18 research outputs found

    Evaluating XMPP Communication in IEC 61499-based Distributed Energy Applications

    Full text link
    The IEC 61499 reference model provides an international standard developed specifically for supporting the creation of distributed event-based automation systems. Functionality is abstracted into function blocks which can be coded graphically as well as via a text-based method. As one of the design goals was the ability to support distributed control applications, communication plays a central role in the IEC 61499 specification. In order to enable the deployment of functionality to distributed platforms, these platforms need to exchange data in a variety of protocols. IEC 61499 realizes the support of these protocols via "Service Interface Function Blocks" (SIFBs). In the context of smart grids and energy applications, IEC 61499 could play an important role, as these applications require coordinating several distributed control logics. Yet, the support of grid-related protocols is a pre-condition for a wide-spread utilization of IEC 61499. The eXtensible Messaging and Presence Protocol (XMPP) on the other hand is a well-established protocol for messaging, which has recently been adopted for smart grid communication. Thus, SIFBs for XMPP facilitate distributed control applications, which use XMPP for exchanging all control relevant data, being realized with the help of IEC 61499. This paper introduces the idea of integrating XMPP into SIFBs, demonstrates the prototypical implementation in an open source IEC 61499 platform and provides an evaluation of the feasibility of the result.Comment: 2016 IEEE 21st International Conference on Emerging Technologies and Factory Automation (ETFA

    A Semantic Interoperability Model Based on the IEEE 1451 Family of Standards Applied to the Industry 4.0

    Get PDF
    The Internet of Things (IoT) has been growing recently. It is a concept for connecting billions of smart devices through the Internet in different scenarios. One area being developed inside the IoT in industrial automation, which covers Machine-to-Machine (M2M) and industrial communications with an automatic process, emerging the Industrial Internet of Things (IIoT) concept. Inside the IIoT is developing the concept of Industry 4.0 (I4.0). That represents the fourth industrial revolution and addresses the use of Internet technologies to improve the production efficiency of intelligent services in smart factories. I4.0 is composed of a combination of objects from the physical world and the digital world that offers dedicated functionality and flexibility inside and outside of an I4.0 network. The I4.0 is composed mainly of Cyber-Physical Systems (CPS). The CPS is the integration of the physical world and its digital world, i.e., the Digital Twin (DT). It is responsible for realising the intelligent cross-link application, which operates in a self-organised and decentralised manner, used by smart factories for value creation. An area where the CPS can be implemented in manufacturing production is developing the Cyber-Physical Production System (CPPS) concept. CPPS is the implementation of Industry 4.0 and CPS in manufacturing and production, crossing all levels of production between the autonomous and cooperative elements and sub-systems. It is responsible for connecting the virtual space with the physical world, allowing the smart factories to be more intelligent, resulting in better and smart production conditions, increasing productivity, production efficiency, and product quality. The big issue is connecting smart devices with different standards and protocols. About 40% of the benefits of the IoT cannot be achieved without interoperability. This thesis is focused on promoting the interoperability of smart devices (sensors and actuators) inside the IIoT under the I4.0 context. The IEEE 1451 is a family of standards developed to manage transducers. This standard reaches the syntactic level of interoperability inside Industry 4.0. However, Industry 4.0 requires a semantic level of communication not to exchange data ambiguously. A new semantic layer is proposed in this thesis allowing the IEEE 1451 standard to be a complete framework for communication inside the Industry 4.0 to provide an interoperable network interface with users and applications to collect and share the data from the industry field.A Internet das Coisas tem vindo a crescer recentemente. É um conceito que permite conectar bilhões de dispositivos inteligentes através da Internet em diferentes cenários. Uma área que está sendo desenvolvida dentro da Internet das Coisas é a automação industrial, que abrange a comunicação máquina com máquina no processo industrial de forma automática. Essa interligação, representa o conceito da Internet das Coisas Industrial. Dentro da Internet das Coisas Industrial está a desenvolver o conceito de Indústria 4.0 (I4.0). Isso representa a quarta revolução industrial que aborda o uso de tecnologias utilizadas na Internet para melhorar a eficiência da produção de serviços em fábricas inteligentes. A Indústria 4.0 é composta por uma combinação de objetos do mundo físico e do mundo da digital que oferece funcionalidade dedicada e flexibilidade dentro e fora de uma rede da Indústria 4.0. O I4.0 é composto principalmente por Sistemas Ciberfísicos. Os Sistemas Ciberfísicos permitem a integração do mundo físico com seu representante no mundo digital, por meio do Gémeo Digital. Sistemas Ciberfísicos são responsáveis por realizar a aplicação inteligente da ligação cruzada, que opera de forma auto-organizada e descentralizada, utilizada por fábricas inteligentes para criação de valor. Uma área em que o Sistema Ciberfísicos pode ser implementado na produção manufatureira, isso representa o desenvolvimento do conceito Sistemas de Produção Ciberfísicos. Esse sistema é a implementação da Indústria 4.0 e Sistema Ciberfísicos na fabricação e produção. A cruzar todos os níveis desde a produção entre os elementos e subsistemas autónomos e cooperativos. Ele é responsável por conectar o espaço virtual com o mundo físico, permitindo que as fábricas inteligentes sejam mais inteligentes, resultando em condições de produção melhores e inteligentes, aumentando a produtividade, a eficiência da produção e a qualidade do produto. A grande questão é como conectar dispositivos inteligentes com diferentes normas e protocolos. Cerca de 40% dos benefícios da Internet das Coisas não podem ser alcançados sem interoperabilidade. Esta tese está focada em promover a interoperabilidade de dispositivos inteligentes (sensores e atuadores) dentro da Internet das Coisas Industrial no contexto da Indústria 4.0. O IEEE 1451 é uma família de normas desenvolvidos para gerenciar transdutores. Esta norma alcança o nível sintático de interoperabilidade dentro de uma indústria 4.0. No entanto, a Indústria 4.0 requer um nível semântico de comunicação para não haver a trocar dados de forma ambígua. Uma nova camada semântica é proposta nesta tese permitindo que a família de normas IEEE 1451 seja um framework completo para comunicação dentro da Indústria 4.0. Permitindo fornecer uma interface de rede interoperável com utilizadores e aplicações para recolher e compartilhar os dados dentro de um ambiente industrial.This thesis was developed at the Measurement and Instrumentation Laboratory (IML) in the University of Beira Interior and supported by the portuguese project INDTECH 4.0 – Novas tecnologias para fabricação, que tem como objetivo geral a conceção e desenvolvimento de tecnologias inovadoras no contexto da Indústria 4.0/Factories of the Future (FoF), under the number POCI-01-0247-FEDER-026653

