
Contents lists available at ScienceDirect

Electrical Power and Energy Systems

journal homepage: www.elsevier.com/locate/ijepes

Cyber-physical framework for emulating distributed control systems in
smart grids
Catalin Gavrilutab,a,⁎, Cedric Boudineta, Friederich Kupzogb, Antonio Gomez-Expositoc,
Raphael Cairea
a Univ. Grenoble Alpes, CNRS, Grenoble INP, G2Elab, 38000 Grenoble, France
b AIT Austrian Institute of Technology, Giefingasse 2, 1210 Wien, Austria
c Seville University, Calle San Fernando 4, 41004 Seville, Spain

A R T I C L E I N F O

Keywords:
Cyber-physical systems
Smart grid
Distributed control and optimization

A B S T R A C T

This paper proposes a cyber-physical framework for investigating distributed control systems operating in the
context of smart-grid applications. At the moment, the literature focuses almost exclusively on the theoretical
aspects of distributed intelligence in the smart-grid, meanwhile, approaches for testing and validating such
systems are either missing or are very limited in their scope. Three aspects need to be taken into account while
considering these applications: (1) the physical system, (2) the distributed computation platform, and (3) the
communication system. In most of the previous works either the communication system is neglected or over-
simplified, either the distributed computation aspect is disregarded, either both elements are missing. In order to
cover all these aspects, we propose a framework which is built around a fleet of low-cost single board computers
coupled with a real-time simulator. Additionally, using traffic control and network emulation, the flow of data
between different controllers is shaped so that it replicates various quality of service (QoS) conditions.

The versatility of the proposed framework is shown on a study case in which 27 controllers self-coordinate in
order to solve the distributed optimal power flow (OPF) algorithm in a dc network.

1. Introduction

For the past few years, distributed control algorithms and multi-
agent systems have been receiving a lot of attention in the context of
modern energy systems. Their highly scalable nature makes them a
strong candidate for various smart-grid applications. However, the
added complexity given by the close interlacing with the information
and communication infrastructure makes the validation of these ap-
plications a challenge.

Generally, in order to analyze such a distributed cyber-physical
system one needs three main components: (1) the physical system, (2)
the distributed computation platform, i.e, the controllers, and (3) the
communication network between the controllers. At the moment, most
of the existing work on distributed control in smart-grid applications
tends to neglect one or more of these components when proposing new
algorithms and applications. Often referenced in this field, the work of
Kraning et al. [1] proposes a fully distributed optimization algorithm
for solving the problem of optimal daily energy dispatch for a micro-
grid. Their conclusion is that for a fully granular implementation, i.e.,
one computing processor for each device, without the communication

delays, the time required for finding a solution would be less than one
second, regardless of the size of the network. While the results are very
encouraging, the authors tested the proposed algorithm on a multi-
processor computation platform, ignoring the interaction with the
physical system, as well as the communication layer. Taking these as-
pects into consideration, especially the communication layer, will
considerably increase the time needed for the algorithm to find a so-
lution.

In the same note, the work presented in [2] revolves around the idea
of distributed consensus applied to dc microgrid control. The proposed
algorithms are validated on a network with four terminals using
hardware in the loop (HIL) methods and dSPACE for fast control pro-
totyping. While this approach is suitable for testing a small-scale
system, scaling this approach for testing larger networks will prove very
cumbersome and expensive.

Numerous other examples of distributed control systems related to
agent based control of microgrids [3–9], distributed OPF seeking con-
trollers in ac power distribution systems [10], or energy market ap-
plications [11,12] can be found in the literature. However, in all of
them, it is very difficult to assess the applicability of the algorithms to

https://doi.org/10.1016/j.ijepes.2019.06.033
Received 16 June 2018; Received in revised form 12 June 2019; Accepted 14 June 2019

⁎ Corresponding author at: AIT Austrian Institute of Technology, Giefingasse 2, 1210 Wien, Austria.
E-mail address: catalin.gavriluta@ait.ac.at (C. Gavriluta).

Electrical Power and Energy Systems 114 (2020) 105375

Available online 09 July 2019
0142-0615/ © 2019 Elsevier Ltd. All rights reserved.

T

http://www.sciencedirect.com/science/journal/01420615
https://www.elsevier.com/locate/ijepes
https://doi.org/10.1016/j.ijepes.2019.06.033
https://doi.org/10.1016/j.ijepes.2019.06.033
mailto:catalin.gavriluta@ait.ac.at
https://doi.org/10.1016/j.ijepes.2019.06.033
http://crossmark.crossref.org/dialog/?doi=10.1016/j.ijepes.2019.06.033&domain=pdf


real-life problems. This is mainly due to oversimplifications that are
introduced in the validation stage.

In terms of frameworks and toolsets, a few approaches have
emerged in the past few years, mainly from the co-simulation field. For
example, in [13] DIgSILENT coupled with a custom JAVA-based multi-
agent system is used for testing an adaptive power flow control strategy
in transmission systems. Other approaches designed for analyzing the
performance of wide area monitoring systems, as well as issues related
to cyber-security, are shown in [14,15].

Mosaik [16,17] is a Python based open source software package
maintained and actively developed by OFFIS. Mosaik is a flexible co-
simulation framework that enables the coupling of existing simulators
and models in order to tackle complex smart-grid applications.

In [18] a Simulation Message Bus approach for co-simulation and
rapid prototyping of networked systems was proposed. This approach
was further developed into Lablink [19], an in-house tool used at the
Austrian Institute of Technology. While Mosaik is mainly focused on
simulator coupling, Lablink is used for coupling laboratory equipment
with simulators and other software modules.

Similar in nature to Lablink, OpSim is a co-simulation environment
actively developed by Fraunhofer IEE [20,21]. It allows coupling of
both software and hardware through a common message bus. Unlike
Mosaik, both Lablink and OpSim are proprietary tools and are not
available as open-source.

VILLAS [22,23] is an open source co-simulation platform developed
at the Institute for Automation of Complex Power Systems at Aachen
University. VILLAS is designed as a holistic framework with a modular
and generic architecture and it is mainly targeting coupling of geo-
graphically distributed research infrastructure and real-time simulators
[24,25].

Bottaccioli et al. propose in [26] a modular co-simulation approach
built around paradigms that are specific to internet of things (IoT)-
based architectures. We refer the readers to [26,27] for a comprehen-
sive overview of several co-simulation platforms, some designed for
single-use cases, other allowing more flexibility and multiple-use cases;
some that allow both hardware and software in the loop, and some that
remain only at software level.

In this paper we propose and evaluate a cyber-physical framework
that allows the investigation of distributed control and optimization
strategies. The main focus is on applications that involve a large
number of controllers that need to interact and self-coordinate. The
focus is not on time critical applications, but rather on applications
where the complexity arises from the interaction between the different
controllers.

Our main goal was to propose a system that allows experimentation
at each of the three layers mentioned above, i.e., physical, distributed
computation, as well as communication layer. Moreover, we aimed to
make this framework easily accessible and scalable, therefore we tried
to use low-cost devices as well as modern open-source tools.

In the following section we present an overview of several ICT
concepts that are relevant in the context of the proposed framework.
Afterwards, Section 3 presents the framework and Section 4 shows how
it can be employed for the evaluation of a distributed optimization al-
gorithm used for solving the OPF problem of a dc network. Finally,
Section 5 concludes the work.

