequently, the raw microwave sensor data 

consisted of average speed and total volume aggregated by 1 minute for each detector. 

4.2.2 Data Processing 

Firstly, the probe vehicle points were filtered by GPS location. Points that were not on the 

study area expressways were filtered out. Next, each MVDS detector was matched to the set of 

waypoints that lied within a 0.075-mile radius. The matching threshold was chosen based on the 

sampling rate. Since the sampling interval was 3 seconds, any vehicle driving under 180 miles per 

hour was captured and matched using at least 1 waypoint from the trip. Afterwards, to ensure that 

each detector was matched with waypoints traveling in the same direction, the points were filtered 

by heading according to the alignment of their corresponding detector. Finally, both the probe 

vehicle and microwave datasets were aggregated to 5-minute intervals. 

4.2.3 Data Analysis 

The 5-minute aggregated data from each MVDS detector was compared to the 

corresponding aggregated matched probe vehicle waypoints. The total number of trips was 

compared to the total sum of volume to compute the penetration rate of the Wejo connected vehicle 

probe data. Figure 4.2 depicts the distribution of penetration rates for the 182 detector locations. 

The average penetration rate was 3.422% with a standard deviation of 0.399%. The penetration 

rate values per location ranged between 2.167% and 4.957%. 
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Figure 4.2 Distribution of the Wejo connected probe vehicle data penetration rates per location 
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Table 4.1 demonstrates the feature-wise summary statistics for both the connected probe 

vehicle data and the microwave sensor data. The average 5-minute volume of the probe vehicle 

data was 4.622 vehicles compared to 136.722 vehicles reported by the microwave sensors. The 

ratio of the two means is 3.380% which is consistent with the computed penetration rate. It can be 

noticed that the coefficient of variation is higher for the probe vehicle volume compared to the 

microwave sensor volume. The same phenomenon can be noticed for the 5-minute average speed 

feature. While the means of the two datasets are very close, the standard deviation and coefficient 

of variation for the probe vehicle average speed is higher. This discrepancy stems from the low 

penetration rate of the probe data. It is the reason why the probe data cannot be directly used to 

accurately estimate or predict traffic parameters. 
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Table 4.1 Datasets’ feature-wise summary statistics 

 Mean 
Std. 

Deviation 

Coeff. of 

Variation 
Maximum Minimum 

Connected Probe Vehicle Data 

Sum 

Volume 
4.622 2.361 0.511 29.000 0.000 

Avg Speed 68.134 7.210 0.120 118.103 0.000 

Microwave Sensor Data 

Sum 

Volume 
136.722 47.468 0.347 686.000 0.000 

Avg Speed 68.405 6.864 0.100 117.462 0.000 

 

The graphs in Figure 4.3 were plotted to further investigate the difference between the 

dataset characteristics. Figure 4.3 (a) and (b) compare the volume and speed plots of the microwave 

sensor data versus the probe vehicle data for the roadway segment SR-408 milepost 9.2 eastbound. 

Additionally, Figure 4.3 (a) depicts the scaled probe vehicle data volume, which is the volume data 

scaled by the penetration rate for the graphed location. It can be concluded that the Wejo probe 

vehicle data can capture the temporal trend of traffic. However, due to the low penetration rate, 

there’s a high variance between the reported adjusted volume and the microwave sensor volume 

data. A similar situation can be observed in Figure 4.3 (b) for the average speed. The reported 

probe vehicle speed captures the temporal speed trend with some variance caused by the low 

penetration rate. However, Figure 4.3 (b) indicates that the probe vehicle data can report irregular 

speed readings such as demonstrated between 21H and 00H. The eccentric speed reading could be 

coming from an equipped vehicle that was performing an atypical action, such as stopping on the 

shoulder. Due to the low number of probe vehicles, highly deviated datapoints could have a 

considerable effect on the aggregated average speed data. 
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(a) 

 

(b) 

Figure 4.3 Probe vehicle data versus microwave vehicle data plots for 5-minute aggregated (a) 

total volume and (b) average speed 

4.3 Methodology 

The proposed methodology was designed to model the past short-term traffic parameters 

extracted from the probe vehicle data in order to simultaneously estimate the ongoing traffic and 

predict the upcoming short-term traffic parameters. Traffic parameters exhibit stochastic nonlinear 

dependencies in both the spatial and temporal dimensions. To accurately capture both 

dependencies, an encoder-decoder deep neural network architecture was developed. Figure 4.4 
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illustrates the overall model architecture. The encoder module was used to model the input past 

traffic parameters, while the decoder was used to compute the output estimations and future 

prediction. Graph Convolution Networks were employed to model the spatial dependencies and 

Long Short-Term Memory networks were utilized to capture the temporal relations. The model 

was named Sequence-to-Sequence Graph Convolution Network-Long Sort-Term Memory 

(Seq2seq GCN-LSTM). 

 

Figure 4.4 Overall architecture of the proposed Seq2seq GCN-LTM methodology 

4.3.1 Graph Convolution Networks 

Graph neural networks were designed as an alternative to convolution neural networks that 

can effectively model graph-based structures (Kipf and Welling 2016). The GCN takes 2 inputs: 
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an adjacency matrix, and a set of features. The adjacency matrix 𝐴 ∈ ℝ𝑁×𝑁 , where 𝑁  is the 

number of vertices, represents the graph structure. The set of features 𝑋 ∈ ℝ𝑁×𝐷, where 𝐷 is the 

number of features, represents the input feature vector per vertex in the graph. 

In the proposed methodology, the GCN was used to model the spatial relationship between 

connected segments in the road network topology. The road network was defined as an undirected 

weighted graph 𝐺 = (𝑉, 𝐸), where 𝑉  is the set of vertices of length 𝑁 defined by the MVDS 

detector locations and 𝐸 is the set of edges which correspond to the road segments that connect 

pairs of vertices. The weights of each graph edge were designated as the distance between 

neighboring vertices. Subsequently, for each edge in 𝐸  that connects vertices 𝑖  and 𝑗 , the 

adjacency matrix element 𝐴𝑖,𝑗 was set to the edge weight. Since the graph was undirected, the 

output adjacency matrix was symmetric (𝐴𝑗,𝑖 = 𝐴𝑖,𝑗). All other entries in the matrix were set to 

zero. 

A multi-layer GCN network was employed where 𝐿𝐺𝐶𝑁 is the number of layers. The GCN 

model uses the input adjacency matrix to propagate the feature information from neighboring 

vertices. Additionally, to utilize each vertex’s own features, a self-connection was established by 

adding the identity matrix to the adjacency matrix 𝐴̃ = 𝐴 + 𝐼. Furthermore, the diagonal vector 

𝐷̃𝑖,𝑖 = ∑ 𝐴𝑖,𝑗
𝑁
𝑗  was used to normalize the adjacency matrix weights. The output of each layer was 

calculated as follows: 

𝐻(𝑙) = 𝑅𝐸𝐿𝑈 (𝐷̃−
1
2𝐴̃𝐷̃−

1
2𝐻(𝑙−1)𝑊(𝑙−1)) 𝑙 = 1 … 𝐿𝐺𝐶𝑁 (4.1) 

where 𝑅𝐸𝐿𝑈 is the rectified linear unit activation function, and 𝑊(𝑙) is the trainable weight 

matrix of GCN layer 𝑙. The input to the first layer 𝐻(0) was simply the feature vector 𝑋. Finally, 

the output of the GCN network corresponded to the result of the last layer activation as shown in 
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equation 2. 

𝐺𝐶𝑁(𝑋, 𝐴) = 𝐻(𝐿𝐺𝐶𝑁)  (4.2) 

4.3.2 Long Short-Term Memory 

Long Short-Term Memory (Hochreiter and Schmidhuber 1997) is a recurrent neural 

network architecture that was designed to model sequential input. In the proposed methodology, 

the LSTM network was utilized to model the temporal relationship between traffic parameters at 

subsequent timesteps. 

The LSTM network utilizes a sequence of connected cells, one cell per element in the input 

sequence. Each cell computes its internal state 𝑐𝑡 and hidden state ℎ𝑡 state based on 3 functions: 

the input gate (𝑖𝑡), forget gate (𝑓𝑡), and output gate (𝑜𝑡). The input and forget gates decide how 

much information should be drawn from the current timestep features 𝑥𝑡  and how much 

information should be utilized from the previous cell hidden state ℎ𝑡−1, respectively. The output 

gate is used to calculate the current cell hidden state ℎ𝑡, and thus decides how much information 

gets propagated to the next cell. Equations 3 – 8 specify the calculations made by each LSTM cell 

at timestep 𝑡. The computations are repeated for each element in the modeled sequence 𝑡 = 0 … 𝑇. 

The weight matrices 𝑤 and bias vectors 𝑏 are the network trainable parameters. 𝜎 and ∗ denote the 

sigmoid activation function and element-wise multiplication, respectively. 

𝑖𝑡 = 𝜎(𝑤𝑖[ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑖) (4.3) 

𝑓𝑡 = 𝜎(𝑤𝑓[ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑓) (4.4) 

𝑜𝑡 = 𝜎(𝑤𝑜[ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑜) (4.5) 

𝑐̃𝑡 = 𝑡𝑎𝑛ℎ(𝑤𝑐[ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑐) (4.6) 

𝑐𝑡 = 𝑓𝑡 ∗ 𝑐𝑡−1 + 𝑖𝑡 ∗ 𝑐̃𝑡 (4.7) 
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ℎ𝑡 = 𝑜𝑡 ∗ 𝑡𝑎𝑛ℎ(𝑐𝑡) (4.8) 

4.3.3 Encoder 

The encoder network was responsible for extracting the spatiotemporal information from 

the input and encoding the features to an intermediate representation. The input was a temporal 

sequence comprised of the historical 5-minute aggregated volumes and average speeds extracted 

from the probe vehicle data. The GCN and LSTM networks were employed to model the spatial 

and temporal dependencies, respectively. As illustrated in Figure 4.4, the encoder received a 

normalized input 𝑋 ∈ ℝ𝑇𝑖𝑛×𝑁×𝐷, where 𝑇𝑖𝑛 was the length of the input time sequence. For each 

input timestep 𝑡, graph convolution was applied to the feature vector 𝑋(𝑡) ∈ ℝ𝑁×𝐷. Afterwards, 

the outputs of each convolution operation 𝐺𝐶𝑁(𝑋(𝑡−𝑇𝑖𝑛)), … , 𝐺𝐶𝑁(𝑋(𝑡)) were transmitted as input 

to the encoder LSTM network. The LSTM cells encoded the historical temporal features up to the 

current timestep 𝑡. 

4.3.4 Decoder 

The decoder network was used to decipher the intermediate representation vector computed 

by the encoder. The encoder output was used as input to the decoder GCN network. The decoder 

GCN extracted the spatial relationship between output estimations and predictions across 

neighboring road segments. Next, the decoder LSTM cells were used to model the temporal 

relationship between the output timesteps. Finally, a multi-output sigmoid activated fully 

connected (FC) layer was employed to generate an output vector 𝑌(𝑡) ∈ ℝ𝑁×𝐷  for each output 

timestamp 𝑡. The output vector was used to extract the 5-minute aggregated total volume and 

average speed at each vertex in the road network graph concurrently. The FC layer was preceded 

by a dropout layer to act as a regularization technique. 