    Cyber-physical framework for emulating distributed control systems in smart grids

    Get PDF
    This paper proposes a cyber-physical framework for investigating distributed control systems operating in the context of smart-grid applications. At the moment, the literature focuses almost exclusively on the theoretical aspects of distributed intelligence in the smart-grid, meanwhile, approaches for testing and validating such systems are either missing or are very limited in their scope. Three aspects need to be taken into account while considering these applications: (1) the physical system, (2) the distributed computation platform, and (3) the communication system. In most of the previous works either the communication system is neglected or oversimplified, either the distributed computation aspect is disregarded, either both elements are missing. In order to cover all these aspects, we propose a framework which is built around a fleet of low-cost single board computers coupled with a real-time simulator. Additionally, using traffic control and network emulation, the flow of data between different controllers is shaped so that it replicates various quality of service (QoS) conditions. The versatility of the proposed framework is shown on a study case in which 27 controllers self-coordinate in order to solve the distributed optimal power flow (OPF) algorithm in a dc network

    Simulation and Control of a Cyber-Physical System under IEC 61499 Standard

    Get PDF
    IEC 61499 standard provides an architecture for control systems using function blocks (FB), languages, and semantics. These devices can be interconnected and communicate with each other. Each device contains several resources and algorithms with a communication FB at the end, which can be created, configured, and deleted without affecting other resources. Physical element can be represented by a FB that encapsulates the functionality (data/events, process, return data/events) in a single module that can be reused and combined. This work presents a simplified implementation of a modular control system using a low-cost device. In the prototyping of the application, we use 4diac to control, model and validate the implementation of the system on a programmable logic controller. It is proved that this approach can be used to model and simulate a cyber-physical system as a single element or in a networked combination. The control models provide a reusable FB design.We acknowledge the financial support of CIDEM, R&D unit funded by FCT – Portuguese Foundation for the Development of Science and Technology, Ministry of Science, Technology and Higher Education, under the Project UID/EMS/0615/2019, and it was supported by FCT, through INEGI and LAETA, under project UIDB/50022/2020.info:eu-repo/semantics/publishedVersio