2. Overview of relevant ICT concepts

One of the main challenges of developing the proposed framework
was understanding and evaluating the vast pool of ICT-related concepts
that fall under the scope of our application. A distributed system that
implements algorithms for control and optimization in the smart grid is
at the border between several research areas. Therefore, as shown in
Fig. 1, different protocols, data-models, and architectures originating
from smart grid, multi-agent systems, distributed computing, or IoT
philosophies can be found in the literature.

In the following paragraphs we will discuss some of the most pop-
ular ones. The list is not by any means exhaustive. Its main purpose is to
cover several concepts that are typically encountered in the literature;
concepts which we also evaluated as possible solutions for the inter-
controller communication in the proposed system.

2.1. IP application layer protocols

As shown in [28], the possible communication solutions for smart-
grid applications vary widely depending on data rate and latency re-
quirements as well as on geographical span. Out of all the available
solutions, internet protocols (IP) are the most proven technology and
the most versatile, fitting a large array of scenarios. Therefore, in terms
of communication protocols we focused only on the IP protocol. As it is
well known, IP has a layered architecture with the top most layer being
the application layer. Three application layer protocols are often re-
ferenced in the smart-grid and distributed systems literature.

2.1.1. XMPP
The first XMPP (Extensible Messaging and Presence Protocol) ver-

sion was released in 1999 as a protocol for instant messaging. XMPP has
proven to be extremely successful from the start and has been widely
used in numerous communication applications. Google’s and
Facebook’s chat applications, as well as WhatsApp, all rely on XMPP
and they handle hundreds of millions and in some cases over a billion
users [29].

According to [30], XMPP is a very stable and proven technology, it
is secure, extensible, and highly scalable. All these characteristics have
enabled XMPP to outgrow its original purpose and find its way in other
applications, such as voice over IP (VoIP), videoconferencing, file
transfer, gaming, etc. Also, lately, it has started to become a solid
candidate for IoT and machine-to-machine communication over public
networks. XMPP is also slowly making its way into the IEC standardi-
zation landscape, and various related applications have started to
emerge in the literature. For example, [31] shows an approach based on
IEC 61850 mapped to XMPP for the integration of decentralized energy
resources and loads into the smart energy grid and into a smart energy
market. Meanwhile, in [32] XMPP is evaluated as an enabler of the IEC
61499 standard for distributed event-based automation systems in the
context of smart grids and energy applications.

2.1.2. MQTT
Message Queue Telemetry Transport (MQTT) is a relatively new

open source protocol that is gathering a lot of interest in the IoT
community. The MQTT messaging protocol employs a publish-sub-
scribe pattern which was designed to be extremely lightweight in terms
of required processing power as well as network bandwidth. This makes
MQTT well suited for applications that involve small remote sensors
and actuators with limited processing ability and memory, or systems
connected to unreliable communication networks. MQTT is highly
scalable, making it possible to create systems that involve hundreds or
even thousands of remote sensors or devices [33].

The only aspect that we consider to be a drawback for both MQTT
and XMPP in the context of our application is their broker/server based
architecture. Clients do not have a direct connection to each other, but
instead, the communication is handled by a server with which both
clients are registered. If the server becomes unavailable, all commu-
nication is compromised. Also, since the server is placed between the
two clients, its performance will have a direct impact on the QoS of the
communication loop. Of course, these aspects could be mitigated with
proper infrastructure, however, they come in contradiction with the
idea of decentralized or distributed systems.

2.1.3. HTTP
The Hypertext Transfer Protocol (HTTP) is probably the most

known protocol from the IP suite as it sits at the foundation of the world

C. Gavriluta, et al. Electrical Power and Energy Systems 114 (2020) 105375

2



wide web. HTTP is extremely popular, being omnipresent in modern
every-day life. Therefore, it has the great advantage that all the network
infrastructure is already configured to efficiently work with it. For ex-
ample, an application based on HTTP will most probably encounter no
problems due to firewalls or other network security measures.

HTTP is client–server and implemented around a stateless request-
response paradigm, i.e., the client sends a request to the server and
keeps the communication channel opened until the server responds or
the request times out. While in XMPP the role of the server is to enable
the communication between clients, in HTTP the communication only
happens between the client and the server. Unlike XMPP and MQTT,
HTTP implies direct point to point communication.

All these protocols, i.e., XMPP, MQTT, and HTTP, have the great
advantage of having the support of a very dynamic and open commu-
nity. Servers, clients, or libraries can be found for almost every oper-
ating system and programming language. Therefore, it is relatively easy
to develop applications based on them.

2.2. Remote Procedure Calls (RPCs)

Remote procedure calls are a form of inter-process communication
mechanism commonly used in distributed computing. RPCs have been
created to expand device interoperability. The basic idea behind the
concept, as its name implies, is to give a process the possibility of
calling routines that belong to a different process that operates on the
same connected network.

Numerous protocols have been developed around the concept of
RPC, with one of the most popular being SOAP (Simple Object Access
Protocol). SOAP implemented with HTTP as a transport mechanism is
one of the main building blocks of web-services, a concept widely used
in internet-based applications.

SOAP uses XML to encode its calls, which has a clean structure, but
has the disadvantage of being verbose. Therefore, more recent RPC
frameworks lean towards more compact encoding formats, such as
JSON or binary. One such framework is gRPC, a new open-source RPC
system created by Google. By taking advantage of the feature set of the
latest version of HTTP, i.e., HTTP/2, gRPC facilitates the development
of distributed service-based applications that are characterized by low
latency and high scalability [34].

Apache Thrift is another popular RPC framework that also has its

origins at a large tech company, this time, Facebook. Designed for the
development of scalable cross-platform and cross-language services,
Apache Thrift supports several transport protocols (HTTP, TCP sockets,
etc.) as well as several compact encoding protocols (JSON, binary, etc.)
[35].

A great advantage of both gRPC and Apache Thrift is that they offer
a language-agnostic interface definition language (IDL). In both these
frameworks, a service is declared as an IDL file which is then processed
by a code generator in order to produce language-specific bindings.

2.3. JADE and FIPA-ACL

One of the most popular frameworks for the development of multi-
agent systems is JADE [36], an open source Java-based software plat-
form that implements the ACL (Agent Communication Language)
standard proposed by FIPA (Foundation for Intelligent Physical
Agents). JADE covers much more than the inter-agent communication,
but at this level it introduces the idea of agent containers. Inside the
same container, agents communicate through RMIs (Remote Method
Invocations) which is Java’s approach to RPCs. Messages between
containers are handled either via TCP sockets or via XMPP.

While JADE is a solid platform, it has the major drawback of being
extremely limited from an interoperability point of view. In other
words, all the agents, across all the devices of the distributed system
have to be implemented in Java around JADE. To our knowledge, there
is no direct approach for mixing JADE agents with other agents de-
veloped using different frameworks and languages.

Besides the limited interoperability, another aspect that raises
concerns regarding the future of JADE is the status of FIPA and its
activity on ACL. According to their website, the last meeting of FIPA has
been in 2005.

2.4. IEC 61850

While JADE has its roots in the multi-agent systems community, IEC
61850 arose from the smart-grid field.

Historically, IEC 61850 is a standard that facilitates the interoper-
ability of substation automation equipment developed by different
manufacturers. However, in the last few years the standard has been
continually expanding, adding new sections for emerging technologies

Fig. 1. Overview of relevant ICT concepts.