The decoder produced the output vector 𝑌 ∈ ℝ𝑇𝑜𝑢𝑡×𝑁×𝐷, where 𝑇𝑜𝑢𝑡 was the length of the 
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output sequence. The first element in the output sequence 𝑌(𝑡) was used to estimate the ongoing 

traffic parameters. The remaining elements 𝑌(𝑡+1), … , 𝑌(𝑡+𝑇𝑜𝑢𝑡) were denormalized and used for 

traffic parameter prediction. During model training, the output datapoints 𝑌 were specified from 

the aggregated microwave sensor volume and average speed data. 

4.3.5 Loss Function 

Mean absolute error (MAE) was used as the loss function for the proposed methodology. 

MAE was chosen to fit the multi-output regression task performed by the network. Equation 9 

indicates the computation carried out by the loss function where 𝑌 and 𝑌̂ represent the ground truth 

and model prediction vectors, respectively. The loss function measures the error at each output 

timestep for all location and for each target output feature. To train the proposed model end-to-

end, the Adam optimizer (Kingma and Ba 2014) was employed to reduce the loss value through 

the backpropagation algorithm. 

ℒ(𝑌, 𝑌̂) =
1

𝑇𝑜𝑢𝑡 ∗ 𝑁 ∗ 𝐷
∑ ∑ ∑|𝑌𝑡,𝑛,𝑑 − 𝑌̂𝑡,𝑛,𝑑|

𝐷

𝑑

𝑁

𝑛

𝑇𝑜𝑢𝑡

𝑡

 (4.9) 

4.4 Experimentation 

4.4.1 Setup 

The probe vehicle data and the corresponding microwave sensor data were used to train 

and validate the proposed neural network architecture for traffic volume and speed estimation and 

prediction. The model utilized probe vehicle data from the past hour to estimate the current traffic 

state and predict the traffic parameters up to 60 minutes ahead in 5-minute increments (𝑇𝑖𝑛 =

𝑇𝑜𝑢𝑡 = 13). To improve performance, the proposed model’s hyperparameters were optimized. The 

hyperparameter search space included the number of layers for the encoder GCN, encoder LSTM, 
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decoder LSTM, decoder GCN. Furthermore, each layer’s corresponding size was tuned. Moreover, 

the decoder’s dropout ratio was tuned. During model training, the batch size and optimizer’s 

learning rate were additionally tuned. Table 4.2 summarizes the variables in the hyperparameter 

optimization search space and their corresponding ranges. 

The available data was split into 75% for model training and 25% for model testing. During 

model training, the learning rate was reduced on plateau by a factor of 0.5. Early stopping was 

implemented to avoid model overtraining. 

The proposed model was implemented using Tensorflow (Abadi et al. 2016) and Keras 

(Chollet 2015) deep learning libraries. Moreover, KerasTuner (O'Malley et al. 2019) random 

search tuner was used to find the optimal hyperparameter values and subsequently optimize model 

performance. 

Table 4.2 Seq2seq GCN-LSTM hyperparameter search space 

Hyperparameter Range Step 

GCN layers [1, 5] 1 

LSTM layers [1, 5] 1 

GCN layer size [4, 32] 4 

LSTM layer size [128, 512] 128 

Dropout ratio [0.0, 0.5] 0.1 

Batch size [32, 128] 32 

Learning rate [10-4, 10-2] 0.5 (log scale) 

 

4.4.2 Baseline Models 

The proposed methodology was compared to three baseline models. The outputs for each 

target horizon were computed separately. The description of each baseline model is as follows: 

• SVR: Support Vector Regression with a radial basis function (RBF) kernel. The SVR model 

was trained using all road segment features from all historical timesteps as input features. 
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• LSTM: A Long Short-Term Memory model which was trained using all road segment features 

per historical timestep as input features. 

• GCN: A Graph Convolution Network model which was trained using all historical timestep 

features per road segment as input features. The same adjacency matrix that was used for the 

proposed model was utilized. 

4.4.3 Evaluation Metrics 

Three common regression performance metrics were used to evaluate estimation and 

prediction errors of the proposed and baseline models: Mean Absolute Percentage Error (MAE), 

Root Mean Square Error (RMSE), and Mean Absolute Percentage Error (MAPE). MAE measures 

the average error while RMSE uses a squared term to emphasize the penalty on larger error 

margins. Equations 10, 11, and 12 describe the computations carried out by the evaluation metrics 

functions. 𝑌𝑖 and 𝑌̂𝑖 refer to the ground truth and prediction vectors for one datapoint, respectively. 

𝑛 signifies the total number of datapoints used for evaluation. 

𝑀𝐴𝐸 =  
1

𝑛
∑|𝑌𝑖 − 𝑌̂𝑖|

𝑛

𝑖=0

 (4.10) 

𝑅𝑀𝑆𝐸 =  √
1

𝑛
∑(𝑌𝑖 − Ŷ𝑖)2

𝑛

𝑖=0

 (4.11) 

𝑀𝐴𝑃𝐸 =  
100

𝑛
∑ |

𝑌𝑖 − 𝑌̂𝑖

𝑌𝑖
|

𝑛

𝑖=0

 (4.12) 

4.4.4 Estimation and Prediction Results 

Table 4.3 demonstrates the 5-minute aggregated total volume and average speed results on 

the test dataset. The first two rows in the table describe the traffic parameter estimation results, 
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while the rest of the table lists the traffic parameter prediction results. In general, traffic volume 

was more difficult to estimate/predict that traffic speed. This is a result of the low probe vehicle 

penetration rate which resulted in a higher variance traffic volume trend compared to the captured 

speed as demonstrated in Figures 3 (a) and 3 (b). In addition, since the study area consisted of an 

expressway road network, many of the road segments did not have clear morning and afternoon 

peak drops in speed. On the other hand, traffic volume temporal fluctuation patterns occurred on 

every road segment. 

The proposed Seq2Seq GCN-LSTM model yielded the best estimation and prediction 

results compared to the baseline models across the board. The neural network-based methods, 

particularly the LSTM and proposed methodology, were far superior to the SVR model output. 

The stand-alone LSTM model produced better results than the stand-alone GCN model. This 

outcome signifies that the temporal dependency of the input sequence had a more significant effect 

than the spatial dependency in the study area. Nevertheless, the Seq2Seq GCN-LSTM model 

produced better results compared to both the stand-alone GCN and LSTM models. The results 

demonstrate the synergetic effect of the GCN and LSTM modules in the proposed methodology. 

It categorically highlights the importance of modeling both the spatial and temporal dependencies 

of traffic volume and speed. 

The proposed Seq2Seq GCN-LSTM generated the best longer-term prediction results. The 

results produced by the baseline models exhibit more deterioration as the prediction horizon 

increased. This decline is more notable for the models that have no capability of capturing temporal 

dependencies, namely the SVR and GCN models. The results emphasize the importance of 

modeling the temporal interdependency between the elements of the predicted sequence. The 

proposed model could capture this relationship by utilizing the decoder LSTM network. 
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Table 4.3 Volume and speed estimation and prediction results 

Horizon Metric 

Sum Volume Avg Speed 

SVR LSTM GCN 
Seq2seq 

GCN-LSTM 
SVR LSTM GCN 

Seq2seq 

GCN-LSTM 

Real-Time Estimation 

0 min 

MAE 23.756 18.150 24.015 15.924 4.374 1.768 1.783 1.601 

RMSE 29.330 25.276 32.343 22.500 5.121 2.776 2.741 2.618 

MAPE 13.191 10.727 14.939 9.839 7.176 3.552 3.595 3.408 

Short-Term Prediction 

5 min 

MAE 24.350 18.142 25.078 16.029 4.393 1.770 1.769 1.608 

RMSE 29.990 25.354 34.262 22.673 5.140 2.773 2.763 2.616 

MAPE 13.634 10.689 15.626 9.849 7.205 3.558 3.583 3.410 

10 min 

MAE 25.031 18.216 26.499 16.480 4.416 1.779 1.817 1.616 

RMSE 30.747 25.407 36.061 23.233 5.162 2.784 2.793 2.617 

MAPE 14.148 10.711 16.290 10.220 7.240 3.566 3.602 3.417 

15 min 

MAE 25.758 18.249 27.548 16.824 4.430 1.785 1.817 1.620 

RMSE 31.529 25.432 37.865 23.680 5.177 2.790 2.842 2.617 

MAPE 14.602 10.740 16.949 10.393 7.262 3.568 3.629 3.420 

Longer-Term Prediction 

30 min 

MAE 28.051 18.758 31.544 17.531 4.486 1.795 1.837 1.623 

RMSE 33.968 26.426 43.475 24.465 5.236 2.791 2.890 2.616 

MAPE 16.236 11.179 19.141 10.876 7.350 3.673 3.814 3.421 

45 min 

MAE 30.106 18.835 35.698 17.841 4.498 1.795 1.858 1.623 

RMSE 36.278 26.640 48.655 24.630 5.252 2.796 2.912 2.611 

MAPE 17.723 11.372 21.475 11.050 7.372 3.693 3.785 3.420 

60 min 

MAE 31.413 18.999 38.841 18.393 4.495 1.852 1.858 1.633 

RMSE 37.932 26.777 52.924 25.376 5.254 2.843 2.909 2.626 

MAPE 18.604 11.518 23.479 11.326 7.370 3.814 3.837 3.436 

 

4.4.5 Output Visualization 

Figure 4.5 plots the microwave sensor readings (ground truth), the probe vehicle data (input 

features), the probe vehicle data scaled by the location-wise penetration rate, and the Seq2seq 

GCN-LSTM model estimation results. The graphs illustrate traffic volume and speed at three 

different road segments from 3 different expressways in the study area, namely SR-408 milepost 

6.0 eastbound, SR-528 milepost 6.4 eastbound, and Florida Turnpike milepost 265.2 northbound. 

The 5-minute aggregated total volume estimations are demonstrated in Figure 4.5 (a), (c), 

and (e). Despite the low penetration rate, the model was able to sufficiently capture the volume 

trend. The probe vehicle volumes, when scaled using the penetration rate ratio, exhibit high 

variance, and indicate that they cannot be directly used to compute the volume, thereby confirming 
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the importance of utilizing a highly nonlinear model. 

Figure 4.5 (b), (d), and (f) illustrate the 5-minute average speed estimations. As depicted 

in the graphs, the probe vehicle average speeds provide a high variance input speed reading to the 

proposed model. Nevertheless, by relying on the adjacent traffic readings in the spatial and 

temporal dimensions to accurately estimate traffic volume, the Seq2seq GCN-LSTM was able to 

capture the speed trend. Moreover, Figure 4.5 (f) and (d) demonstrate erratic input speed readings 

from the probe vehicle dataset, for instance, the probe vehicle speed reading in Figure 4.5 (f) at 

18H. However, the proposed model’s output demonstrates robustness against outlier input speed 

values as demonstrated by the estimation plots in the figures. One shortcoming of the proposed 

model is its lack of ability to capture the sharp drop in traffic speed during the peak period. As 

shown in Figure 4.5  (d), the model estimated a drop in speed, but not as deep as the corresponding 

ground truth values. 
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(a) 

 

(b) 

 

(c) 

 

(d) 

 

(e) 

 

(f) 

 

Figure 4.5 Speed and volume estimation plots 

4.4.6 Penetration Rate Analysis 

Figure 4.6 was plotted in order to understand the effect of the probe vehicle penetration 

rate on the model’s ability to estimate and predict traffic volume and speed. The figures illustrate 
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the output evaluation results at different target horizons: 0-min (estimation), 15-min, 45-min, and 

60-min. To emulate the lower penetration rate, the number of unique trips in the probe vehicle 

dataset was manually discounted to reach the desired penetration rate. Journey IDs were randomly 

selected, and their corresponding GPS were removed. Table 4.4 summarizes the probe vehicle 

feature statistics under different penetration rate values. The Wejo probe vehicle fleet average 

penetration rate of 3.4% was used as the baseline for comparison. It can be noted that, while the 

volume feature values decrease with the penetration rate as expected, the mean speed value 

remains very similar, and the speed standard deviation increases slightly due to the lower number 

of vehicles. 

