100,252 research outputs found

    Time and information retrieval: Introduction to the special issue

    Get PDF
    The Special Issue of Information Processing and Management includes research papers on the intersection between time and information retrieval. In 'Evaluating Document Filtering Systems over Time', Tom Kenter and Krisztian Balog propose a time-aware way of measuring a system's performance at filtering documents. Manika Kar, SeAa7acute;rgio Nunes and Cristina Ribeiro present interesting methods for summarizing changes in dynamic text collections over time in their paper 'Summarization of Changes in Dynamic Text Collection using Latent Dirichlet Allocation Model.' Hideo Joho, Adam Jatowt and Roi Blanco report on the temporal information searching behaviour of users and their strategies for dealing with searches that have a temporal nature in 'Temporal Information Searching Behaviour and Strategies', a user study. In controlled settings, thirty participants are asked to perform searches on an array of topics on the web to find information related to particular time scopes. Adam Jatowt, Ching-man Au Yeung and Katsumi Tanaka present a 'Generic Method for Detecting Content Time of Documents'. The authors propose several methods for estimating the focus time of documents, i.e. the time a document's content refers to. Xujian Zhao, Peiquan Jin and Lihua Yue present an approach to determining the time of the underlying topic or event in their article entitled 'Discovering Topic Time from Web News'

    MIR task and evaluation techniques

    Get PDF
    Existing tasks in MIREX have traditionally focused on low-level MIR tasks working with flat (usually DSP-only) ground-truth. These evaluation techniques, however, can not evaluate the increasing number of algorithms that utilize relational data and are not currently utilizing the state of the art in evaluating ranked or ordered output. This paper summarizes the state of the art in evaluating relational ground-truth. These components are then synthesized into novel evaluation techniques that are then applied to 14 concrete music document retrieval tasks, demonstrating how these evaluation techniques can be applied in a practical context

    EveTAR: Building a Large-Scale Multi-Task Test Collection over Arabic Tweets

    Full text link
    This article introduces a new language-independent approach for creating a large-scale high-quality test collection of tweets that supports multiple information retrieval (IR) tasks without running a shared-task campaign. The adopted approach (demonstrated over Arabic tweets) designs the collection around significant (i.e., popular) events, which enables the development of topics that represent frequent information needs of Twitter users for which rich content exists. That inherently facilitates the support of multiple tasks that generally revolve around events, namely event detection, ad-hoc search, timeline generation, and real-time summarization. The key highlights of the approach include diversifying the judgment pool via interactive search and multiple manually-crafted queries per topic, collecting high-quality annotations via crowd-workers for relevancy and in-house annotators for novelty, filtering out low-agreement topics and inaccessible tweets, and providing multiple subsets of the collection for better availability. Applying our methodology on Arabic tweets resulted in EveTAR , the first freely-available tweet test collection for multiple IR tasks. EveTAR includes a crawl of 355M Arabic tweets and covers 50 significant events for which about 62K tweets were judged with substantial average inter-annotator agreement (Kappa value of 0.71). We demonstrate the usability of EveTAR by evaluating existing algorithms in the respective tasks. Results indicate that the new collection can support reliable ranking of IR systems that is comparable to similar TREC collections, while providing strong baseline results for future studies over Arabic tweets

    NEXT LEVEL: A COURSE RECOMMENDER SYSTEM BASED ON CAREER INTERESTS

    Get PDF
    Skills-based hiring is a talent management approach that empowers employers to align recruitment around business results, rather than around credentials and title. It starts with employers identifying the particular skills required for a role, and then screening and evaluating candidates’ competencies against those requirements. With the recent rise in employers adopting skills-based hiring practices, it has become integral for students to take courses that improve their marketability and support their long-term career success. A 2017 survey of over 32,000 students at 43 randomly selected institutions found that only 34% of students believe they will graduate with the skills and knowledge required to be successful in the job market. Furthermore, the study found that while 96% of chief academic officers believe that their institutions are very or somewhat effective at preparing students for the workforce, only 11% of business leaders strongly agree [11]. An implication of the misalignment is that college graduates lack the skills that companies need and value. Fortunately, the rise of skills-based hiring provides an opportunity for universities and students to establish and follow clearer classroom-to-career pathways. To this end, this paper presents a course recommender system that aims to improve students’ career readiness by suggesting relevant skills and courses based on their unique career interests
    corecore