C. Gavriluta, et al. Electrical Power and Energy Systems 114 (2020) 105375

3



such as distributed energy resources and e-mobility. IEC 61850 pro-
vides abstract data models that can be mapped to various commu-
nication protocols. At the moment, the standard provides documents for
mapping to MMS (Manufacturing Message Specification) and work for
more world-wide-web oriented approaches is underway. According to
[37], the upcoming IEC 61850-8-2 standard will provide a mapping to
XMPP. However, other examples such as [38] show the potential of
combining the models of the standard with contemporary web proto-
cols.

Given its widespread acceptance, IEC 61850 in combination with
modern web protocols could prove to be a suitable platform also for our
application. However, the main drawback is the lack of community
support and readily available tools. Despite the major excitement
around IEC 61850, at the moment there are only two libraries openly
available, one written in C [39], and one in Java [40], both of them
offering a mapping of the standard to MMS.

3. Proposed framework for evaluating distributed power system
applications

As can be seen in Fig. 2, the proposed framework is build around a
fleet of single board computers, namely Raspberry Pis, connected to a
real-time simulator, namely OPAL-RT.

As mentioned in the introduction, there are three main components
that need to be covered. In the next subsections we will explain how
they were addressed in the proposed framework and how they interact
between them.

3.1. Physical system

Electric networks are highly complex and expensive systems and,
therefore, it is rarely possible to experiment on real systems. One can
build reduced laboratory-scale replicas, but they typically lack flex-
ibility, as they are built for a specific experiment and also their cost and
maintenance is usually rather high. Under these conditions, the typical
approach in power-systems research is to run models of the physical
system on high performance computation-machines which are able to
execute complex calculations in a very small time step. These devices
are commonly known in the field as real-time simulators (RTS) and
several key players, such as RTDS, OPAL-RT, or Typhoon, are active on
the market at the moment. RTSs are commonly used in combination
with signal amplifiers for performing power hardware in the loop (PHIL)
validation of various electrical devices. Similarly, they can also be used
for validating and testing individual controllers in controller in the loop
(CIL) setups.

For the proposed framework we also used a real-time simulator for
implementing the behavior of the physical system, as this approach
offers maximum flexibility, while at the same time allows the connec-
tion of real physical elements for PHIL or CIL experiments.

The main problem is that, as mentioned earlier, real-time simulators

were designed mainly with PHIL or CIL experimentation in mind,
therefore, the commercially available models are rather limited in their
communication interfaces. In the type of large scale distributed appli-
cations that we consider there would be tens or even several hundreds
of controllers that need to access data from different parts of the elec-
trical network in a completely asynchronous manner. By default, RTSs
do not offer an out-of-the-box solution for dealing with this sort of
scenarios.

Fig. 3 shows the method that we propose for mitigating this issue.
Our implementation is based on OPAL-RT, as it is the RTS that our
laboratory is equipped with. However, to our knowledge, the same
approach can be used with other RTSs. As shown in Fig. 3, OPAL-RT is
in charge of emulating the physical system. The figure shows our study
case, which is a dc electrical network, however, any other dynamical
system that fits in the computation limits of the real-time simulator
could be used.

In order to allow external controllers to interact with the physical
system, we propose to run in parallel with the real-time process an
additional process on the OPAL-RT in the form of a data server. The
data server keeps two internal buffers, one for inputs and one for out-
puts, and acts as a gateway into the physical system. Any request from
the controllers is being handled using the information stored in these
buffers, which are periodically synchronized via UDP with the in-
formation from the real-time process.

While this approach allows for a large number of controllers to
access information from the real-time process, it introduces an addi-
tional layer between the controller and the physical process.

The data-server is implemented as a web-service and external de-
vices can read and write data from the server via HTTP. The data-server
synchronizes the information from the buffers with the real-time pro-
cess everyTcomm, which in our implementation is 10ms. Additionally, as
it will be seen later in Section 4.1, in our scenario it takes around
3–4ms for the data-server to resolve a request. Therefore, in the worst
case scenario, the signals at the controller level are delayed by 14ms
with respect to the real-time process. For some applications, such as
protection, this delay might be unacceptable, but for the type of ap-
plications that we considered, i.e., distributed optimization and higher
level control, this approach works perfectly. If necessary, the delay
could be reduced by decreasing Tcomm, but it has to be noted that a too
small value might have a negative impact on the real-time execution of
the physical model. The delay could also be slightly reduced by using a
lower level protocol instead of HTTP for the communication with the
OPAL-RT.

Fig. 2. Framework for real-time testing of distributed power system applica-
tions.

Fig. 3. Interfacing the real-time simulator with the distributed computation
platform.

C. Gavriluta, et al. Electrical Power and Energy Systems 114 (2020) 105375

4



3.2. Distributed computation system

The previous section showed how the interaction between the
controllers and the physical process can be emulated by extending the
capabilities of the RTS. The second part of our framework is the dis-
tributed computation engine. We considered a fleet of Raspberry PIs
(RPIs) to be the most suitable choice for this task, as the cost of scaling
up the system is rather low. One can see similar approaches where
clusters with thousands of RPIs are being built in order to emulate
exascale computing solutions. Los Alamos National Laboratory is
building such a cluster with 3000 cores, with plans of scaling to 40000
cores in the near future [41].

The RPI is a single board ARM-based computer that has been
gaining a lot of popularity in the past few years. Besides its ex-
ceptionally low-cost, there are other numerous advantages of working
with the RPI. Firstly, its Linux-based operating system opens up the
possibility of using high level programming languages such as Python,
R, or Octave and provides easy access to a large collection of open-
source scientific computing libraries. This greatly simplifies the process
of porting ideas and concepts from other scientific communities, such as
machine learning or artificial intelligence, to smart-grid applications.

Performance wise, the model used in our setup is equipped with a
1.2 GHz quadcore processor and 1 GB of RAM, which makes it a suitable
candidate for embedded applications of medium complexity.

The controllers and the inter-controller communication, as well as
the interface with OPAL-RT, were developed using Python. We selected
Python because it is a powerful scientific programming language that
allows fast prototyping and concept validation by providing access to a
large collection of libraries and modules.

The controllers are hosted on the RPIs and each of them can ex-
change data with the real-time model of the physical system via the
data server, as shown in the previous sub-section.

As seen from Section 2, while there are numerous communication
protocols and concepts available, at the moment there is no clear
consensus for what would be the most suitable communication protocol
and transport mechanism for distributed applications in a future smart-
grid. As our area of interest is closer to the field of distributed com-
puting than to the one of telemetry, we selected to implement the
communication between controllers using RPCs, more specifically using
gRPC. We selected gRPC because it is based on HTTP/2 and uses a
compact protocol for encoding the procedure calls. According to [34],
Google’s internal services register a throughput of 1010 RPCs per second.
Therefore, we considered gRPC as a perfect candidate for highly scal-
able systems.

3.3. Communication network

As shown in Fig. 2, all the RPIs are connected to the same ethernet
network, together with OPAL-RT. However, one has to distinguish be-
tween two different flows of information that occur over this network.

The first one is between the controllers running on the RPIs and
OPAL-RT. As described previously, this emulates the local link between
the controller and the physical system, typically, a sensor-controller-
actuator loop.

The second flow of information is between the controllers. In a
distributed system, this would typically travel across an ICT network
with certain characteristics in terms of QoS. For example, commu-
nication between on-site controllers through a dedicated network will
be fast and reliable, meanwhile, GSM communication with remote
controllers in the field might be lossy and with large latencies.