Figure 4.6 (a) illustrates the effect of penetration rate on traffic volume estimation and 

prediction. The model maintained a steady output MAE until the penetration rate was lowered to 

1.5%. The average increase in MAE across all estimation and prediction horizons was 15.6%. The 

model output rapidly degraded below 1% penetration rate. At 0.5% penetration rate, the average 

MAE increased by 66.2%. Moreover, it can be observed that at lower penetration rate values, 

longer-horizon traffic prediction performance declined more compared to traffic estimation. 

Figure 4.6 (b) demonstrates the effect of probe vehicle penetration rate on the model’s 

traffic speed estimation and prediction capability. Unlike the pattern observed with traffic volume, 

the penetration rate had little effect on the model’s speed prediction results. At 0.5% penetration 

rate, the average MAE across all estimation and prediction horizons increased by 4.2%. It can be 

concluded that, even with a low penetration rate, probe vehicle data has the ability to represent the 

population speed. Thus, the model was able to use the probe vehicle data to accurately estimate 

and predict traffic speed. 
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Table 4.4 Summary statistics of the probe vehicle features under different penetration rate values 

Penetration 

Rate (%) 

Sum Volume Avg Speed 

Mean Std Dev Mean Std Dev 

0.5 0.780 0.818 68.196 9.241 

1.0 1.566 1.213 68.722 8.708 

1.5 2.345 1.550 68.659 8.375 

2.0 3.099 1.820 68.653 8.469 

2.5 3.864 2.110 68.368 8.001 

3.0 4.646 2.377 68.433 7.890 

3.4 (baseline) 4.622 2.361 68.134 7.210 

 

 

(a) 

 

(b) 

 

Figure 4.6 Penetration rate analysis for (a) volume and (b) speed estimation and prediction 

4.4.7 Perturbation Analysis 

Probe vehicle data is prone to noise from various sources. For instance, since the traffic 

data depends on the mobility of the equipped fleet, the numbers might vary depending on the 

penetration rate of the probe vehicle fleet at a certain location throughout the day. To examine the 

fault tolerance of the proposed model, a perturbation analysis was conducted. A gaussian noise 

signal 𝒩~(0, 𝜎) with mean 0 and standard deviation 𝜎 was added to the testing dataset before 

reversing the data normalization. The standard deviation was varied to test the model robustness 
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under different noise scales. Figure 4.7 (a) and (b) demonstrate the output MAE after adding noise 

with different standard deviation values for volume and speed, respectively. The figures illustrate 

the output evaluation results at different target horizons: 0-min (estimation), 15-min, 45-min, and 

60-min. The model output exhibits very little deterioration when gaussian noise with up to 0.6 

standard deviation was added to the input: 0.70% average increase in MAE for volume across all 

estimation and prediction horizons and 0.94% for speed. Adding 1 standard deviation of gaussian 

noise increased the average output error by 5.5% and 4.4% for volume and speed, respectively. 

Expectedly, the largest increase in error was for the 60-minute ahead prediction, which was 8.15% 

and 4.65% for volume and speed, respectively. In general, the plots indicate that the proposed 

model was resilient against gaussian noise perturbations. 

 

(a) 

 

(b) 

 

Figure 4.7 Perturbation analysis using gaussian noise for (a) volume and (b) speed estimation 

and prediction 

4.5 Conclusions 

A sequence-to-sequence deep learning architecture was proposed for traffic estimation and 
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prediction. The model, named Seq2seq GCN-LSTM, relied on Graph Convolution Networks for 

spatial dependency modeling, and Long Short-Term Memory for temporal dependency modeling. 

The methodology was utilized to perform probe-vehicle-based traffic estimation and prediction. 

The model utilized short-term historical data collected from a low-penetration probe vehicle fleet 

to estimate the ongoing traffic volume and speed and to perform up to 60-minutes ahead traffic 

parameters prediction. The model was validated using roadside microwave sensor data deployed 

at 182 road segments on 4 expressways in Orlando, Florida. The proposed methodology generated 

the best estimation and prediction results compared to the baseline models. Despite the high 

variance of the input probe vehicle volume and speed, the model was able to capture the traffic 

spatiotemporal dependencies and was more successful at forecasting longer-horizon predictions. 

Additionally, the proposed method demonstrated robustness against outlying probe vehicle 

readings and gaussian noise perturbations. The probe vehicle penetration rate was varied in order 

to test its effect on the proposed method’s modeling capability. The results indicated that the model 

was able to maintain traffic volume estimation and prediction performance until a penetration rate 

of 1.5% within a 15.6% margin of error. Moreover, the model was able to maintain speed 

estimation and prediction performance when the penetration rate was as low as 0.5% within a 4.2% 

margin of error. 

In the context of connected vehicles, the proposed method can be utilized for probe vehicle-

based real-time traffic estimation and prediction. The generated traffic parameters can be used for 

many online applications such as real-time trip planning, navigation, and incident detection. 

Furthermore, the proposed model can be used to reduce the reliance on infrastructure-based traffic 

data collection. It can additionally be used in conjunction with static sensors to increase the spatial 

granularity of the traffic data collection and to impute the traffic data at missing or dysfunctional 
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sensor locations. 
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CHAPTER 5: USING VISION TRANSFORMERS FOR SPATIAL-

CONTEXT-AWARE RAIN AND ROAD SURFACE CONDITION 

DETECTION ON FREEWAYS 

5.1 Introduction 

Adverse weather conditions, specifically rain precipitation levels and the resulting wet 

pavement conditions, have a detrimental impact on driver capabilities, vehicle maneuverability, 

and roadway infrastructure conditions. Numerous studies have indicated that the presence of rain 

and/or wet road surfaces has a negative impact on roadway capacity, traffic speed, and density 

(Chung, Abdel-Aty, and Lee 2018; Maze, Agarwal, and Burchett 2006). Additionally, studies have 

shown that inclement weather conditions increase traffic crash risk (Abdel-Aty and Pemmanaboina 

2006; Yuan et al. 2019). The FHWA has reported that between 2007 and 2016, 15% of fatal 

crashes, 19% of injury crashes, and 22% of property-damage-only (PDO) crashes occurred in the 

presence of adverse weather and/or slick pavement (FHWA 2020). Weather and pavement 

conditions are also used to inform operational decisions such as variable speed limit control, traffic 

signal timing, and evacuation plan strategies (Rämä 1999; Tahir and Rashid 2020). 

In order to alleviate the effects of rainy weather and slippery road surface conditions on 

traffic flow and crash risk, these conditions must be accurately monitored in real-time and with 

high spatial granularity. Traditionally, weather conditions are monitored through weather forecasts 

or roadside weather information systems (RWIS). Weather forecasts combine readings from 

ground weather stations, satellite sensors and other sources as inputs for weather prediction 

models. However, the output of weather forecasts is too coarse and too infrequent for real-time 

fine-grained monitoring of road segments (Sun et al. 2020). Moreover, weather forecast systems 
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are not equipped for road surface conditions detection which remain slippery after rain stops or 

during patchy rain. RWIS comprises of Environmental Sensor Stations (ESS), which are equipped 

with specialized apparatus to accurately assess weather and pavement conditions. The high 

financial investment required for the deployment and maintenance of RWIS stations limits their 

spatial distribution and coverage density (Sharma, Wu, and Kwon 2021; Ewan and Al-Kaisy 2017; 

Manfredi et al. 2005; Garrett  et al. 2008). In contrast, roadside traffic CCTV cameras are cheaper 

and more densely distributed. They can be utilized to detect rain and road surface precipitation 

states frequently and inexpensively. Traffic cameras can also operate in conjunction with existing 

systems like RWIS to increase rain/pavement condition detection accuracy, coverage and 

granularity. 

Various research efforts have focused on using cameras for general purpose weather 

detection (Allamano, Croci, and Laio 2015; Bossu, Hautière, and Tarel 2011; Dong et al. 2017; 

Pan et al. 2018, 2019; Zen et al. 2019). Many studies have proposed machine learning models to 

classify hand-crafted image features such as color, texture, and reflection. In the past few years, 

convolutional neural networks (CNNs) have been widely utilized for image-based rain detection 

using deep visual features due to their exhibited superior performance on many computer vision 

tasks (Krizhevsky, Sutskever, and Hinton 2012; Szegedy et al. 2015; He et al. 2016). However, in 

the recent past, Transformers have been widely adopted for tasks where deep learning has been 

the established state-of-the-art methodology. Vision Transformers (ViT) have subsequently been 

used to achieve state-of-the-art results on the Imagenet dataset challenge (Dosovitskiy et al. 2020). 

Additionally, studies in the literature have targeted stand-alone-camera-based detection. The dense 

physical distribution of roadside traffic cameras and the relationship between their detection 

outputs can be utilized to add spatial context awareness to the detection model and enhance the 
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overall output accuracy. 

In this research, a Vision Transformer model is proposed for 3-level rain detection 

(heavy_rain, light_rain, and no_rain). The proposed method was extended for 2-level road surface 

condition classification (wet_road and dry_road). The ViT was pre-trained on the Imagenet21k 

(Russakovsky et al. 2015) and the original ImageNet (Deng et al. 2009) datasets. Subsequently, a 

Spatial Self-Attention (SSA) network is proposed to add spatial context awareness to the stand-

alone ViT outputs. The ViT-SSA model observes a sequence of images from adjacent cameras 

concurrently and detects rain and road surface condition for each image in a sequence-to-sequence 

manner. The contributions of this work are summarized below: 

1) An image dataset that exclusively consists of roadside freeway scenes under different rain 

conditions was established. The dataset was labeled for a twofold classification task: 3-level 

rain and 2-level road condition detection. A Vision Transformer that leverages pre-trained 

weights was fine-tuned, tested, and compared against baseline models on the self-established 

dataset. To our knowledge, this is the first work that uses Vision Transformers for a weather 

detection task. 

2) The proposed Vision Transformer was combined with a Spatial Self-Attention network to 

create a sequence-to-sequence model that observes multiple consecutive images. The SSA 

network adds spatial context awareness by modeling the geographical relationship between the 

independent ViT detection outputs of individual traffic cameras. The ViT-SSA model 

simultaneously detects rain and road surface condition for all images. The robustness and 

interpretability of the proposed model are demonstrated. 
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5.2 Methodology 

The proposed methodology is split into two parts. First, a Vision Transformer was 

constructed, loaded with pre-trained Imagenet weights, and fine-tuned on the collected image 

dataset. Secondly, M fine-tuned ViT instances were invoked to classify a sequence of images 

simultaneously. M corresponds to the number of target adjacent road segments; each was covered 

by 1 traffic camera and hence each was represented using 1 input image. The M generated results 

were fed into the Spatial Self-Attention network, which enhances the outputs of the isolated ViT 

instances by adding spatial context awareness. During the training process of the SSA network, 

the ViT weights were frozen to retain the model weights learned by the fine-tuning process. Figure 

5.1 demonstrates the overall architecture of the proposed ViT-SSA network. 

