427 research outputs found

    CHORUS Deliverable 2.2: Second report - identification of multi-disciplinary key issues for gap analysis toward EU multimedia search engines roadmap

    Get PDF
    After addressing the state-of-the-art during the first year of Chorus and establishing the existing landscape in multimedia search engines, we have identified and analyzed gaps within European research effort during our second year. In this period we focused on three directions, notably technological issues, user-centred issues and use-cases and socio- economic and legal aspects. These were assessed by two central studies: firstly, a concerted vision of functional breakdown of generic multimedia search engine, and secondly, a representative use-cases descriptions with the related discussion on requirement for technological challenges. Both studies have been carried out in cooperation and consultation with the community at large through EC concertation meetings (multimedia search engines cluster), several meetings with our Think-Tank, presentations in international conferences, and surveys addressed to EU projects coordinators as well as National initiatives coordinators. Based on the obtained feedback we identified two types of gaps, namely core technological gaps that involve research challenges, and “enablers”, which are not necessarily technical research challenges, but have impact on innovation progress. New socio-economic trends are presented as well as emerging legal challenges

    Efficient Location Privacy In Mobile Applications

    Full text link
    Location awareness is an essential part of today\u27s mobile devices. It is a well-established technology that offers significant benefits to mobile users. While location awareness has triggered the exponential growth of mobile computing, it has also introduced new privacy threats due to frequent location disclosures. Movement patterns could be used to identify individuals and also leak sensitive information about them, such as health condition, lifestyle, political/religious affiliations, etc. In this dissertation we address location privacy in the context of mobile applications. First we look into location privacy in the context of Dynamic Spectrum Access (DSA) technology. DSA is a promising framework for mitigating the spectrum shortage caused by fixed spectrum allocation policies. In particular, DSA allows license-exempt users to access the licensed spectrum bands when not in use by their respective owners. Here, we focus on the database-driven DSA model, where mobile users issue location-based queries to a white-space database in order to identify idle channels in their area. We present a number of efficient protocols that allow users to retrieve channel availability information from the white-space database while maintaining their location secret. In the second part of the dissertation we look into location privacy in the context of location-aware mobile advertising. Location-aware mobile advertising is expanding very rapidly and is forecast to grow much faster than any other industry in the digital era. Unfortunately, with the rise and expansion of online behavioral advertising, consumers have grown very skeptical of the vast amount of data that is extracted and mined from advertisers today. As a result, the consensus has shifted towards stricter privacy requirements. Clearly, there exists an innate conflict between privacy and advertisement, yet existing advertising practices rely heavily on non-disclosure agreements and policy enforcement rather than computational privacy guarantees. In the second half of this dissertation, we present a novel privacy-preserving location-aware mobile advertisement framework that is built with privacy in mind from the ground up. The framework consists of several methods which ease the tension that exists between privacy and advertising by guaranteeing, through cryptographic constructions, that (i) mobile users receive advertisements relative to their location and interests in a privacy-preserving manner, and (ii) the advertisement network can only compute aggregate statistics of ad impressions and click-through-rates. Through extensive experimentation, we show that our methods are efficient in terms of both computational and communication cost, especially at the client side

    Trust-aware information retrieval in peer-to-peer environments

    Get PDF
    Information Retrieval in P2P environments (P2PIR) has become an active field of research due to the observation that P2P architectures have the potential to become as appealing as traditional centralised architectures. P2P networks are formed with voluntary peers that exchange information and accomplish various tasks. Some of them may be malicious peers spreading untrustworthy resources. However, existing P2PIR systems only focus on finding relevant documents, while trustworthiness of documents and document providers has been ignored. Without prior experience and knowledge about the network, users run the risk to review,download and use untrustworthy documents, even if these documents are relevant. The work presented in this dissertation provide the first integrated framework for trust-aware Information Retrieval in P2P environments, which can retrieve not only relevant but also trustworthy documents. The proposed content trust models extend an existing P2P trust management system, PeerTrust, in the context of P2PIR to compute the trust values of documents and document providers for given queries. A method is proposed to estimate global term statistics which are integrated with existing relevance-based approaches for document ranking and peer selection. Different approaches are explored to find optimal parametersettings in the proposed trust-aware P2PIR systems. Moreover, system architectures and data management protocols are designed to implement the proposed trust-aware P2PIR systems in structured P2P networks. The experimental evaluation demonstrates that P2PIR can benefit from trust-aware P2PIR systems significantly. It can importantly reduce the possibility of untrustworthy documents in the top-ranked result list. The proposed estimated global term statistics can provide acceptable and competitive retrieval accuracy within different P2PIR scenarios.EThOS - Electronic Theses Online ServiceORSSchool ScholarshipGBUnited Kingdo