The first choice for covering this type of scenarios is to use a com-
munication network simulator such as OMNET++ [42] or gns3 [43].
However, since our framework involves real-time and physical con-
nections between a relatively large number of hardware components,
using a simulator is not feasible. Rather than a simulator, one would
need a network emulator for this task. Specialized solutions such as

CORE [44] exist, and even some simulators can be used in emulation
mode. Setting up such a configuration requires additional hardware and
software overhead. However, if a detailed representation of the ICT
network is required then this is the only feasible solution.

The method that we propose does not include a detailed re-
presentation of the ICT network. However, it has the great advantage
that it introduces no overhead and it uses only the components that
were already introduced as part of the system. Mainly, since the RPIs
used for the controllers are powered by a Linux based operating system,
their kernel comes prepackaged with NetEm [45], a software package
that provides network emulation functionality. Making use of NetEm
we developed an approach for shaping the traffic between the con-
trollers so that it emulates different network conditions.

Our solution is based on the traffic control utility (TC) [46] and
NetEm, and it was inspired by the methodology Facebook engineers use
for testing services under various network conditions [47]. By using TC
at the level of each ethernet card in our fleet of controllers we can set
different rules and filters (so called queuing disciplines or qdiscs) in
order to enforce different latencies, packet losses, and data rates onto
the communication channels.

Qdiscs can be set separately for each individual communication link
in the network. Therefore, the traffic between the controllers and OPAL-
RT can be left unaltered, meanwhile the inter-controller traffic can be
shaped to match a certain QoS. For example, in Fig. 2 A1 has one set of
qdiscs to dictate the QoS for the communication link with A2, and a
completely different set for communicating with A3.

Using this approach, a larger range of communication conditions
can be emulated and it makes it possible to assess the minimal re-
quirements of the ICT infrastructure in order to reach a certain per-
formance for a given application.

4. Study case

As a study case, we are going to use the algorithm presented in [48],
where a distributed approach for OPF based secondary control for dc
networks is proposed.

Fig. 4 displays the graph representation of the network under study.
The green nodes correspond to generator buses, meanwhile the red ones
correspond to load buses. The operation of each node is managed by a
local controller which has complete access to local measurements and,
moreover, it is able to communicate with its neighbors. The local
controller also knows the conductance of the adjacent cables to which
the node is connected.

Unlike traditional power systems in which the secondary control is
centralized, in our case, the distributed controller network is in charge
of this task. The local controllers implement a distributed optimization
algorithm based on the alternating direction of multiplier method
(ADMM). The full details of the algorithm can be found in [48].

Due to the number of iterations required for convergence, ADMM is
considered a slow algorithm. However, at the moment, optimization
routines in power systems are performed completely offline, and even
basic secondary control actions involve time-frames in the range of
minutes.

We used the proposed framework in order to obtain practical results
regarding the time-frames that are to be expected from a distributed
OPF approach based on ADMM. As described in the previous section,
the physical system together with the primary control layer were im-
plemented in OPAL-RT. The system is initially modeled using Simulink/
SimPowerSystems components then compiled and executed on the real-
time target with a time step of 100 us. The data exchange between the
data-server and the process of the physical model is triggered every
10ms.

Meanwhile, the secondary controllers were deployed on the RPIs as
Python scripts. Since optimization is required at every iteration of the
ADMM algorithm, every controller requires access to a local solver. In
this regard we used the NLopt non-linear optimization package [49].

C. Gavriluta, et al. Electrical Power and Energy Systems 114 (2020) 105375

5



While NLopt provides several solvers, the one that provided the best
tradeoff between accuracy and performance for our problem was the
COBYLA (constrained optimization by linear approximations) algo-
rithm [50].

4.1. General performance of the framework

We start by providing some general performance metrics for the
proposed framework. The data shown in Fig. 5 was compiled from
several thousands samples, obtained from different operating scenarios.
Firstly, the time it takes for the controllers to access data from the
OPAL-RT (A2O), as can be seen from Fig. 5, is smaller than 3.5ms. This
is the delay between the controller and the data-server that runs on
OPAL-RT. Secondly, there are two time metrics for the RPCs, i.e., the
time it takes for information to flow between controllers. In the first
one, gRPCwired, the controllers communicate over an 100 Mbit ethernet
network, i.e., the RPIs communicate through their wired ethernet card,
and the traffic is not shaped in any way through the TC utility. As can
be seen from Fig. 5, the average round-trip delay in this case is at
around 9ms.

The RPIs are also equipped with 2.4 GHz 802.11n wireless con-
nectivity. When using this link for the inter controller communication, a

considerably larger delay, gRPC 57WIFI ms, is obtained. Also in this
case TC is disabled. However, this large delay is mainly due to the fact
that in our setup all the controllers are connected to the same wireless
access point, which becomes overloaded during peak traffic.

The last metric that we analyzed is the optimization time, i.e., how
long does it take for each controller to solve at each iteration the local
optimization problem. Over the entire fleet, the average time spent in
the optimization routine is 18ms. However, as can be seen from
Fig. 5, there is a large variance around this value. Looking at each node
individually, we see that the ones that are more connected also spend
more time in the optimization routine, e.g., node 6 is the slowest,
spending on average 64ms on this task. This is to be expected, as the
more connected a node is, the larger the size of its local optimization
problem and hence the longer the time required for finding a solution.

4.2. System response to load change

We use this scenario in order to measure the time duration that it
takes for the distributed OPF controller to bring the network to a new
optimal operating point after a change in the load power. All the results
are shown in per unit (p.u.), using 100MW as base value for the power
and 50 kV for the voltage. The network starts in perfect equilibrium at

Fig. 4. Graph representation of the 27 terminals
MTDC system study case. Green represent gen-
erator buses while red nodes represent load buses.
The numbers on the edges represent the con-
ductance of the electrical cables connecting the
buses together. (For interpretation of the references
to colour in this figure legend, the reader is referred
to the web version of this article.)

Fig. 5. Performance metrics of the test system.

C. Gavriluta, et al. Electrical Power and Energy Systems 114 (2020) 105375

6



nominal conditions, with no power flowing through the network. After
approx. 8 s all the loads in the system apply a step change to their
power demand. The amplitude of this power step at each node, together
with the response of the generators, can be seen in Figs. 6 and 7a,b.
Meanwhile, Fig. 7c displays the total system losses.

Both Figs. 6 and 7b show two values for each generator. The first
one is the result of the instantaneous reaction of the primary control
layer, meanwhile, the second is decided by the coordinated action of
the distributed controllers. Since the objective of the implemented al-
gorithm is to reduce the power losses, we can see in Fig. 7c a reduction
of 18.57% of this value.

The results of Fig. 7 present just a static snapshot. However, the
dynamic response of the network provides a better understanding of the
system’s operation. These results are displayed in Fig. 8. Here, we show
the dynamic response of all the generators, together with two of the
loads. We chose not to include the response of all the loads due to space
limitations and to keep the exposition of the results clean and concise.

For our study case, according to [48], 250 iterations should be en-
ough for the ADMM algorithm to converge on this particular problem.
However, in order to allow for some additional headroom we chose to
run it for nit =300 iterations. We selected the stopping criteria based
on the number of iterations because it is simple to implement in prac-
tice. Distributed convergence detection for ADMM and for distributed
algorithms for that matter is a non-trivial task that is outside the scope
of this paper.