 

Figure 5.1 The overall structure of the proposed ViT-SSA network 
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5.2.1 Vision Transformer 

Vision Transformers (Dosovitskiy et al. 2020) convert images into classifiable features by 

first dividing an image into 𝑁  patches of dimensions 𝑃 ∗ 𝑃  ( 𝑥𝑝
1, … , 𝑥𝑝

𝑁 ). Next, the trainable 

parameters 𝑬𝒍𝒊𝒏 , 𝑬𝒑𝒐𝒔 , and 𝑻𝒄𝒍𝒂𝒔𝒔  are used extract the token embeddings 𝑧0  as described in 

Equation 1. The token embeddings are then used as input to the Transformer Encoder layer. The 

Transformer Encoder consists of alternating Multi-Head Self-Attention (MSA) layers and Multi-

Layer Perceptron (MLP) layers. Each layer is preceded by Layer Normalization (LN) (Ba, Kiros, 

and Hinton 2016) and succeeded by a residual connection. The MLP in each encoder is a simple 

feed-forward neural network with 2 hidden layers activated using a GELU non-linearity 

(Hendrycks and Gimpel 2016). The ViT architecture employs 𝐿 encoders connected in series. 

Equations 2 and 3 describe the calculations performed by the Transformer Encoder layers. 

𝑧0 = [𝑻𝒄𝒍𝒂𝒔𝒔;  𝑥𝑝
1𝑬𝒍𝒊𝒏; … ; 𝑥𝑝

𝑁𝑬𝒍𝒊𝒏] + 𝑬𝒑𝒐𝒔 (5.1) 

𝑧𝑙
′ = MSA(LN(𝑧𝑙−1)) + 𝑧𝑙−1 𝑙 = 1 … 𝐿 (5.2) 

𝑧𝑙 = MLP(LN(𝑧𝑙
′)) + 𝑧𝑙

′ 𝑙 = 1 … 𝐿 (5.3) 

The final module in the ViT architecture is an MLP that serves as a feature classifier. The 

MLP classifier extracts the classification token vector from the final Transformer Encoder layer 

(𝑧𝐿[0]). The original ViT model feeds the token vector directly to the softmax-activated output 

layer. However, the number of layers and nodes in the proposed model’s MLP classifier were fine-

tuned in the model training phase. The output vector 𝑦𝑉𝑖𝑇 has the same size as the number of target 

classes 𝐶 and each value 𝑦    𝑐
𝑉𝑖𝑇  is the probability that the input image belongs to the class 𝑐. The 

largest probability in the output vector indicates the index of the detected class. In addition, the 

value of the probability serves as a confidence score. 
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𝑦𝑉𝑖𝑇 = MLP(𝑧𝐿[0]) (5.4) 

During the fine-tuning process, the ViT model weights were optimized using 

backpropagation through time. Similar to the fine-tuning procedure followed by (Dosovitskiy et 

al. 2020), Stochastic Gradient Descent (SGD) was used to adjust the trainable model weights. 

Additionally, to fit the model’s classification objective, categorical cross entropy was used as the 

loss function. 

5.2.2 Spatial Self-Attention 

The Spatial Self-Attention (SSA) network adds spatial context awareness by modeling the 

geospatial relationship between 𝑀 ViT detection results using Multi-Head Self Attention. Self-

Attention (SA) (Liu et al. 2021) computes the pairwise attention value for the 𝑀  inputs by 

determining the similarity score between each pair of input vectors. Each token 𝑦𝑖
𝑉𝑖𝑇 , which 

represents image 𝑖  in the input sequence, is assigned query (𝑞𝑖 ), key ( 𝑘𝑖 ), and value ( 𝑣𝑖 ) 

representation vectors. To calculate the attention scores for image representation vector 𝑦𝑖
𝑉𝑖𝑇 the 

alignment scores between 𝑦𝑖
𝑉𝑖𝑇 and all other input images in the sequence 𝑦𝑗

𝑉𝑖𝑇 are calculated as a 

function of 𝑞𝑖 and 𝑘𝑗 and 𝑣𝑖. During the training phase, this computation allows the self-attention 

network to learn the similarity between all pairs of ViT image scores in the input sequence. 

Therefore, the SA network quantifies each image’s influence on all other image classifications in 

the sequence. Consequently, the trained model augments the image representation vectors with 

spatial contextual relevance. The SSA network generates an output sequence of size 𝑀  that 

enhances the output of the stand-alone ViT results using the learned spatial context. Equations 5, 

6, and 7 demonstrate the computations carried out by the Multi-Head Self-Attention layers. The 

internal size of each attention head is 𝐷, and 𝐻 is the number of self-attention heads in the MSA 
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layer. 𝑾𝑸 , 𝑾𝑲 , 𝑾𝑽 , and  𝑾𝑶  are the query, key, value, and output trainable parameters, 

respectively. 

MSA(𝑋) = [SA1(𝑋); … ; SA𝐻(𝑋)]𝑾𝑶 (5.5) 

SAℎ(𝑋) = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥 (
Qℎ𝐾ℎ⊤

√𝐷
) 𝑉ℎ ℎ = 1 … 𝐻 (5.6) 

(Qℎ, 𝐾ℎ, 𝑉ℎ) = (𝑾𝑸
𝒉 𝑋, 𝑾𝑲

𝒉 𝑋, 𝑾𝑽
𝒉𝑋) ℎ = 1 … 𝐻 (5.7) 

The SSA network takes the detection result vectors of 𝑀 Vision Transformers as input. It 

then adds spatial context awareness by modeling the geospatial relationship between different ViT 

detection results. The network was implemented using a series of 𝑆 Multi-Head Self-Attention 

layers, each preceded by Layer Normalization (Ba, Kiros, and Hinton 2016). The outputs of the 

final MSA layer are passed through 𝑀 softmax-activated Fully Connected (FC) layers, which act 

as the output layer. The FC layers were constructed using the learnable parameters (𝑾𝑭𝑪
𝟏 , … , 𝑾𝑭𝑪

𝑴 ). 

The output vectors (𝑦1, … , 𝑦𝑀) represent the detection results for segments 1 to 𝑀 respectively. 

Equations 8, 9, and 10 demonstrate the computations carried out by the Spatial Self-Attention 

network to obtain the output at each segment. Figure 5.2 illustrates the structure of the Spatial Self-

Attention network. 

𝑧0
𝑆𝑆𝐴 = (𝑦1

𝑉𝑖𝑇 , … , 𝑦𝑀
𝑉𝑖𝑇)  (5.8) 

𝑧𝑠
𝑆𝑆𝐴 = MSA(LN(𝑧𝑠−1

𝑆𝑆𝐴)) 𝑠 = 1 … 𝑆 (5.9) 

𝑦𝑀 = 𝑾𝑭𝑪
𝒎 𝑧𝑆

𝑆𝑆𝐴 𝑚 = 1 … 𝑀 (5.10) 

The SSA network trainable weights were adjusted using backpropagation through time. 

Categorical cross entropy was used as a loss function as described in equation 11. 𝑁 is the number 

of samples and 𝑦𝑖 is a one-hot-encoded vector of size (𝑀, 𝐶) where 𝑀 is the number of segments 
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and 𝐶 is the number of target classes. 𝑦̂
𝑖
 is the corresponding predicted output vector Moreover, 

the Adam optimizer (Kingma and Ba 2014) was used to adjust the model weights during the 

training phase. 

𝐿(𝑦, 𝑦̂) = − ∑ ∑ ∑ 𝑦𝑖𝑚𝑐 ∙

𝐶

𝑐=1

𝑀

𝑚=1

log(𝑦̂𝑖𝑚𝑐)

𝑁

𝑖=1

 (5.11) 

 

 

(a) (b) 

Figure 5.2 (a) Spatial Self-Attention Model architecture (b) Multi-Head Self-Attention network 

structure 

5.3 Data Description 

The proposed network was trained and tested on a self-established image dataset collected 

from roadside CCTV cameras. Each image had 2 associated class labels, one for rain and the other 

for road surface conditions. It is unrealistic that rainy conditions are paired with dry pavements. 

Hence, rainy images were automatically considered to have wet road surface condition. In 

summary, the collected images were divided between 4 class pairs: no_rain + dry_road, no_rain 

+ wet_road, light_rain + wet_road, and heavy_rain + wet_road. 
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In order to isolate the rain detection output results, the class probabilities of the no_rain + 

dry_road and no_rain + wet_road labels were aggregated. The resulting output vector has size 3 

and represent each of the rain condition classes heavy_rain, light_rain, and no_rain. Similarly, to 

set apart the road surface condition detection output, the class probabilities of no_rain + wet_road, 

light_rain + wet_road, and heavy_rain + wet_road were combined. The aggregated vector has 

size 2, representing the road condition classes wet_road and dry_road. The extracted class labels 

identify hazardous driving conditions such as heavy rain, which impacts visibility, or wet road 

surface condition, which negatively affects vehicle maneuverability during and after rainy 

conditions. 

Two separate image datasets were created: 1) a stand-alone image dataset to fine-tune the 

Vision Transformer network and 2) a sequential image dataset to train the Spatial Self-Attention 

network. Both datasets were divided into 50% training set, 25% validation set, and 25% testing 

set. The stand-alone image dataset contains 10,000 images collected using CCTV traffic cameras 

deployed on multiple freeways in Orlando, Florida. The image labels were distributed equally 

between the four class pairs. The corresponding output for each image was a one-hot-encoded 

vector of size 4, one for each class pair. The resolution of the captured images was 1920x1080. 

To create the sequential image dataset, the collected images were structured into a vector 

of shape (𝑀, image width, image height, color channels) where 𝑀 is the number of adjacent road 

segments in the detection sequence. Each datapoint contained 𝑀 images that were captured from 

the segments at the same instant. The sequential image dataset was captured from 10 roadside 

traffic cameras on the SR-417 freeway in Orlando, Florida. The cameras were roughly spaced 1 

mile apart. The dataset contains 3712 datapoints comprised of 37,120 images. The class 

distribution of the images was 7870, 8488, 10466, 10296 for the class pairs heavy_rain + 



88 

 

wet_road, light_rain + wet_road, no_rain + dry_road, no_rain + wet_road, respectively. The 

output for each datapoint has dimensions (𝑀, 4): a one-hot-encoded vector representing a class 

pair for each image in the sequence. 

The described multi-dataset approach has two advantages. Firstly, the ViT model was 

trained and tested on a diverse roadside image dataset and was not restricted to the images used 

for the SSA network. This prevents the ViT model from overfitting a less diverse image set which 

was collected using a limited number of cameras. Secondly, the ViT was trained on a dataset that 

contained a uniform distribution of samples per class. This eliminates potential model bias that 

can be caused by an imbalanced dataset. 

5.4 Experimentation 

5.4.1 Setup 

5.4.1.1 Vision Transformer 

The proposed model utilizes the ViT-B/16 network architecture devised by Dosovitsky et 

al. (Dosovitskiy et al. 2020). The ViT-B/16 model uses 16x16 pixel patches (𝑃 = 16). The 

network employs an intermediate representation vector of size 𝐷 = 768  and contains 𝐿 = 12  

Transformer Encoder layers. Furthermore, the Multi-Head Self-Attention layers in the encoders 

use 𝐻 = 12 Self-Attention heads. The input image size was set to 512x512. Hence, the number of 

patches 𝑁 is equal to 1024. Transfer learning was utilized by loading model weights that were 

pretrained on the Imagenet21k dataset (14M images, 21k target classes) and fine-tuned on the 

Imagenet dataset (1.3M images, 1k target classes). To fine-tune the transformer for rain and road 

condition detection, all pre-trained weights were frozen except for the final MLP feature classifier. 