    Smart Agents in Industrial Cyber–Physical Systems

    Full text link

    Anturidatan lähettäminen fyysiseltä kaksoselta digitaaliselle kaksoselle

    Get PDF
    A digital twin is a digital counterpart of a physical thing such as a machine. The term digital twin was first introduced in 2010. Thereafter, it has received an extensive amount of interest because of the numerous benefits it is expected to offer throughout the product life cycle. Currently, the concept is developed by the world’s largest companies such as Siemens. The purpose of this thesis is to examine which application layer protocols and communication technologies are the most suitable for the sensor data transmission from a physical twin to a digital twin. In addition, a platform enabling this data transmission is developed. As the concept of a digital twin is relatively new, a comprehensive literature view on the definition of a digital twin in scientific literature is presented. It has been found that the vision of a digital twin has evolved from the concepts of ‘intelligent products’ presented at the beginning of the 2000s. The most widely adopted definition states that a digital twin accurately mirrors the current state of its corresponding twin. However, the definition of a digital twin is not yet standardized and varies in different fields. Based on the literature review, the communication needs of a digital twin are derived. Thereafter, the suitability of HTTP, MQTT, CoAP, XMPP, AMQP, DDS, and OPC UA for sensor data transmission are examined through a literature review. In addition, a review of 4G, 5G, NB-IoT, LoRa, Sigfox, Bluetooth, Wi-Fi, Z-Wave, ZigBee, and WirelessHART is presented. A platform for the management of the sensors is developed. The platform narrows the gap between the concept and realization of a digital twin by enabling sensor data transmission. The platform allows easy addition of sensors to a physical twin and provides an interface for their configuration remotely over the Internet. It supports multiple sensor types and application protocols and offers both web user iterface and REST API.Digitaalinen kaksonen on fyysisen tuotteen digitaalinen vastinkappale, joka sisältää tiedon sen nykyisestä tilasta. Digitaalisen kaksosen käsite otettiin ensimmäisen kerran käyttöön vuonna 2010. Sen jälkeen digitaalinen kaksonen on saanut paljon huomiota, ja sitä ovat lähteneet kehittämään maailman suurimmat yritykset, kuten Siemens. Tämän työn tarkoituksena tutkia, mitkä sovelluskerroksen protokollat ja langattomat verkot soveltuvat parhaiten anturien keräämän datan lähettämiseen fyysiseltä kaksoselta digitaaliselle kaksoselle. Sen lisäksi työssä esitellään alusta, joka mahdollistaa tämän tiedonsiirron. Digitaalisen kaksosesta esitetään laaja kirjallisuuskatsaus, joka luo pohjan työn myöhemmille osioille. Digitaalisen kaksosen konsepti pohjautuu 2000-luvun alussa esiteltyihin ajatuksiin ”älykkäistä tuotteista”. Yleisimmän käytössä olevan määritelmän mukaan digitaalinen kaksonen heijastaa sen fyysisen vastinparin tämän hetkistä tilaa. Määritelmä kuitenkin vaihtelee eri alojen välillä eikä se ole vielä vakiintunut tieteellisessä kirjallisuudessa. Kirjallisuuskatsauksen avulla johdetaan digitaalisen kaksosen kommunikaatiotarpeet. Sen jälkeen arvioidaan seuraavien sovelluskerroksen protokollien soveltuvuutta anturidatan lähettämiseen kirjallisuuskatsauksen avulla: HTTP, MQTT, CoAP, XMPP, AMQP, DDS ja OPC UA. Myös seuraavien langattomien verkkojen soveltuvuutta tiedonsiirtoon tutkitaan: 4G, 5G, NB-IoT, LoRaWAN, Sigfox, Bluetooth, Wi-Fi, Z-Wave, ZigBee ja WirelessHART. Osana työtä kehitettiin myös ohjelmistoalusta, joka mahdollistaa anturien hallinnan etänä Internetin välityksellä. Alusta on pieni askel kohti digitaalisen kaksosen käytän-nön toteutusta, sillä se mahdollistaa tiedon keräämisen fyysisestä vastinkappaleesta. Sen avulla sensorien lisääminen fyysiseen kaksoseen on helppoa, ja se tukee sekä useita sensorityyppejä että sovelluskerroksen protokollia. Alusta tukee REST API –rajapintaa ja sisältää web-käyttöliittymän