Several values are plotted in Fig. 8. The solid black line represents
the measured power Pm, which each controller running on the RPI
obtains from the model of the physical system through the data-server.
The dotted line represents the reference signal P which the controllers
send to the physical system. Meanwhile, the thick colored line re-
presents the internal signal of the distributed OPF algorithm, Padmm.

After a disturbance in the network, the primary control, acting at
the physical level, will react instantaneously. This can be seen in the

sudden change in the generator power around the 8 s mark. Almost at
the same time, the secondary control detects that there is a large dif-
ference between the reference power P and the measured power Pm

and starts a new instance of the optimization algorithm.
Estimating the convergence time Tconv, i.e., how long it will take for

the algorithm to reach a solution, is not a trivial task, as several sources
of uncertainty are present. From Fig. 8 we can see that the algorithm
takes around 62 s to run the 300 iterations. However, this value would
have been hard to predict without running the experiment.

In order to get an idea about the different parameters that impact
Tconv one needs to have an overview of how ADMM operates. Broadly
speaking, in ADMM we have n controllers that operate in parallel. They
all run nit iterations, and at each iteration i every controller k executes
the following steps:

1. Solve the local optimization problem. In terms of timing, this step
takes i

k. This time is not influenced by the communication delays,
but only by the size of the local problem and by the computational
resources available for controller k.

2. Send results to neighbors and wait for results from neighbors. This
step is highly influenced by the communication delays, as well as by
the number of neighbors. We can label this delay as i

k.
3. Correct the local state with the information received from the

neighbors. In terms of timing, this step is negligible, as it only in-
volves some simple linear algebra.

One can express Tconv analytically as shown in (1). However, this is
not really useful. Getting realistic estimates for i

k and i
k and how they

overlap is a challenge, if not impossible. This is why in order to properly
evaluate Tconv one needs to run the algorithm in an environment that
reproduces as close as possible the real field conditions and this is
where the platform that we propose can prove useful.

Fig. 6. Power flow diagram. Two values are
displayed for every generator. The yellow
one represents the power injection after the
action of the primary control, meanwhile,
the green one is the power after the action of
the distributed optimization algorithm. (For
interpretation of the references to colour in
this figure legend, the reader is referred to
the web version of this article.)

Fig. 7. (a) Power step of loads. (b) Generator output after the action of both control layers. (c) Total network losses.

C. Gavriluta, et al. Electrical Power and Energy Systems 114 (2020) 105375

7



= +
=

T max
i

n

k n
i
k

i
k

conv
1 1

it

(1)

One can obtain a rough estimate of Tconv by doing some preliminary
analysis. For example, we know from before that the controller at node
6 is statistically the slowest in solving its local optimization problem,
taking on average 646 ms. Node 6 is also the most connected, having
nneigh

6 =6 neighbors. Therefore, we can expect statistically 6, i.e., the
time that the controller at node 6 takes to exchange information with its
neighbors, to also be the largest.

A rough approximation for k is shown in (2). Here, nmsg represents
the number of messages exchanged with each neighbor in the second
step of the algorithm described above. Meanwhile, Tmsg is the average
communication delay of a message, and n k

neigh is the number of neigh-
bors of node k.

= n n T· ·k k
msg neigh msg (2)

In order to obtain the results of Fig. 8 the 100 Mbit ethernet com-
munication was used. Therefore, taking the average performance for
wired communication from the previous subsection, i.e., Tmsg =9ms,
and using (2) we can obtain a rough estimate for the convergence time
of the algorithm =T 51conv s.

In this particular case, the approximation of 51 s is not too far away
from the actual convergence time of 62 s observed in Fig. 8. However,
the larger the variance in i

k and i
k, the worse will this approximation

be.

4.3. Traffic shaping. PLC-like communication.

In the second study case we run the same scenario as before, only
now, the inter-controller communication traffic is shaped using the
methodology described in Section 3.3 in order to emulate the QoS of
power line communication (PLC).

PLC is a communication method typically used in classical power
systems which uses the electrical cables to also carry data alongside
electric power. PLC has a limited data rate and large latencies.
Therefore, in order to emulate its performance, additional delay was
added for each communication link, as shown in Fig. 9. The delay was
set proportional to the length of the electrical cable over which the
communication is being carried. The mean round-trip latency was se-
lected as 200ms, but as can be seen from Fig. 9 and from the overview

Fig. 8. Large disturbance from nominal condition.

Fig. 9. The numbers on the edges represent the additional latencies in ms added to each communication link in order to emulate a PLC-like communication
infrastructure.

C. Gavriluta, et al. Electrical Power and Energy Systems 114 (2020) 105375

8



shown in Fig. 10b, the actual values go up to 600ms, depending on the
length of the cable.

For simplicity, in our experiments the delay that was added to each
communication link was fixed to the value shown in Fig. 9. However,
NetEm allows for more complex settings. For example, the delay for
each communication link can be specified as a probability distribution.
Support for normal, pareto, and paretonormal are supported by default,
but one can also build custom distributions based on experimental data.
Also, since network delays are not purely random, one can specify the
amount of correlation between the delays of consecutive data packets.
Similarly, one can specify aspects regarding packet loss, duplication,
corruption, and re-ordering. As a result, one can replicate quite accu-
rately the conditions of real communication environments without
having to simulate the entire infrastructure.

As seen from Fig. 10a, in the case of PLC-like latencies, the 300
ADMM iterations take roughly 15min to execute, i.e., 15 times slower
than in the previous case. The only impact of the larger communication
delay on the system is that the distributed algorithm takes longer to find
a solution. Therefore, the physical system will operate for a longer time
with the sub-optimal references dictated by the primary control. For
some applications this is acceptable, but in this case 15min is too long
for the secondary control to take action. Therefore, PLC can not be
considered a suitable choice for this type of application.

4.4. Traffic shaping. GSM-like communication

The two case studies presented before approach two communication
profiles situated at opposite ends in terms of performance. On one hand,
a 100Mbit dedicated local ethernet under which the algorithm con-
verges in 52 s and, on the other-hand, PLC-like communication under
which the algorithm takes around 15min to converge.

In this section we evaluate the algorithm under several GSM-like
profiles and see how it performs with respect to the previous two sce-
narios. Table 1 shows the delays in ms added for each communication
link in our network. The table contains five profiles. Three of them
correspond to HSPA (the underlying data-protocol used in 3G) under
low, medium, and high traffic conditions and two of them to LTE (the
data-protocol used in 4G) under low and high traffic conditions. The
data for the communication profiles was compiled using the approach
shown in [51].

We ran the algorithm for each of the 5 additional cases and we
reported the time it takes for it to converge. This time can be seen in the
last line of Tabel 1, shown in seconds. As can be seen, high traffic se-
verely impacts the performance of HSPA. In this case it takes the con-
trollers 25min to find a solution, which is even worse than the results
obtained with PLC.

On the other end of the spectrum, in a lightly loaded LTE scenario,
the solution is reached in less than 3min. Also for the other cases the
convergence time is between 3 and 5min. We consider these time
frames to be more than reasonable for our study case, given that at the

moment, secondary controllers in electrical grids are activated 15min
after the primary controllers take action.

5. Discussion and conclusions

As mentioned in the introduction, at the moment there are no
readily available tools for evaluating the performance and behavior of
distributed control systems in real-life scenarios. While the proposed
framework extends the available options in this regard, it does have its

Fig. 10. (a) Large disturbance from nominal condition using PLC for inter-agent communication. (b) PLC latencies.