To achieve the best possible detection results, the model’s MLP hyperparameters were tuned. 
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Table 5.1 lists the tuned hyperparameters and their corresponding search spaces. Image 

augmentation was performed on the training set by performing random rotations, translations, 

flips, and zooms. Image augmentation reduces overfitting by introducing geometric intra-class 

variance. The model was trained using the Adam optimizer. 

Table 5.1 ViT model’s MLP hyperparameters 

Hyperparameter Range Step 

Batch size [32, 128] 32 

Number of layers [1, 10] 1 

Number of nodes [32, 256] 32 

Learning rate [10-4, 10-2] 0.5 (log scale) 

 

The ViT model was compared to other convolution-based image classifiers namely 

VGG16, ResNet50, and InceptionV3. Similar to the ViT model setup, all convolution-based 

models were pretrained on the Imagenet dataset and fine-tuned on the collected image dataset. 

Image augmentation transformations were applied to the training set. For all convolution-based 

models the pretrained weights were frozen and then connected to a trainable MLP, and each set of 

hyperparameters was tuned separately. 

5.4.1.2 Spatial Self-Attention 

The Spatial Self-Attention network employs 𝑆 = 2 Multi-Head Self-Attention layers, each 

containing 𝐻 = 4 SA heads. The size of the attention heads was regarded as a hyperparameter and 

tuned using a search space with a range between [256, 1024] and a step size of 256. Other 

hyperparameters, namely batch size and learning rate, were tuned using the same search space 

described in Table I. The model performance was compared against the following sequence-to-

sequence algorithms: 
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• Moving Average (MA): The MA algorithm computes the final output by moving a weighted 

sliding window across the detection results generated by adjacent ViTs. Window sizes of width 

3, 5, and 7 were tested with different weight distributions. The best results were achieved with 

a sliding window of width 5. 

• Bidirectional LSTM (Bi-LSTM): Long Short-Term Memory (LSTM) (Hochreiter and 

Schmidhuber 1997) is a class of Recurrent Neural Networks (RNNs) that was designed to 

model sequential data. Each sequential layer in the network has a bidirectional connection to 

both the preceding and succeeding sequential layer. The utilized Bi-LSTM used the detection 

results from the 𝑀 ViTs as input. 

• Bidirectional GRU (Bi-GRU): Gated Recurrent Unit (GRU) (Cho et al. 2014) is another class 

of RNNs. The internal structure of the GRU node is different than that of the LSTM. The Bi-

GRU model also utilizes a bidirectional connection between its sequential layers. 

5.4.2 Evaluation Metrics  

Three common classification metrics were used to evaluate the performance of the 

proposed models and compare their performance against the baseline algorithms. These metrics 

are precision, recall, and F1-score. The F1-score is a measure of accuracy. It’s computed as the 

harmonic mean of the precision and recall. The precision, recall, and F1-score metrics can only 

handle binary classification. Therefore, the weighted-averages of the one-vs-all scores for each 

class were calculated. 

5.4.3 Detection Results 

Table 5.2 lists the results of the different image classification algorithms on the stand-alone 

image testing dataset. The results indicate that deeper network architectures perform better, 

highlighting the complexity of the classification tasks. The Vision Transformer model produced 
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superior results compared to convolution-based deep learning architectures. The nature of the rain 

and road condition detection classification tasks requires attending to global image features and to 

the relationship between those features. A rainy image might consist of multiple, decentralized 

visual features such as dark sky, water splash around vehicles, reflective road surface, and rain 

drops on camera lens. The Self-Attention mechanisms in the ViT architecture allow the model to 

attend to global image features and to extract the relations between them starting at the lowest 

layer. Additionally, different attention heads can utilize different size attention spans, allowing the 

model to concurrently attend to local and global features starting the earliest layers. In contrast, 

convolution-based architectures utilize small kernels that extract local features from the 

unprocessed image at early layers and later apply global convolutions on deep image features 

towards the end layers. 

Table 5.2 Classification results on the stand-alone image dataset 

Model 
Rain Condition Road Surface Condition 

Precision Recall F1-Score Precision Recall F1-Score 

VGG16 0.8855 0.8536 0.8631 0.8767 0.9098 0.8912 

ResNet50 0.8968 0.8605 0.8704 0.8792 0.9146 0.8945 

InceptionV3 0.9135 0.8932 0.9014 0.9006 0.9272 0.9127 

ViT 0.9215 0.9127 0.9169 0.9258 0.9370 0.9312 

 

All models consistently perform better on the road surface condition classification task 

compared to the rain detection task. This is because the 2-level road condition classification task 

is inherently easier than the 3-level rain detection problem. Visually, the inter-class variance 

between dry and wet roads is larger than the inter-class variance between heavy rain, light rain, 

and even no rain in wet conditions right after rain has ceased. 

Table 5.3 demonstrates the performances of different sequence-to-sequence classification 

algorithms when applied to the detection results of the ViT models. The first row details the 
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classification result of the stand-alone ViT model on the sequential image dataset. The stand-alone 

ViT results represent the sequence-modeling-free baseline. The image lists in each datapoint were 

unraveled and used to assess the performance of the stand-alone ViT. The results serve as the 

baseline score of stand-alone rain and road surface condition detection. The subsequent rows in 

Table 5.3 indicate that adding a sequential component to combine the results of individual ViTs 

improves classification performance. Applying a moving average enhanced the detection results, 

however not as much as the more elaborate baseline models, which illustrates the intricacy of the 

sequence-to-sequence detection task. The Bi-LSTM and Bi-GRU models produced comparable 

classification results, with the Bi-GRU model obtaining a slight edge. The proposed Sequential 

Self-Attention model produced superior results compared to the moving average and RNN models. 

The addition of an SSA network improved the F1-score of the stand-alone ViT models by 5.61% 

and 5.97% for the rain and road condition classification tasks, respectively. 

Table 5.3 Classification results on the sequential image dataset 

Model 
Rain Condition Road Surface Condition 

Precision Recall F1-Score Precision Recall F1-Score 

ViT 0.9168 0.9063 0.9113 0.9156 0.9280 0.9210 

ViT + MA 0.9174 0.9254 0.9209 0.9410 0.9660 0.9510 

ViT + Bi-LSTM 0.9463 0.9483 0.9471 0.9728 0.9764 0.9746 

ViT + Bi-GRU 0.9447 0.9544 0.9512 0.9732 0.9803 0.9767 

ViT-SSA 0.9672 0.9677 0.9674 0.9751 0.9870 0.9807 

 

Table 5.4 demonstrates samples from a sequential image datapoint at positions 2 – 5. The 

images’ corresponding stand-alone ViT and ViT-SSA classification outputs and confidence scores 

are also displayed. The samples were collected during a heavily rainy day. The stand-alone ViT 

was able to correctly classify the images at positions 2, 3, and 5. However, the image at position 4 

was not as clear as the surrounding cameras. Consequently, it was misclassified as no_rain. The 
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ViT-SSA was able to rectify this misclassification case. Given the heavy rain conditions of the 

surrounding segments, the model predicted that the segment at position 4 was heavily raining as 

well. Furthermore, since it was able to look at multiple images at the same time, the classification 

confidence score of the ViT-SSA model was higher compared to the stand-alone ViT. 

Table 5.4 Sample images from a sequential image datapoint and their corresponding ViT and 

ViT-SSA classifications and confidence scores 

Position 2 3 4 5 

Image 

    

Ground 

Truth 
heavy_rain 

wet_road 
heavy_rain 

wet_road 
heavy_rain 

wet_road 
heavy_rain 

wet_road 

ViT 

Output 

heavy_rain (c = 0.892) 

wet_road (c = 0.986) 

heavy_rain (c = 0.804) 

wet_road (c = 0.983) 

no_rain (c = 0.788) 

wet_road (c = 0.992) 

heavy_rain (c = 0.959) 

wet_road (c = 0.988) 

ViT-SSA 

Output 

heavy_rain (c = 0.997) 

wet_road (c = 0.998) 

heavy_rain (c = 0.989) 

wet_road (c = 0.997) 

heavy_rain (c = 0.994) 

wet_road (c = 0.998) 

heavy_rain (c = 0.982) 

wet_road (c = 0.992) 

 

5.4.4 Fault Tolerance 

Any system that depends on image sequences from roadside traffic cameras is prone to 

receiving faulty inputs or missing values. Cameras might not transmit images due to sensor failure, 

network error, or scheduled maintenance. Figure 5.3 illustrates the robustness of the proposed 

methodology to missing values. Input images were randomly removed from the sequential image 

dataset with varying fault ratios. A fault ratio of 0.1 indicates that 10% of the images in the test set 

were removed. The trained ViT-SSA model was subsequently used to detect the generated 

datasets. The missing inputs to the SSA module were imputed by linearly interpolating the 

detection results of the ViT instances. For rain detection, Figure 5.3 (a) illustrates that the model 



94 

 

was able to maintain an F1-score above 0.9 for a fault ratio of up to 0.3. Furthermore, Figure 5.3 

(b) demonstrates that road condition detection is even more fault tolerant. The model maintains an 

F1-score above 0.9 for a fault ratio of up to 0.6. 

  

(a) (b) 

Figure 5.3 Performance of ViT-SSA on sequential image dataset with missing values for (a) rain 

and (b) road surface condition detection 

5.4.5 ViT Attention Visualization 

Figure 5.4 demonstrates sample input images and the corresponding ViT attention 

heatmaps. The ViT attention values were obtained using the attention rollout technique proposed 

by Abnar et al. (Abnar and Zuidema 2020). For each MSA layer, the weights of all attention heads 

were averaged, and the computed average attention weights were recursively applied to the input 

image. The purpose of the attention visualization is to understand the visual cues that prompted 

the model to make its classification decisions, and to confirm that the model attends to visual 

features that are semantically valid. As illustrated in Fig. 4, the ViT model was able to attend to 

multiple, decentralized raw visual features that are relevant to rain and road condition detection. 

The model focused on localized features such as the individual rain drops on the camera lens, 
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splash around vehicles, road surface reflectivity, and as well as more general features such as sky 

condition and sharpness of the horizon. The ViT’s internal self-attention mechanism allows the 

model to integrate high-level information across the entire image starting from the first attention 

layer.  

   

   

(a) (b) (c) 

Figure 5.4 ViT activation visualization in (a) heavy rain + wet road, (b) no rain + wet road, and 

(c) no rain + dry road conditions 

5.4.6 SSA Attention Visualization  

The SSA attention values were obtained using the same attention rollout technique 

described in the previous section. Figure 5.5 demonstrates the mean attention activations of all 

datapoints in the sequential image testing dataset. The attention map provides a general illustration 
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of how the SSA network combines the classification scores of the independent ViTs. The attention 

map shows that all attention weights are greater than 0, revealing that the network factors in ViT 

scores from all segments. The SSA network applies increasingly strong attention weights to closer 

segment clusters and applies even higher attention weights to neighboring segments. Expectedly, 

the highest attention weights are distributed across the diagonal, which indicates that the SSA 

network focuses most on the scores of the ViT at position 𝑚 to compute the output at segment 𝑚.  