    Lifecycle-Support in Architectures for Ontology-Based Information Systems

    Get PDF
    Ontology-based applications play an increasingly important role in the public and corporate Semantic Web. While today there exist a range of tools and technologies to support specific ontology engineering and management activities, architectural design guidelines for building ontology-based applications are missing. In this paper, we present an architecture for ontology-based applications—covering the complete ontology-lifecycle—that is intended to support software engineers in designing and developing ontology based-applications. We illustrate the use of the architecture in a concrete case study using the NeOn toolkit as one implementation of the architecture

    Applying trust metrics based on user interactions to recommendation in social networks

    Get PDF
    Recommender systems have been strongly researched within the last decade. With the arising and popularization of digital social networks a new field has been opened for social recommendations. Considering the network topology, users interactions, or estimating trust between users are some of the new strategies that recommender systems can take into account in order to adapt their techniques to these new scenarios. We introduce MarkovTrust, a way to infer trust from Twitter interactions and to compute trust between distant users. MarkovTrust is based on Markov chains, which makes it simple to be implemented and computationally efficient. We study the properties of this trust metric and study its application in a recommender system of tweets.Postprint (published version

    Applying Trust Metrics Based on User Interactions to Recommendation in Social Networks

    Full text link

    Context-Aware Recommendation Systems in Mobile Environments

    Get PDF
    Nowadays, the huge amount of information available may easily overwhelm users when they need to take a decision that involves choosing among several options. As a solution to this problem, Recommendation Systems (RS) have emerged to offer relevant items to users. The main goal of these systems is to recommend certain items based on user preferences. Unfortunately, traditional recommendation systems do not consider the user’s context as an important dimension to ensure high-quality recommendations. Motivated by the need to incorporate contextual information during the recommendation process, Context-Aware Recommendation Systems (CARS) have emerged. However, these recent recommendation systems are not designed with mobile users in mind, where the context and the movements of the users and items may be important factors to consider when deciding which items should be recommended. Therefore, context-aware recommendation models should be able to effectively and efficiently exploit the dynamic context of the mobile user in order to offer her/him suitable recommendations and keep them up-to-date.The research area of this thesis belongs to the fields of context-aware recommendation systems and mobile computing. We focus on the following scientific problem: how could we facilitate the development of context-aware recommendation systems in mobile environments to provide users with relevant recommendations? This work is motivated by the lack of generic and flexible context-aware recommendation frameworks that consider aspects related to mobile users and mobile computing. In order to solve the identified problem, we pursue the following general goal: the design and implementation of a context-aware recommendation framework for mobile computing environments that facilitates the development of context-aware recommendation applications for mobile users. In the thesis, we contribute to bridge the gap not only between recommendation systems and context-aware computing, but also between CARS and mobile computing.<br /

    Exploiting Context-Dependent Quality Metadata for Linked Data Source Selection

    Get PDF
    The traditional Web is evolving into the Web of Data which consists of huge collections of structured data over poorly controlled distributed data sources. Live queries are needed to get current information out of this global data space. In live query processing, source selection deserves attention since it allows us to identify the sources which might likely contain the relevant data. The thesis proposes a source selection technique in the context of live query processing on Linked Open Data, which takes into account the context of the request and the quality of data contained in the sources to enhance the relevance (since the context enables a better interpretation of the request) and the quality of the answers (which will be obtained by processing the request on the selected sources). Specifically, the thesis proposes an extension of the QTree indexing structure that had been proposed as a data summary to support source selection based on source content, to take into account quality and contextual information. With reference to a specific case study, the thesis also contributes an approach, relying on the Luzzu framework, to assess the quality of a source with respect to for a given context (according to different quality dimensions). An experimental evaluation of the proposed techniques is also provide