Table 1
Communication delays used in order to emulate GSM-like traffic. The last line
in the table shows the convergence time of the algorithm for each scenario.

Communication Link HSPA delays [ms] LTE delays [ms]

Node A Node B Low Med. High Low High

1 2 7.8 13.4 71.2 6.6 10.8
1 3 19.5 33.4 177.9 16.6 26.9
2 4 23.3 40.1 213.5 19.9 32.3
3 4 3.9 6.7 35.6 3.3 5.4
2 7 38.9 66.8 355.8 33.2 53.9
2 6 23.3 40.1 213.5 19.9 32.3
4 6 3.9 6.7 35.6 3.3 5.4
6 7 11.7 20.0 106.7 10.0 16.2
6 8 3.9 6.7 35.6 3.3 5.4
6 10 11.7 20.0 106.7 10.0 16.2
6 28 7.8 13.4 71.2 6.6 10.8
4 12 11.7 20.0 106.7 10.0 16.2
8 28 23.3 40.1 213.5 19.9 32.3
12 13 27.2 46.7 249.1 23.3 37.7
12 14 46.7 80.1 427.0 39.9 64.6
12 15 27.2 46.7 249.1 23.3 37.7
12 16 35.0 60.1 320.2 29.9 48.5
14 15 85.6 146.9 782.8 73.1 118.5
16 17 31.1 53.4 284.7 26.6 43.1
15 18 42.8 73.4 391.4 36.6 59.2
18 19 23.3 40.1 213.5 19.9 32.3
19 20 11.7 20.0 106.7 10.0 16.2
10 20 35.0 60.1 320.2 29.9 48.5
10 17 11.7 20.0 106.7 10.0 16.2
10 21 11.7 20.0 106.7 10.0 16.2
10 22 27.2 46.7 249.1 23.3 37.7
21 22 3.9 6.7 35.6 3.3 5.4
15 23 38.9 66.8 355.8 33.2 53.9
22 24 46.7 80.1 427.0 39.9 64.6
23 24 50.6 86.8 462.6 43.2 70.0
24 25 73.9 126.9 676.1 63.1 102.3
25 26 97.3 166.9 889.6 83.1 134.6
25 27 42.8 73.4 391.4 36.6 59.2
28 27 11.7 20.0 106.7 10.0 16.2
27 29 85.6 146.9 782.8 73.1 118.5
27 30 124.5 213.7 1138.7 106.3 172.3
29 30 93.4 160.2 854.0 79.8 129.2

Tconv [s] 191.19 305.13 1485.92 167.81 252.89

C. Gavriluta, et al. Electrical Power and Energy Systems 114 (2020) 105375

9



shortcomings. In the following paragraphs we discuss its applicability
as well as possible bottlenecks and limitations.

The first obvious limitation is imposed by the interface between the
controllers and OPAL-RT. As mentioned earlier, the data server in-
troduces a 14ms delay between the physical signals and the measured
signals at the controller level. Even with additional optimization, it is
highly unlikely that this delay can be decreased below the ms range for
large scale systems. Therefore, this solution cannot be applied for in-
vestigating fast primary controllers, such as current or voltage loops.

Another observation that needs to be made is regarding scalability.
From this point of view, the proposed solution is rather flexible; adding
new controllers or expanding the physical system requires little effort.
The main limitation in this case is the computation power of the real-
time simulator. However, we expect scenarios similar to the one shown
in Section 4 to scale without problems up to a few hundreds of con-
trollers.

At the communication layer, the proposed solution is able to emu-
late delays, packet losses and corruption, as well as reduced bandwidth,
which are all important aspects when evaluating performance of net-
worked controllers. However, at the moment, it does not include a
detailed model of the communication system, the used protocols, or the
data models. Therefore, it is not suitable for investigating cyber-security
aspects or ICT infrastructure related questions. However, this can also
be seen as a feature of our system. As shown by the study cases pre-
sented in the paper, our approach allows direct experimentation with
various communication profiles and quality of service, without needing
a detailed model of the entire ICT network and without other additional
communication emulation software or hardware.

From the perspective of potential use-cases, the proposed frame-
work was designed for evaluating applications that involve swarms of
controllers involved in secondary control tasks such as energy man-
agement, online optimization, state estimation, congestion manage-
ment, coordination of virtual power plants, etc. Use cases typical to
agent based systems, such as plug and play or self-reconfiguration can
easily be implemented. One can obtain a real assessment of the beha-
vior of the algorithms, as well as minimum requirements in terms of
QoS in order to achieve a certain imposed performance.

The proposed approach extends the way in which real-time simu-
lators are used in the validation of smart-grid applications, i.e., from the
already standard approaches of PHIL and CIL to fleet of distributed
controllers in the loop. Since both the ICT network and the physical
system operate in real-time, our approach avoids all the overhead re-
lated to synchronization that a simulation or a co-simulation approach
would require.

References

[1] Kraning M, Chu E, Lavaei J, Boyd S. Dynamic network energy management via
proximal message passing. Found Trends Optim 2014;1(2):70–122. https://doi.org/
10.1561/2400000002.

[2] Meng L, Dragicevic T, Guerrero JM, Vasquez JC. Dynamic consensus algorithm
based distributed global efficiency optimization of a droop controlled DC microgrid.
2014 IEEE international energy conference (ENERGYCON) 2014. p. 1276–83.
https://doi.org/10.1109/ENERGYCON.2014.6850587.

[3] Nasirian V, Moayedi S, Davoudi A, Lewis FL. Distributed cooperative control of DC
microgrids. IEEE Trans Power Electron 2015;30(4):2288–303. https://doi.org/10.
1109/TPEL.2014.2324579.

[4] Shafiee Q, Guerrero JM, Vasquez JC. Distributed secondary control for islanded
microgrids - a novel approach. IEEE Trans Power Electron 2014;29(2):1018–31.
https://doi.org/10.1109/TPEL.2013.2259506.

[5] Sun Q, Han R, Zhang H, Zhou J, Guerrero JM. A multiagent-based consensus al-
gorithm for distributed coordinated control of distributed generators in the energy
internet. IEEE Trans Smart Grid 2015;6(6):3006–19. https://doi.org/10.1109/TSG.
2015.2412779.

[6] Dorfler F, Simpson-Porco JW, Bullo F. Plug-and-play control and optimization in
microgrids. 53rd IEEE conference on decision and control 2014. p. 211–6. https://
doi.org/10.1109/CDC.2014.7039383.

[7] Riverso S, Sarzo F, Ferrari-Trecate G. Plug-and-play voltage and frequency control
of islanded microgrids with meshed topology. IEEE Trans Smart Grid
2015;6(3):1176–84. https://doi.org/10.1109/TSG.2014.2381093.

[8] Luo F, Chen Y, Xu Z, Liang G, Zheng Y, Qiu J. Multi-agent based cooperative control

framework for microgrids’ energy imbalance. IEEE Trans Indust Inform 2016;PP
(99):1. https://doi.org/10.1109/TII.2016.2591918.

[9] Meng L, Dragicevic T, Roldan-Perez J, Vasquez JC, Guerrero JM. Modeling and
sensitivity study of consensus algorithm-based distributed hierarchical control for
dc microgrids. IEEE Trans Smart Grid 2016;7(3):1504–15. https://doi.org/10.
1109/TSG.2015.2422714.