    Software framework for the development of context-aware reconfigurable systems

    Get PDF
    In this project we propose a new software framework for the development of context-aware and secure controlling software of distributed reconfigurable systems. Context-awareness is a key feature allowing the adaptation of systems behaviour according to the changing environment. We introduce a new definition of the term “context” for reconfigurable systems then we define a new context modelling and reasoning approach. Afterwards, we define a meta-model of context-aware reconfigurable applications that paves the way to the proposed framework. The proposed framework has a three-layer architecture: reconfiguration, context control, and services layer, where each layer has its well-defined role. We define also a new secure conversation protocol between distributed trustless parts based on the blockchain technology as well as the elliptic curve cryptography. To get better correctness and deployment guarantees of applications models in early development stages, we propose a new UML profile called GR-UML to add new semantics allowing the modelling of probabilistic scenarios running under memory and energy constraints, then we propose a methodology using transformations between the GR-UML, the GR-TNCES Petri nets formalism, and the IEC 61499 function blocks. A software tool implementing the methodology concepts is developed. To show the suitability of the mentioned contributions two case studies (baggage handling system and microgrids) are considered.In diesem Projekt schlagen wir ein Framework für die Entwicklung von kontextbewussten, sicheren Anwendungen von verteilten rekonfigurierbaren Systemen vor. Kontextbewusstheit ist eine Schlüsseleigenschaft, die die Anpassung des Systemverhaltens an die sich ändernde Umgebung ermöglicht. Wir führen eine Definition des Begriffs ``Kontext" für rekonfigurierbare Systeme ein und definieren dann einen Kontextmodellierungs- und Reasoning-Ansatz. Danach definieren wir ein Metamodell für kontextbewusste rekonfigurierbare Anwendungen, das den Weg zum vorgeschlagenen Framework ebnet. Das Framework hat eine dreischichtige Architektur: Rekonfigurations-, Kontextkontroll- und Dienste-Schicht, wobei jede Schicht ihre wohldefinierte Rolle hat. Wir definieren auch ein sicheres Konversationsprotokoll zwischen verteilten Teilen, das auf der Blockchain-Technologie sowie der elliptischen Kurven-Kryptographie basiert. Um bessere Korrektheits- und Einsatzgarantien für Anwendungsmodelle zu erhalten, schlagen wir ein UML-Profil namens GR-UML vor, um Semantik umzufassen, die die Modellierung probabilistischer Szenarien unter Speicher- und Energiebeschränkungen ermöglicht. Dann schlagen wir eine Methodik vor, die Transformationen zwischen GR-UML, dem GR-TNCES-Petrinetz-Formalismus und den IEC 61499-Funktionsblöcken verwendet. Es wird ein Software entwickelt, das die Konzepte der Methodik implementiert. Um die Eignung der genannten Beiträge zu zeigen, werden zwei Fallstudien betrachtet

    Multi-Agent Modelling of Industrial Cyber-Physical Systems for IEC 61499 Based Distributed Intelligent Automation

    Get PDF
    Traditional industrial automation systems developed under IEC 61131-3 in centralized architectures are statically programmed with determined procedures to perform predefined tasks in structured environments. Major challenges are that these systems designed under traditional engineering techniques and running on legacy automation platforms are unable to automatically discover alternative solutions, flexibly coordinate reconfigurable modules, and actively deploy corresponding functions, to quickly respond to frequent changes and intelligently adapt to evolving requirements in dynamic environments. The core objective of this research is to explore the design of multi-layer automation architectures to enable real-time adaptation at the device level and run-time intelligence throughout the whole system under a well-integrated modelling framework. Central to this goal is the research on the integration of multi-agent modelling and IEC 61499 function block modelling to form a new automation infrastructure for industrial cyber-physical systems. Multi-agent modelling uses autonomous and cooperative agents to achieve run-time intelligence in system design and module reconfiguration. IEC 61499 function block modelling applies object-oriented and event-driven function blocks to realize real-time adaption of automation logic and control algorithms. In this thesis, the design focuses on a two-layer self-manageable architecture modelling: a) the high-level cyber module designed as multi-agent computing model consisting of Monitoring Agent, Analysis Agent, Self-Learning Agent, Planning Agent, Execution Agent, and Knowledge Agent; and b) the low-level physical module designed as agent-embedded IEC 61499 function block model with Self-Manageable Service Execution Agent, Self-Configuration Agent, Self-Healing Agent, Self-Optimization Agent, and Self-Protection Agent. The design results in a new computing module for high-level multi-agent based automation architectures and a new design pattern for low-level function block modelled control solutions. The architecture modelling framework is demonstrated through various tests on the multi-agent simulation model developed in the agent modelling environment NetLogo and the experimental testbed designed on the Jetson Nano and Raspberry Pi platforms. The performance evaluation of regular execution time and adaptation time in two typical conditions for systems designed under three different architectures are also analyzed. The results demonstrate the ability of the proposed architecture to respond to major challenges in Industry 4.0
    corecore