 

Figure 5.5 Mean attention plot of testing set MSA layer weights 

Figure 5.6 illustrates the attention maps of 2 datapoints from the sequential image testing 

set. In the first data point, the ground truth of the entire sequence belonged to the classes no_rain 

and dry_road. Figure 5.6 (a) demonstrates how the SSA network can correct the classification 

errors committed by the stand-alone ViTs. Due to the detected sequential anomaly and the low 

confidence score at segment 2, the SSA assigned a lower attention weight to its corresponding ViT 

result and more weight to neighboring ViT scores. Furthermore, the SSA suppressed the 
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contribution of the ViT scores at segment 2 to the rest of the sequence. Similarly, the SSA network 

assigned lower attention weights to the inputs coming from segments 1, 3, and 5 due to their lower 

ViT confidence scores. Figure 5.6 (b) demonstrates how the SSA network improved the depicted 

datapoint’s classification accuracy from 70% to 90%. The ground truth classes for segments 1 to 

5 indicated heavy_rain + wet_road, and no_rain + wet_road for segments 6 to 10. The class pair 

sequence describes a situation where the rain was gradually stopping along the road segments. The 

SSA network was able to determine the infliction point and distribute 2 clusters of attention 

weights accordingly. It can be observed that the SSA output at segment 4, which was misclassified 

by the ViT, was computed from an attention weight distribution drawn from its surrounding 

cluster. Similarly, lower ViT classification confidence scores at segments 6 and 10 prompted the 

SSA to assign a dilated attention weight distribution at these locations.  

 

(a) 

 

(b) 

Figure 5.6 SSA attention map of (a) a datapoint with a misclassified stand-alone ViT output and 

(b) a datapoint captured when the rain was gradually stopping along the road segments 



98 

 

5.5 Conclusions 

In this research effort, a pre-trained Vision Transformer model was fine-tuned on a self-

established image dataset for rain and road surface condition detection on freeways using traffic 

CCTV cameras. Experiments indicated that the ViT model yields superior classification 

performance when compared to CNN-based models for both detection tasks. Furthermore, the 

research work presents a novel sequence-to-sequence technique to perform rain and road surface 

condition detection using a series of adjacent traffic cameras. A Spatial Self-Attention network 

was proposed to leverage the geographical distribution of the traffic cameras by capturing the 

relationship between their image classification results, thus adding spatial context awareness to the 

stand-alone ViT outputs. Experiments proved that adding a spatial component to combine the 

independent outputs enhances classification performance. The proposed SSA was compared to 

other RNN-based models and was able to achieve a higher F1-score. In addition to boosting 

performance, the ViT-SSA combination exhibited robustness to potential missing images in the 

input sequence. Moreover, the self-attention layers utilized in both parts of the proposed 

methodology enhanced the interpretability of the ViT’s visual classification features and the SSA’s 

sequence modeling behavior.  

The proposed methodology can provide an economical method to monitor rain and road 

surface condition in real-time and with high geospatial granularity. Potentially dangerous driving 

conditions such as lowered visibility due to heavy rain and the consequent slippery road surface 

that persists after rain stops can be observed. The model utilizes images which are generated from 

pre-existing wide-spread traffic CCTV camera infrastructure, eliminating the need for expensive 

mass deployment of hardware components. The methodology can be used to provide real-time 
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weather-related route advisory to drivers and connected vehicles. It can consequently suggest safer 

and less congested routing options. The algorithm can also be used to support traffic operation 

decisions such as variable speed limits and evacuation plan strategies. One drawback of the 

proposed study is the experimentation on a limited number of sequential segments, which was 

circumscribed by the limited access to adjacent CCTV camera images. Given image data from a 

larger CCTV network, further work should investigate the performance of the proposed 

methodology on larger spatial networks. 
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CHAPTER 6: REAL-TIME VIDEO-BASED TRAFFIC INCIDENT 

IDENTIFICATION USING ROADSIDE CCTV CAMERAS 

6.1 Introduction 

Real-time identification of traffic incidents is critical for traffic safety and operations. Swift 

incident response actions can curtail crash-related fatalities and injuries, reduce the risk of 

secondary crashes, mitigate incident-related congestion, and reduce the exposure of first 

responders (Burgess, Garinger, and Carrick 2021). Roadside traffic CCTV cameras are 

ubiquitously deployed on roads and can be utilized for rapid incident detection. As a traffic sensor, 

video cameras are suitable for real-time detection problems since they are capable of high 

frequency sampling (usually between 15-30 frames per seconds). Video cameras generate a stream 

of images, which, compared to the outputs of other traffic sensors such as microwave or loop 

detector readings, are high-dimensional and rich feature spaces. 

Nonetheless, video-based traffic incident detection poses many challenges. Firstly, traffic 

incidents are defined by the Federal Highway Administration (FHWA) as “unplanned roadway 

events that affect or impede the normal flow of traffic” (FHWA 2021). There are high variabilities 

between cases that constitute traffic incidents. They can range from vehicle collisions, which 

require immediate attention to minimize fatalities and injuries, to stalled/abandoned vehicles, 

which induce traffic turbulence and increase the risk of secondary crashes (Chimba et al. 2014). 

Secondly, the compilation of a traffic video dataset that contain traffic incidents from a roadside 

perspective is a challenging task. The accessibility of public-facing roadside CCTV data is 

restricted due to sensitivity and privacy concerns. In addition, the manual collection of videos 

using private cameras is difficult due the scarcity of traffic incidents, especially crashes. Thirdly, 
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different camera perspectives, lighting condition, and weather can affect detection performance. 

Fourthly, traffic cameras are usually Pan-Tilt-Zoom (PTZ) cameras, which entails that their 

viewpoints are not static. PTZ camera perspectives are subject to constant rotations, translations, 

and scaling. This eliminates the possibility adding manually annotated markings such as interest 

zones or virtual loops, which can simplify the incident detection process. Finally, most deployed 

traffic CCTV cameras are low-resolution, which limits the performance of advanced computer 

vision algorithms. 

Various research efforts focused on using videos to detect traffic incident. Many authors 

used pixel-based approaches such as optical flow algorithms to estimate motion fields in the video 

stream (Maaloul et al. 2017; Ahmadi, Tabandeh, and Gholampour 2016). Other research efforts 

used object detection and tracking to model normal vehicle trajectories and identify abnormal paths 

(Chakraborty, Sharma, and Hegde 2018; Yu et al. 2018). However, state-of-the-art traffic incident 

detection performance has been demonstrated by top-scoring teams for the NVIDIA AI City 

Challenge – Traffic Anomaly Detection Track (Naphade et al. 2021). To tackle the high inter-class 

variability of traffic incident cases, many authors deduced that traffic incidents lead to stationary 

vehicles where traffic is expected to flow. Using this hypothesis, previous efforts were able to 

detect traffic incidents with high accuracy (Zhao et al. 2021; Li et al. 2020). However, since the 

challenge does not require participants to detect incidents in real time, most proposed methods 

employed high-computation procedures and post-processing techniques to optimize detection 

performance. Since these methods are not suitable for real-time deployment, they have limited 

applications for Traffic Incident Management (TIM) programs and Traffic Management Center 

(TMC) operators and practitioners. 

In this study, a methodology has been proposed to detect traffic incidents in videos with a 
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focus on real-time applicability. The proposed algorithm adopts the stationary vehicle 

identification technique, which produced the best detection results in the literature. Computation 

time was assessed, and no post-processing techniques were utilized. Additionally, to demonstrate 

the usability of the proposed method, the algorithm incident detection delay was evaluated, which 

is an important factor to minimize incident response time in real-world scenarios. In summary, the 

contribution of this work is threefold: 

1) A video-based traffic incident identification algorithm was proposed. The performance of the 

algorithm was evaluated using low-resolution roadside CCTV videos collected from US-based 

roads. 

2) The average detection delay, which refers to the time between traffic incident occurrence and 

traffic incident discovery, was examined and assessed to ensure the practicality of the proposed 

methodology in real-world scenarios. 

3) The method’s applicability in real-time was demonstrated by calculating the average 

computation time and ensuring that the processing throughput of the algorithm is less than the 

video frame rates of roadside traffic CCTV cameras. 

6.2 Methodology 

6.2.1 Overview 

The proposed methodology was split into two main stages: preprocessing and real-time 

detection. The preprocessing stage was responsible for automatically extracting a movement mask, 

creating an expected occupancy heatmap, and compiling the video bounding box statistics. The 

preprocessing phase used the first 𝑁𝑝𝑟𝑒  frames of a video segment to extract the required assets. 

During the real-time detection phase, the video background was extracted, and subsequently, 
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stationary vehicles were detected, tracked, and investigated. The real-time incident identification 

module used the data extracted from the preprocessing phase, as well as the data computed in real-

time, and determined whether a traffic incident has occurred. Figure 6.1 illustrates the overview 

of the proposed methodology. 

 

Figure 6.1 Overview of proposed traffic incident detection methodology 

6.2.1.1 Object Detection 

Object detection is a major component used in multiple places throughout the proposed 

methodology. To detect vehicles in a given frame, the You Only Look Once (YOLOv4) algorithm 

was utilized (Bochkovskiy, Wang, and Liao 2020). The YOLOv4 model was chosen for its 

accuracy and real-time processing capability. Furthermore, the model was pre-trained on the 

Microsoft COCO dataset, which contains vehicle labels such as “car”, “motorbike”, “bus”, and 

“truck” (Lin et al. 2014). 
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6.2.2 Preprocessing 

6.2.2.1 Movement Mask Extraction 

In general, traffic anomalies occur on or close to the main road driving areas. To eliminate 

the detection noise generated by static vehicles in nearby residential parking or stationary trucks 

in truck rest areas, a movement mask was automatically extracted from the traffic video scene. The 

purpose of the movement mask was to identify the area in the video scene where vehicles are 

expected to be perpetually flowing. To compute the mask, 2 different techniques were adopted: 

tracking-based mask extraction and motion-based mask extraction. 

Tracking-based masks were constructed by extracting the trajectories of vehicles in the 

preprocessing video segment. The target was to identify the areas in the video frame that contain 

moving vehicles. Objects were detected using the pre-trained YOLOv4 model. Detected objects 

that were classified as “car”, “bus”, “truck”, or “motorbike” were then tracked using the 

deepSORT algorithm (Wojke, Bewley, and Paulus 2017). To capture moving objects of interest, 

the difference between the first and last centroid of each trajectory was computed and objects that 

moved for a distance less than the threshold value TH𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒  were discarded. Moreover, to 

suppress the effect of erroneous detections, trajectories with a total length less than TH𝑙𝑒𝑛𝑔𝑡ℎ  were 

also eliminated. 

Motion-based masks were formulated using the real-time foreground/background 

segmentation algorithm proposed by KadewTraKuPong et al. (KaewTraKulPong and Bowden 

2002). Their procedure uses Expectation-Maximization-optimized Adaptive Gaussian Mixture 

Models to model the probability of each pixel’s value through the input video frames. A gaussian 

blur was applied to the output segmentation mask to alleviate the error caused by salt-and-pepper 
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noise. For each frame in the preprocessing video segment, the areas of the segmented foreground 

blobs were recorded on the motion-based mask. 

 While both mask extraction methods were effective on their own, each suffered from 

particular shortcomings. The tracking-based mask was fully dependent on the outputs of the 

detection and tracking algorithms. Hence, misclassified vehicles, occluded objects, and missed 

detections introduced error into the extracted mask. On the other hand, the motion-based mask did 

not depend on vehicle detection and thus did not suffer from this problem. However, the motion-

mask was prone to errors caused by camera shaking due to camera pole vibration or inclement 

weather. It was also prone to errors caused by vehicles moving too slowly on congested roadways. 