[10] Zhang Y, Hong M, Dall’Anese E, Dhople S, Xu Z. Distributed controllers seeking AC
optimal power flow solutions using ADMM. IEEE Trans Smart Grid 2017;PP(99):1.
https://doi.org/10.1109/TSG.2017.2662639.

[11] Vinot B, Cadoux F, Héliot R. Decentralized optimization of energy exchanges in an
electricity microgrid. In: 2016 IEEE PES innovative smart grid technologies con-
ference Europe (ISGT-Europe); 2016. p. 1–6. https://doi.org/10.1109/ISGTEurope.
2016.7856319.

[12] Nunna HSVSK, Srinivasan D. Multi-agent based transactive energy framework for
distribution systems with smart microgrids. IEEE Trans Indust Inform 2017;PP
(99):1. https://doi.org/10.1109/TII.2017.2679808.

[13] Müller SC, Häger U, Rehtanz C. A multiagent system for adaptive power flow
control in electrical transmission systems. IEEE Trans Indust Inform
2014;10(4):2290–9. https://doi.org/10.1109/TII.2014.2315499.

[14] Georg H, Müller SC, Rehtanz C, Wietfeld C. Analyzing cyber-physical energy sys-
tems: the INSPIRE cosimulation of power and ICT systems using HLA. IEEE Trans
Indust Inform 2014;10(4):2364–73. https://doi.org/10.1109/TII.2014.2332097.

[15] Adhikari U, Morris T, Pan S. WAMS cyber-physical test bed for power system, cy-
bersecurity study, and data mining. IEEE Trans Smart Grid 2016;PP(99):1. https://
doi.org/10.1109/TSG.2016.2537210.

[16] Schutte S, Scherfke S, Troschel M. Mosaik: a framework for modular simulation of
active components in smart grids. 2011 IEEE first international workshop on smart
grid modeling and simulation (SGMS) 2011. p. 55–60. https://doi.org/10.1109/
SGMS.2011.6089027.

[17] Offis mosaik. <https://mosaik.offis.de/> [accessed: 2018-11-09].
[18] Faschang M, Kupzog F, Mosshammer R, Einfalt A. Rapid control prototyping plat-

form for networked smart grid systems. IECON 2013-39th annual conference of the
IEEE industrial electronics society 2013. p. 8172–6. https://doi.org/10.1109/
IECON.2013.6700500.

[19] Ait lablink. <https://www.ait.ac.at/en/research-fields/smart-grids/network-
operators-and-energy-service-providers/ait-lablink/> [accessed: 2018-11-09].

[20] Vogt M, Marten F, Lower L, Horst D, Brauns K, Fetzer D, et al. Evaluation of in-
teractions between multiple grid operators based on sparse grid knowledge in
context of a smart grid co-simulation environment. 2015 IEEE Eindhoven
PowerTech 2015. p. 1–6. https://doi.org/10.1109/PTC.2015.7232781.

[21] Fraunhofer iee opsim. <https://www.iee.fraunhofer.de/en/schnelleinstieg-
wirtschaft/themen/opsim-homepage.html> [accessed: 2018-11-09].

[22] Vogel S, Mirz M, Razik L, Monti A. An open solution for next-generation real-time
power system simulation. 2017 IEEE conference on energy internet and energy
system integration, (EI2) 2017. p. 1–6. https://doi.org/10.1109/EI2.2017.
8245739.

[23] Villas modular co-simulation framework. <https://villas.fein-aachen.org/doc/
index.html> [accessed: 2018-11-09].

[24] Stevic M, Estebsari A, Vogel S, Pons E, Bompard E, Masera M, et al. Multi-site
european framework for real-time co-simulation of power systems. IET Gener,
Transmiss Distrib 2017;11(17):4126–35. https://doi.org/10.1049/iet-gtd.2016.
1576.

[25] Monti A, Stevic M, Vogel S, Doncker RWD, Bompard E, Estebsari A, et al. A global
real-time superlab: enabling high penetration of power electronics in the electric
grid. IEEE Power Electron Magaz 2018;5(3):35–44. https://doi.org/10.1109/MPEL.
2018.2850698.

[26] Bottaccioli L, Estebsari A, Pons E, Bompard E, Macii E, Patti E, et al. A flexible
distributed infrastructure for real-time co-simulations in smart grids. IEEE Trans
Indust Inform 2017;PP(99):1. https://doi.org/10.1109/TII.2017.2702206.

[27] Palensky P, van der Meer A, Lopez C, Joseph A, Pan K. Applied cosimulation of
intelligent power systems: implementing hybrid simulators for complex power
systems. IEEE Indust Electron Magaz 2017;11(2):6–21. https://doi.org/10.1109/
MIE.2017.2671198.

[28] Gungor VC, Sahin D, Kocak T, Ergut S, Buccella C, Cecati C, et al. A survey on smart
grid potential applications and communication requirements. IEEE Trans Indust
Inform 2013;9(1):28–42. https://doi.org/10.1109/TII.2012.2218253.

[29] XMPP, Uses of XMPP; 2017. <https://xmpp.org/uses/>.
[30] Saint-Andre P, Smith K, Tronçon R, Troncon R. XMPP: the definitive guide. O’Reilly

Media Inc; 2009.
[31] Steffen F, Rainer F, Henry D, Thierry D. Decentralized energy in the smart energy

grid and smart market - how to master reliable and secure control. Int J Adv Intell
Syst, vol. 9, 1–2.

[32] Veichtlbauer A, Parfant M, Langthaler O, Andrén FP, Strasser T. Evaluating XMPP
Communication in IEC 61499-based distributed energy applications arXiv:1705.
05367, https://doi.org/10.1109/ETFA.2016.7733744. http://arxiv.org/abs/1705.
05367.

[33] Lampkin V, Leong WT, Olivera L, Rawat S, Subrahmanyam N, Xiang R, et al.
Building smarter planet solutions with mqtt and ibm websphere mq telemetry. IBM
Redbooks 2012.

[34] Pai V. gRPC design and implementation; 2016. <http://platformlab.stanford.edu/
SeminarTalks/gRPC.pdf>.

[35] Apache/Thrift, Thrift network stack. <https://thrift.apache.org/docs/concepts>.
[36] TILab. JAVA Agent DEvelopment Framework; 2000. <http://jade.tilab.com>.
[37] Kuntschke R, Specht M, van Amelsvoort M, Wagler M, Winter M, Witzmann R.