    A COGNITIVE ARCHITECTURE FOR AMBIENT INTELLIGENCE

    Get PDF
    L’Ambient Intelligence (AmI) Ăš caratterizzata dall’uso di sistemi pervasivi per monitorare l’ambiente e modificarlo secondo le esigenze degli utenti e rispettando vincoli definiti globalmente. Questi sistemi non possono prescindere da requisiti come la scalabilitĂ  e la trasparenza per l’utente. Una tecnologia che consente di raggiungere questi obiettivi Ăš rappresentata dalle reti di sensori wireless (WSN), caratterizzate da bassi costi e bassa intrusivitĂ . Tuttavia, sebbene in grado di effettuare elaborazioni a bordo dei singoli nodi, le WSN non hanno da sole le capacitĂ  di elaborazione necessarie a supportare un sistema intelligente; d’altra parte senza questa attivitĂ  di pre-elaborazione la mole di dati sensoriali puĂČ facilmente sopraffare un sistema centralizzato con un’eccessiva quantitĂ  di dettagli superflui. Questo lavoro presenta un’architettura cognitiva in grado di percepire e controllare l’ambiente di cui fa parte, basata su un nuovo approccio per l’estrazione di conoscenza a partire dai dati grezzi, attraverso livelli crescenti di astrazione. Le WSN sono utilizzate come strumento sensoriale pervasivo, le cui capacitĂ  computazionali vengono utilizzate per pre-elaborare i dati rilevati, in modo da consentire ad un sistema centralizzato intelligente di effettuare ragionamenti di alto livello. L’architettura proposta Ăš stata utilizzata per sviluppare un testbed dotato degli strumenti hardware e software necessari allo sviluppo e alla gestione di applicazioni di AmI basate su WSN, il cui obiettivo principale sia il risparmio energetico. Per fare in modo che le applicazioni di AmI siano in grado di comunicare con il mondo esterno in maniera affidabile, per richiedere servizi ad agenti esterni, l’architettura Ăš stata arricchita con un protocollo di gestione distribuita della reputazione. È stata inoltre sviluppata un’applicazione di esempio che sfrutta le caratteristiche del testbed, con l’obiettivo di controllare la temperatura in un ambiente lavorativo. Quest’applicazione rileva la presenza dell’utente attraverso un modulo per la fusione di dati multi-sensoriali basato su reti bayesiane, e sfrutta questa informazione in un controllore fuzzy multi-obiettivo che controlla gli attuatori sulla base delle preferenze dell’utente e del risparmio energetico.Ambient Intelligence (AmI) systems are characterized by the use of pervasive equipments for monitoring and modifying the environment according to users’ needs, and to globally defined constraints. Furthermore, such systems cannot ignore requirements about ubiquity, scalability, and transparency to the user. An enabling technology capable of accomplishing these goals is represented by Wireless Sensor Networks (WSNs), characterized by low-costs and unintrusiveness. However, although provided of in-network processing capabilities, WSNs do not exhibit processing features able to support comprehensive intelligent systems; on the other hand, without this pre-processing activities the wealth of sensory data may easily overwhelm a centralized AmI system, clogging it with superfluous details. This work proposes a cognitive architecture able to perceive, decide upon, and control the environment of which the system is part, based on a new approach to knowledge extraction from raw data, that addresses this issue at different abstraction levels. WSNs are used as the pervasive sensory tool, and their computational capabilities are exploited to remotely perform preliminary data processing. A central intelligent unit subsequently extracts higher-level concepts in order to carry on symbolic reasoning. The aim of the reasoning is to plan a sequence of actions that will lead the environment to a state as close as possible to the users’ desires, taking into account both implicit and explicit feedbacks from the users, while considering global system-driven goals, such as energy saving. The proposed conceptual architecture was exploited to develop a testbed providing the hardware and software tools for the development and management of AmI applications based on WSNs, whose main goal is energy saving for global sustainability. In order to make the AmI system able to communicate with the external world in a reliable way, when some services are required to external agents, the architecture was enriched with a distributed reputation management protocol. A sample application exploiting the testbed features was implemented for addressing temperature control in a work environment. Knowledge about the user’s presence is obtained through a multi-sensor data fusion module based on Bayesian networks, and this information is exploited by a multi-objective fuzzy controller that operates on actuators taking into account users’ preference and energy consumption constraints
    • 

    corecore