Both drawbacks were atypical of the tracking-based mask. To obtain a superior motion mask, both 

masks were combined. Figure 6.2 demonstrates an example frame and the extracted tracking-based 

mask, motion-based mask, and combined mask. The tracking-based mask was deficient due to 

several missed detections, while the motion mask-based mask contained some undesired areas. 

The combined mask generated the best-fitting movement mask. 
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(a) 

 

(b) 

 

(c) 

 

(d) 

Figure 6.2 (a) Example video frame and the resulting (b) tracking-based mask, (c) motion-based 

mask, and (d) combined mask 

6.2.2.2 Expected Occupancy Heatmap 

Stationary vehicles on roadways do not necessarily indicate traffic incidents. Vehicles stop 

for traffic control operations such as traffic signals and stop signs. Vehicles might also slow down 

or stop temporarily during heavy congestion or while merging onto the main road. To 

accommodate these situations, a waiting period must be set before signaling an incident to avoid 

false alarms. On the other hand, if an extended grace period for stationary vehicles was set 

everywhere, the detection delay for traffic incidents on free-flowing roads would be unnecessarily 

high. To avoid errors caused by the aforementioned scenarios, an expected occupancy heatmap 

was created. The objective of the expected occupancy heatmap was to keep track of the maximum 
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expected amount of time for vehicle to remain stationary in a particular area of the video frame. 

To achieve this task, an occupancy matrix 𝑂𝐶𝐶 ∈ ℝ𝑇×𝑊×𝐻 was created where 𝑇 is the number of 

trajectories and 𝑊 and 𝐻 are the width and height of the input video frame, respectively. For each 

trajectory 𝑡 extracted from the preprocessing segment, each bounding box was annotated in the 

occupancy matrix 𝑂𝐶𝐶𝑡. Finally, the expected occupancy heatmap was extracted by computing 

the maximum value at each pixel along the 𝑇-axis. 

6.2.2.3 Bounding Box Statistics 

The low-resolution nature of roadside traffic CCTVs hinders the performance of the 

YOLOv4 object detection algorithm. Computing bounding box statistics is a simple yet effective 

method for reducing the resulting false positives. The target of this step was to identify the 

“normal” range of bounding box sizes, and consequently eliminating boxes with extreme 

dimensions. During the preprocessing phase, the YOLOv4 bounding box widths and heights were 

aggregated into two lists. For each dimension, the 75th percentile value ( Q3
𝑑𝑖𝑚  ) and the 

interquartile range (IQR𝑑𝑖𝑚), were computed. The extreme value upper-limit thresholds were set 

according to equation 1. Due to the nature of diminishing vehicle sizes as they drive away from 

the camera, no restrictions on the lower limits were set. 

TH𝑑𝑖𝑚 = Q3
𝑑𝑖𝑚 + 3 × IQR𝑑𝑖𝑚 𝑑𝑖𝑚 ∈ {𝑤𝑖𝑑𝑡ℎ, ℎ𝑒𝑖𝑔ℎ𝑡} (6.1) 

6.2.3 Real-time Incident Identification 

6.2.3.1 Background Detection 

The background detection step was developed to erase moving objects from the image. 

Consequently, vehicles that came to a stop blended into the background. To achieve this task, a 

background frame queue of length 𝑁𝑞  was created. When the queue was at maximum capacity, 
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the background was initialized by averaging the frames in the queue as shown in equation 2. 

Afterwards, the background at each successive frame 𝑖 > 𝑁𝑞  was updated by removing the first 

frame in the queue and appending frame 𝑖 as shown in equation 3. Figure 6.3 depicts an example 

frame and the extracted backgrounds at different values of 𝑁𝑞 . Selecting an appropriate value for 

𝑁𝑞  was essential. If the value was too small, it triggered false detections. If it was too large, it had 

an adverse effect on the incident detection delay. 

background𝑁𝑞 =
1

𝑁𝑞
∑ 𝑓𝑟𝑎𝑚𝑒𝑖

𝑁𝑞

𝑖=0

 (6.2) 

background𝑖 = background𝑖−1 −
1

𝑁𝑞
𝑓𝑟𝑎𝑚𝑒𝑖−𝑁𝑞 +

1

𝑁𝑞
𝑓𝑟𝑎𝑚𝑒𝑖 (6.3) 
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(a) 

 

(b) 

 

(c) 

 

(d) 

Figure 6.3 (a) Example video frame and the extracted backgrounds at queue lengths (b) 15 

frames (1.5s), (c) 150 frames (5s), and (d) 300 frames (10s) 

6.2.3.2 Bounding Box Tracking 

After extracting the background frame, the next step was to identify stationary vehicles. 

The YOLOv4 object detection algorithm was employed to detect the bounding boxes of vehicles 

in the extracted background frames. When a vehicle was detected, its bounding box was tracked 

over time, and a record of the detection frame number was made. If bounding boxes in consecutive 

background frames had an intersection over union (IoU) value greater than the threshold TH𝐼𝑜𝑈, 

they were considered the same vehicle. The bounding box tracking step maintained a list of 

bounding boxes and their respective starting frame numbers. 
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6.2.3.3 Traffic Incident Identification 

Finally, the traffic incident identification step combined the preprocessed assets and real-

time elements to make the traffic incident detection decision. Firstly, bounding boxes with 

dimensions that lied outside the normal range were discarded. Next, the bitwise intersection 

between each detected bounding box and the combined movement mask was checked. Bounding 

boxes were discarded if their intersection with the mask yielded zero pixels. The expected 

occupancy of each detected static vehicle was determined by computing the maximum value of 

the bitwise intersection between the bounding-box-in-question and the expected occupancy 

heatmap. Finally, if the bounding box age was greater than the expected occupancy, a traffic 

incident was triggered. 

6.3 Experimentation 

6.3.1 Data Description 

The methodology was evaluated using 100 videos from the 2021 NVIDIA 5th AI City 

Challenge – Track 4 (Naphade et al. 2021). Each video was 15 minutes long and had a resolution 

of 810x450 sampled at 30 frames per second. The video data was collected from roadside traffic 

CCTVs deployed in the state of Iowa. The dataset contains 56 different traffic incidents, including 

single and multiple vehicle crashes, and stalled vehicles. Furthermore, the videos contained 

complex scenes such as congested roads, traffic lights on auxiliary roads, and peripheral residential 

areas. 

A non-incident datapoint is defined as any traffic video segment that does not contain a 

traffic incident. Therefore, the total number of non-incident datapoints in the dataset is not limited 

to the videos where no traffic incidents ensue. Incident misdetections that occur before or after 



111 

 

traffic incidents are also considered false alarms. Hence, the aggregate number of non-incident 

instances (true negatives) in the dataset is innumerable. 

6.3.2 Setup 

For each video, the first 𝑁𝑝𝑟𝑒 = 3600 frames (120s) were used as preprocessing segment. 

The segment was used to compute the movement mask, the expected occupancy heatmap, and the 

bounding box statistics. The YOLOv4 model confidence score threshold was set to 0.2 to account 

for the low video resolution. The distance threshold for the tracking-based mask extraction step 

TH𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒was set to 10px and the length threshold TH𝑙𝑒𝑛𝑔𝑡ℎ  was set to 10 detections. To detect 

the background frame in the real-time stage, the queue length 𝑁𝑞 was specified as 300 frames 

(10s). Finally, the bounding box tracking IoU threshold TH𝐼𝑜𝑈 was set to 0.95. 

6.3.3 Evaluation Metrics 

Two common evaluation metrics were considered for measuring the methodology’s 

detection accuracy: sensitivity and false alarm rate (FAR). Sensitivity measures the percentage of 

incidents that were successfully detected out of all incidents in the dataset, while the false alarm 

rate measures the ratio of non-incident scenarios that were flagged as traffic incidents. The 

sensitivity and false alarm rate were computed according to equations 4 and 5, respectively. 

sensitivity =
𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒

𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒 + 𝐹𝑎𝑙𝑠𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒
 (6.4) 

false alarm rate =
𝐹𝑎𝑙𝑠𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒

𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒 + 𝐹𝑎𝑙𝑠𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒
 (6.5) 

To measure incident detection speed, delay mean absolute error (MAE) was calculated. 

The delay MAE assesses the average amount of time between the occurrence and the detection of 

an incident. Delay MAE was calculated according to equation 6, where 𝑡𝑑𝑒𝑡 was the detection 
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time, 𝑡  was the actual time of the traffic incident, and 𝑛𝑑𝑒𝑡  was the total number of detected 

incidents. Finally, the mean computation time per frame was measured to evaluate the real-time 

applicability of the proposed methodology. The computation time of each frame was measured 

using the processor’s internal clock. 

delay mean absolute error =
1

𝑛𝑑𝑒𝑡
∑|𝑡𝑑𝑒𝑡 − 𝑡|

𝑛

𝑖=0

 (6.6) 

6.3.4 Detection Accuracy 

Table 6.1 specifies the values of the different evaluation metrics obtained when the 

proposed methodology was applied to the video dataset. The proposed method detected traffic 

incidents in the video dataset with a sensitivity of 85.71% and a false alarm rate of 11.10% while 

maintaining an average detection delay of 27.53 seconds. Furthermore, Table 6.2 describes the 

confusion matrix of the output detection. The method detected 48 out of the 56 incidents in the 

dataset and misclassified 6 non-incident cases as traffic incidents. Due to the unbounded nature of 

non-incident cases, the total number of true negatives were not counted.  

Table 6.1 Detection results 

Sensitivity FAR Delay MAE (s) 
Computation Time (s) / 

(fps) 

0.8571 0.1110 27.53 0.01585 / 63.16 

 

Table 6.2 Incident detection confusion matrix 

Actual 

Predicted 
Positive Negative 

Positive 48 6 

Negative 8 - 
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Figure 6.4 depicts 2 cases of traffic incidents that were missed by the proposed method 

(false negatives). Given the low-resolution of the CCTV cameras, stationary vehicles that were 

positioned far away from the camera sensors were too small to be detected. The vehicle sizes in 

Figure 6.4 (a) and (b) are 7𝑝𝑥 × 6𝑝𝑥 and 6𝑝𝑥 × 5𝑝𝑥, respectively. As shown in the figure, the 

roadside camera sensors were unable to retain the vehicle shapes or contours in the output frames. 

Hence, the YOLOv4 model failed to extract enough features from the few available pixels to detect 

and classify the objects as vehicles. 

  

(a) 

 

(b) 

Figure 6.4 Snapshots of missed traffic incidents (false negatives) 

6.3.5 Detection Delay 

The proposed method detected traffic incidents with a delay MAE of 27.53 seconds. Table 
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6.3 describes the distribution of the incident delay values. The standard deviation was 22.07 

seconds, and the maximum delay was 101.48 seconds. Additionally, the first, second, and third 

quartile values were 12.41s, 21.32s, and 42.26s, respectively. The method was able to identify 

86.94% of the detected traffic incidents in under 60 seconds. 