Economic optimization in virtual power plants vs. stable grid operation–bridging
the gap. In: 2015 IEEE 20th conference on emerging technologies & factory

C. Gavriluta, et al. Electrical Power and Energy Systems 114 (2020) 105375

10

https://doi.org/10.1561/2400000002
https://doi.org/10.1561/2400000002
https://doi.org/10.1109/ENERGYCON.2014.6850587
https://doi.org/10.1109/TPEL.2014.2324579
https://doi.org/10.1109/TPEL.2014.2324579
https://doi.org/10.1109/TPEL.2013.2259506
https://doi.org/10.1109/TSG.2015.2412779
https://doi.org/10.1109/TSG.2015.2412779
https://doi.org/10.1109/CDC.2014.7039383
https://doi.org/10.1109/CDC.2014.7039383
https://doi.org/10.1109/TSG.2014.2381093
https://doi.org/10.1109/TII.2016.2591918
https://doi.org/10.1109/TSG.2015.2422714
https://doi.org/10.1109/TSG.2015.2422714
https://doi.org/10.1109/TSG.2017.2662639
https://doi.org/10.1109/ISGTEurope.2016.7856319
https://doi.org/10.1109/ISGTEurope.2016.7856319
https://doi.org/10.1109/TII.2017.2679808
https://doi.org/10.1109/TII.2014.2315499
https://doi.org/10.1109/TII.2014.2332097
https://doi.org/10.1109/TSG.2016.2537210
https://doi.org/10.1109/TSG.2016.2537210
https://doi.org/10.1109/SGMS.2011.6089027
https://doi.org/10.1109/SGMS.2011.6089027
https://mosaik.offis.de/
https://doi.org/10.1109/IECON.2013.6700500
https://doi.org/10.1109/IECON.2013.6700500
https://www.ait.ac.at/en/research-fields/smart-grids/network-operators-and-energy-service-providers/ait-lablink/
https://www.ait.ac.at/en/research-fields/smart-grids/network-operators-and-energy-service-providers/ait-lablink/
https://doi.org/10.1109/PTC.2015.7232781
https://www.iee.fraunhofer.de/en/schnelleinstieg-wirtschaft/themen/opsim-homepage.html
https://www.iee.fraunhofer.de/en/schnelleinstieg-wirtschaft/themen/opsim-homepage.html
https://doi.org/10.1109/EI2.2017.8245739
https://doi.org/10.1109/EI2.2017.8245739
https://villas.fein-aachen.org/doc/index.html
https://villas.fein-aachen.org/doc/index.html
https://doi.org/10.1049/iet-gtd.2016.1576
https://doi.org/10.1049/iet-gtd.2016.1576
https://doi.org/10.1109/MPEL.2018.2850698
https://doi.org/10.1109/MPEL.2018.2850698
https://doi.org/10.1109/TII.2017.2702206
https://doi.org/10.1109/MIE.2017.2671198
https://doi.org/10.1109/MIE.2017.2671198
https://doi.org/10.1109/TII.2012.2218253
https://xmpp.org/uses/
http://refhub.elsevier.com/S0142-0615(18)31874-X/h0150
http://refhub.elsevier.com/S0142-0615(18)31874-X/h0150
https://doi.org/10.1109/ETFA.2016.7733744
http://refhub.elsevier.com/S0142-0615(18)31874-X/h0165
http://refhub.elsevier.com/S0142-0615(18)31874-X/h0165
http://refhub.elsevier.com/S0142-0615(18)31874-X/h0165
http://platformlab.stanford.edu/SeminarTalks/gRPC.pdf
http://platformlab.stanford.edu/SeminarTalks/gRPC.pdf
https://thrift.apache.org/docs/concepts
http://jade.tilab.com


automation; 2015. p. 1–5. https://doi.org/10.1109/ETFA.2015.7301567.
[38] Pedersen AB, Hauksson EB, Andersen PB, Poulsen B, Traeholt C, Gantenbein D.

Facilitating a generic communication interface to distributed energy resources:
mapping IEC 61850 to RESTful Services. 2010 First IEEE international conference
on smart grid communications 2010. p. 61–6. https://doi.org/10.1109/
SMARTGRID.2010.5622020.

[39] Zillgith M. Open source libraries for IEC 61850 and IEC 60870-5-104; 2017.
<http://libiec61850.com/>.

[40] Fraunhofer-ISE, OpenIEC61850; 2017. <https://www.openmuc.org/iec-61850/>.
[41] Scalable clusters make hpc r&d easy as raspberry pi. <https://www.lanl.gov/

discover/news-release-archive/2017/November/1113-raspberry-pi.php> [ac-
cessed: 2018-11-09].

[42] Omnet++ discrete event simulator. <https://omnetpp.org/> [accessed: 2018-
06-13].

[43] Gns3 – the software that empowers network professionals. <https://www.gns3.
com/> [accessed: 2018-06-13].

[44] Common open research emulator (core). <https://www.nrl.navy.mil/itd/ncs/
products/core> [accessed: 2018-06-13].

[45] Netem. <https://wiki.linuxfoundation.org/networking/netem> [accessed: 2018-

06-13].
[46] Introduction to linux traffic control. <http://tldp.org/HOWTO/Traffic-Control-

HOWTO/intro.html> [accessed: 2018-06-13].
[47] Facebook, Augmented traffic control: a tool to simulate network conditions.

<https://github.com/facebook/augmented-traffic-control>.
[48] Gavriluta C, CAIRE R, Gomez-Exposito A, Hadjsaid N. A distributed approach for

OPF-based secondary control of MTDC systems. IEEE Trans Smart Grid 2016;PP
(99):1. https://doi.org/10.1109/TSG.2016.2621775.

[49] Johnson SG. The NLopt nonlinear-optimization package. <http://ab-initio.mit.
edu/nlopt>.

[50] Powell MJD. A direct search optimization method that models the objective and
constraint functions by linear interpolation. Advances in optimization and numer-
ical analysis. Springer; 1994. p. 51–67.

[51] Domenico AD, Gavriluta C, Mendil M, Heiries V, Caire R, Hadjsaid N.
Communication network assessment for distributed smart grid applications. 2017
XXXIInd general assembly and scientific symposium of the international Union of
Radio Science (URSI GASS) 2017. p. 1–4. https://doi.org/10.23919/URSIGASS.
2017.8104962.

C. Gavriluta, et al. Electrical Power and Energy Systems 114 (2020) 105375

11

https://doi.org/10.1109/ETFA.2015.7301567
https://doi.org/10.1109/SMARTGRID.2010.5622020
https://doi.org/10.1109/SMARTGRID.2010.5622020
http://libiec61850.com/
https://www.openmuc.org/iec-61850/
https://www.lanl.gov/discover/news-release-archive/2017/November/1113-raspberry-pi.php
https://www.lanl.gov/discover/news-release-archive/2017/November/1113-raspberry-pi.php
https://omnetpp.org/
https://www.gns3.com/
https://www.gns3.com/
https://www.nrl.navy.mil/itd/ncs/products/core
https://www.nrl.navy.mil/itd/ncs/products/core
https://wiki.linuxfoundation.org/networking/netem
http://tldp.org/HOWTO/Traffic-Control-HOWTO/intro.html
http://tldp.org/HOWTO/Traffic-Control-HOWTO/intro.html
https://github.com/facebook/augmented-traffic-control
https://doi.org/10.1109/TSG.2016.2621775
http://ab-initio.mit.edu/nlopt
http://ab-initio.mit.edu/nlopt
http://refhub.elsevier.com/S0142-0615(18)31874-X/h0250
http://refhub.elsevier.com/S0142-0615(18)31874-X/h0250
http://refhub.elsevier.com/S0142-0615(18)31874-X/h0250
https://doi.org/10.23919/URSIGASS.2017.8104962
https://doi.org/10.23919/URSIGASS.2017.8104962

	Cyber-physical framework for emulating distributed control systems in smart grids
	Introduction
	Overview of relevant ICT concepts
	IP application layer protocols
	XMPP
	MQTT
	HTTP

	Remote Procedure Calls (RPCs)
	JADE and FIPA-ACL
	IEC 61850

	Proposed framework for evaluating distributed power system applications
	Physical system
	Distributed computation system
	Communication network

	Study case
	General performance of the framework
	System response to load change
	Traffic shaping. PLC-like communication.
	Traffic shaping. GSM-like communication

	Discussion and conclusions
	References




