64,623 research outputs found

    Automatic Differentiation of Rigid Body Dynamics for Optimal Control and Estimation

    Full text link
    Many algorithms for control, optimization and estimation in robotics depend on derivatives of the underlying system dynamics, e.g. to compute linearizations, sensitivities or gradient directions. However, we show that when dealing with Rigid Body Dynamics, these derivatives are difficult to derive analytically and to implement efficiently. To overcome this issue, we extend the modelling tool `RobCoGen' to be compatible with Automatic Differentiation. Additionally, we propose how to automatically obtain the derivatives and generate highly efficient source code. We highlight the flexibility and performance of the approach in two application examples. First, we show a Trajectory Optimization example for the quadrupedal robot HyQ, which employs auto-differentiation on the dynamics including a contact model. Second, we present a hardware experiment in which a 6 DoF robotic arm avoids a randomly moving obstacle in a go-to task by fast, dynamic replanning

    Integrating testing techniques through process programming

    Get PDF
    Integration of multiple testing techniques is required to demonstrate high quality of software. Technique integration has three basic goals: incremental testing capabilities, extensive error detection, and cost-effective application. We are experimenting with the use of process programming as a mechanism of integrating testing techniques. Having set out to integrate DATA FLOW testing and RELAY, we proposed synergistic use of these techniques to achieve all three goals. We developed a testing process program much as we would develop a software product from requirements through design to implementation and evaluation. We found process programming to be effective for explicitly integrating the techniques and achieving the desired synergism. Used in this way, process programming also mitigates many of the other problems that plague testing in the software development process

    Branch-coverage testability transformation for unstructured programs

    Get PDF
    Test data generation by hand is a tedious, expensive and error-prone activity, yet testing is a vital part of the development process. Several techniques have been proposed to automate the generation of test data, but all of these are hindered by the presence of unstructured control flow. This paper addresses the problem using testability transformation. Testability transformation does not preserve the traditional meaning of the program, rather it deals with preserving test-adequate sets of input data. This requires new equivalence relations which, in turn, entail novel proof obligations. The paper illustrates this using the branch coverage adequacy criterion and develops a branch adequacy equivalence relation and a testability transformation for restructuring. It then presents a proof that the transformation preserves branch adequacy

    Rule-based Test Generation with Mind Maps

    Full text link
    This paper introduces basic concepts of rule based test generation with mind maps, and reports experiences learned from industrial application of this technique in the domain of smart card testing by Giesecke & Devrient GmbH over the last years. It describes the formalization of test selection criteria used by our test generator, our test generation architecture and test generation framework.Comment: In Proceedings MBT 2012, arXiv:1202.582

    CTGEN - a Unit Test Generator for C

    Full text link
    We present a new unit test generator for C code, CTGEN. It generates test data for C1 structural coverage and functional coverage based on pre-/post-condition specifications or internal assertions. The generator supports automated stub generation, and data to be returned by the stub to the unit under test (UUT) may be specified by means of constraints. The typical application field for CTGEN is embedded systems testing; therefore the tool can cope with the typical aliasing problems present in low-level C, including pointer arithmetics, structures and unions. CTGEN creates complete test procedures which are ready to be compiled and run against the UUT. In this paper we describe the main features of CTGEN, their technical realisation, and we elaborate on its performance in comparison to a list of competing test generation tools. Since 2011, CTGEN is used in industrial scale test campaigns for embedded systems code in the automotive domain.Comment: In Proceedings SSV 2012, arXiv:1211.587

    Towards a Tool-based Development Methodology for Pervasive Computing Applications

    Get PDF
    Despite much progress, developing a pervasive computing application remains a challenge because of a lack of conceptual frameworks and supporting tools. This challenge involves coping with heterogeneous devices, overcoming the intricacies of distributed systems technologies, working out an architecture for the application, encoding it in a program, writing specific code to test the application, and finally deploying it. This paper presents a design language and a tool suite covering the development life-cycle of a pervasive computing application. The design language allows to define a taxonomy of area-specific building-blocks, abstracting over their heterogeneity. This language also includes a layer to define the architecture of an application, following an architectural pattern commonly used in the pervasive computing domain. Our underlying methodology assigns roles to the stakeholders, providing separation of concerns. Our tool suite includes a compiler that takes design artifacts written in our language as input and generates a programming framework that supports the subsequent development stages, namely implementation, testing, and deployment. Our methodology has been applied on a wide spectrum of areas. Based on these experiments, we assess our approach through three criteria: expressiveness, usability, and productivity

    Classifying the Correctness of Generated White-Box Tests: An Exploratory Study

    Full text link
    White-box test generator tools rely only on the code under test to select test inputs, and capture the implementation's output as assertions. If there is a fault in the implementation, it could get encoded in the generated tests. Tool evaluations usually measure fault-detection capability using the number of such fault-encoding tests. However, these faults are only detected, if the developer can recognize that the encoded behavior is faulty. We designed an exploratory study to investigate how developers perform in classifying generated white-box test as faulty or correct. We carried out the study in a laboratory setting with 54 graduate students. The tests were generated for two open-source projects with the help of the IntelliTest tool. The performance of the participants were analyzed using binary classification metrics and by coding their observed activities. The results showed that participants incorrectly classified a large number of both fault-encoding and correct tests (with median misclassification rate 33% and 25% respectively). Thus the real fault-detection capability of test generators could be much lower than typically reported, and we suggest to take this human factor into account when evaluating generated white-box tests.Comment: 13 pages, 7 figure
    corecore