Table 6.3 Descriptive statistics of incident detection delay 

 Delay (s) 

Mean 27.53 

Standard Deviation 22.07 

Minimum 4.01 

25th-percentile 12.41 

50th-percentile 21.32 

75th-percentile 42.26 

Maximum 101.48 

 

A major contributing component to the value of detection delay was the background queue 

length 𝑁𝑞 . Figure 6.5 plots the relationship between 𝑁𝑞   and the sensitivity, false alarm rate, and 

delay. As shown, lower 𝑁𝑞  values resulted in a reduced average detection delay. However, the 

false alarm rate rapidly increased as more non-incident cases such as vehicles on congested roads 

start appearing in the extracted background. Furthermore, the sensitivity remained constant, 

indicating that the background does not affect the detection performance with respect to true 

incidents. 
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Figure 6.5 Effect of background queue length on sensitivity, FAR, and delay MAE 

6.3.6 Computation Time 

The experiment was conducted using the YOLOv4 Tensorflow implementation (Hùng 

2020) and was executed on an NVIDIA GeForce RTX 2080 Ti Graphics Processing Unit (GPU). 

Additionally, the TensorRT library was utilized for accelerated inference-time performance 

(NVIDIA 2018). As shown in Table 6.1, the average computation time per frame was 0.01585 

seconds. The resulting processing rate was 63.16 frames per seconds, which is consistent with the 

reported inference speed of the YOLOv4 model given the same hardware setup (Bochkovskiy, 

Wang, and Liao 2020). Given that the input video frame rate was 30 frames per second, which is 

less than the processing throughput, it can be entailed that the proposed methodology is capable 

of handling real-time video streams. 

6.4 Conclusions 

In this research effort, a methodology for real-time traffic incident identification using low-
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resolution roadside CCTV cameras was proposed. Previous methods in the literature with state-

of-the-art detection results were not suitable for real-time detection as many authors utilized post-

processing techniques to optimize detection accuracy. In this research effort, the state-of-the-art 

methodologies were adapted for real-time detection. The proposed algorithm relied entirely on 

computations that can be executed on-the-fly. Using traffic videos that were collected on US 

roadways, the proposed method detected traffic incidents with a sensitivity of 85.71%, and a false 

alarm rate of 11.10%. Moreover, since incident discovery time is crucial for TIM response 

strategies, the incident detection delay was measured. The average detection delay was 27.53 

seconds, and the model was able to identify 86.94% of the detected incidents in under 60 seconds. 

Furthermore, the method computation time was assessed. The processing throughput was 

demonstrated to be higher than the input video frame rate, which indicated that the proposed 

method is capable of handling real-time traffic video streams. 

Real-time video-based traffic incident detection can vastly increase the scope of monitored 

road segments without exhausting manpower resources. Prompt identification of traffic incidents 

can reduce the risk of fatalities or injuries, reduce the risk of secondary crashes, and mitigate crash-

related traffic congestion. Since most roadways already have an extensive roadside CCTV camera 

network, the proposed methodology can be utilized without adding supplementary hardware. 

Furthermore, the method requires no manual input. Hence, by developing an automatic 

recalibration strategy for the preprocessing assets, the algorithm can adapt to modifications in the 

video traffic scene such changing traffic speed, or changes in the camera perspective such as PTZ 

camera movements. 
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CHAPTER 7: CONCLUSIONS 

7.1 Summary and Conclusions 

In this dissertation, the application of advanced deep learning algorithms using 

spatiotemporal traffic data for several traffic state estimation objectives was investigated. 

Particularly, three research objectives related to data-driven traffic state estimation were identified 

and explored. Chapter 3 tackled the first research objective, network-wide traffic parameters 

estimation and prediction. In this research effort, the underutilization of longer-term periodic 

traffic characteristics in the literature, particularly daily and weekly traffic behavior, was 

highlighted. Additionally, the lack of focus on model interpretability in traffic speed prediction 

literature was identified as a research gap. The research effort proposed a novel neural network 

architecture: Attention-based Multi-Encoder-Decoder (Att-MED) and explored its utilization for 

network-wide traffic speed prediction. The proposed architecture comprised of multiple 

components. Firstly, the encoder module utilized convolutional LSTMs to capture each sequence’s 

spatiotemporal behavior. The Att-MED architecture employed 3 encoders to capture short-term, 

daily, and weekly traffic characteristics. The 3 encoder outputs were combined and weighed using 

the attention layer and subsequently forwarded the decoder. Finally, the LSTM decoder modeled 

the temporal relationship of the output sequence. The proposed methodology was trained end-to-

end to predict up to 60-minutes ahead traffic speed using data collected from SR-408 in Orlando, 

Florida. The model output was evaluated against other baseline models and proved to be superior. 

The attention layer served as an intermediate evaluator between the model encoders and decoder. 

Thus, in order to interpret the model output, the attention weights were visualized. The mapped 

attention weights confirmed the significance of the daily and weekly sequential input, especially 
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for longer prediction horizons. 

Chapter 4 continued to address the traffic parameters estimation and prediction research 

objective. Most research efforts in the literature focused on static sensor-based traffic parameters 

estimation and prediction. To address this shortcoming, the research described in Chapter 4 

explored the utilization of low-penetration probe-vehicle fleet data for network-wide traffic speed 

and volume estimation and prediction. To achieve this task, a novel sequence-to-sequence neural 

network named Seq2Seq GCN-LSTM was proposed. The architecture comprised of an encoder 

network which accepted a short-term sequence of fleet-based traffic parameters, and a decoder 

network that estimated the full traffic speed and volume from the encoder output. The proposed 

network employed graph convolutions for network-wide spatial feature modeling and LSTMs for 

temporal feature modeling. The Seq2Seq GCN-LSTM model was used for 2 tasks: real-time traffic 

speed and volume estimation, and up to 60-minutes ahead traffic speed and volume prediction. 

Despite the under sampled nature of probe-vehicle data, which results in a high variance signal of 

the real traffic parameters, the proposed method generated volume and speed predictions with an 

average accuracy of 90.5% and 96.6%, respectively. Furthermore, the model demonstrated 

robustness against gaussian noise perturbation. In order to measure the effect of the penetration 

rate on the model accuracy, the number of vehicles in the fleet was manually varied. It was 

determined that the model was able to maintain traffic volume estimation and prediction 

performance until a penetration rate of 1.5% within a 15.6% margin of error. Moreover, the model 

was able to maintain speed estimation and prediction performance when the penetration rate was 

as low as 0.5% within a 4.2% margin of error. 

Chapter 5 describes the research undertaken to investigate vision-based road weather 

detection, which was this dissertation’s second research objective. Road weather has a critical 
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effect on traffic safety and operations and therefore must be constantly monitored. In this research 

effort, a road weather dataset, which consisted of freeway images captured from a roadside 

perspective and annotated with the corresponding 3-level rain and 2-level road surface condition 

labels, was collected. The dataset was utilized to explore the application of Vision Transformers 

for rain and road surface condition classification using roadside traffic CCTV cameras. 

Furthermore, the research effort redefined the problem of road weather classification from a stand-

alone computer vision problem to sequence-to-sequence classification problem by utilizing the 

spatial distribution of neighboring cameras through a Spatial Self-Attention neural network. The 

ViT model accuracy surpassed the examined CNN-based models. The addition of the SSA module 

improved the overall model detection accuracy. Furthermore, experiments demonstrated the 

robustness of the proposed ViT-SSA against potential missing image inputs. The self-attention 

layer in both the ViT and the SSA networks were mapped to interpret the model results and 

enhance the explainability of the ViT’s visual reasoning and the SSA’s sequential modeling 

decisions. 

Chapter 6 delineates the research undertaken to explore and fulfil this dissertation’s third 

research objective: video-based traffic incident detection. Swift incident identification and 

response is crucial to limit the potential casualties and traffic disturbance. In Chapter 6, a real-time 

video-based traffic incident identification algorithm was introduced. State-of-the-art incident 

identification algorithms, which were not designed for live usage, were adapted for real-time 

application. The algorithm consisted of scene background detection, expected vehicle occupancy 

heatmap construction, vehicle bounding box statistics computation, and bounding box tracking. 

The proposed method was tested on a low-resolution roadside traffic incident video dataset 

collected from US roadways and detected traffic incidents with a sensitivity of 85.71%, and a false 



120 

 

alarm rate of 11.10%. Furthermore, the algorithm’s mean detection delay was 27.53 seconds, and 

the model was able to identify 86.94% of the detected incidents in under 60 seconds. Finally, to 

confirm the model’s real-time applicability, the computation time was measured. The processing 

throughput was demonstrated to be higher than the input video frame rate, which indicated that the 

proposed method is capable of handling real-time traffic video streams. 

In general, the growing adoption rate of sensor-enabled vehicle on-board units and 

pedestrian wearable technology will facilitate the sampling and accumulation of more 

sophisticated, accurate, and granular traffic data features on a larger scale. Traffic big data will 

continue to fuel the demand for large-scale traffic-data-driven methodologies and applications. 

Furthermore, the advancement of road user communication paradigms that quickly and efficiently 

connect vehicles, pedestrians, and infrastructure provides a fertile ground for both real-time and 

offline data-empowered traffic operation and safety applications. The research proposed in this 

dissertation taps into the modeling power of deep learning and proves its proficiency for modeling 

spatiotemporal traffic data. Additionally, it demonstrates the algorithm’s applicability in the traffic 

state estimation technology domain. 

7.2 Implications 

The network-wide traffic state estimation and prediction algorithms proposed in Chapters 

3 and 4 have many valuable applications. The proposed algorithms can predict network-wide 

traffic information for up to 60 minutes ahead. The proposed modeling techniques, such as 

employing multi-sequence traffic inputs, can improve the accuracy of existing mapping and 

navigation software installed on smartphones and connected vehicles. Consequently, individual 

drivers can utilize these predictions to accurately inform their trip planning decisions and dynamic 
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navigation in real-time. 

Additionally, the proposed models can be useful for traffic management and operation. The 

60-minute prediction horizon of the proposed algorithms can provide sufficient time windows for 

traffic management center operators to mitigate predicted traffic turbulence. In contrast to 

traditional deep learning models, which are often valued for their performance but criticized for 

their lack of explainability, the methodology proposed in Chapter 3 provides interpretable 

visualizations of its decision-making process, which allows operators to make nuanced, informed, 

and explainable decisions. 

The connected-probe-vehicle-based model proposed in Chapter 4 can be utilized to reduce 

the reliance on static detectors which are susceptible to hardware failures and network outages. 

For example, it can be used by traffic management center operators to estimate traffic parameters 

in remote or new construction areas where traffic sensors might not be sufficiently deployed. 

Alternatively, it can also be implemented during highway construction projects to estimate traffic 

parameters on unequipped temporary lanes. 

Traffic CCTV-based rain and road surface condition detection is an economical way of 

monitoring potentially dangerous road weather with high geospatial granularity. Chapter 5 

describes a methodology for utilizing pre-existing wide-spread CCTV infrastructure to accurately 

and robustly detect road weather conditions. The proposed methodology can be used to monitor 

and advise evacuation plans in the cases of weather-related disasters such as hurricanes. It can 

additionally be used to support traffic operation decisions such as variable speed limits. Moreover, 

future research efforts can utilize the model’s dense road weather output as observations to model 

traffic safety problems. 

Swift automatic video-based incident identification can greatly improve the scope of 
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monitored road segments without exhausting manpower. The algorithm proposed in Chapter 6 can 

be used to greatly shorten the response time between incident occurrence, discovery, and response. 

Furthermore, the methodology utilizes pre-existing camera hardware, and thus provides an 

economic solution to the problem of traffic incidents identification and verification.  
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