84 research outputs found

    Event-based Access to Historical Italian War Memoirs

    Full text link
    The progressive digitization of historical archives provides new, often domain specific, textual resources that report on facts and events which have happened in the past; among these, memoirs are a very common type of primary source. In this paper, we present an approach for extracting information from Italian historical war memoirs and turning it into structured knowledge. This is based on the semantic notions of events, participants and roles. We evaluate quantitatively each of the key-steps of our approach and provide a graph-based representation of the extracted knowledge, which allows to move between a Close and a Distant Reading of the collection.Comment: 23 pages, 6 figure

    Learning Sets with Separating Kernels

    Full text link
    We consider the problem of learning a set from random samples. We show how relevant geometric and topological properties of a set can be studied analytically using concepts from the theory of reproducing kernel Hilbert spaces. A new kind of reproducing kernel, that we call separating kernel, plays a crucial role in our study and is analyzed in detail. We prove a new analytic characterization of the support of a distribution, that naturally leads to a family of provably consistent regularized learning algorithms and we discuss the stability of these methods with respect to random sampling. Numerical experiments show that the approach is competitive, and often better, than other state of the art techniques.Comment: final versio

    Chanalyzer : a computational geometry approach for the analysis of protein channel shape and dynamics

    Get PDF
    Morphological analysis of protein channels is a key step for a thorough understanding of their biological function and mechanism. In this respect, molecular dynamics (MD) is a very powerful tool, enabling the description of relevant biological events at the atomic level, which might elude experimental observations, and pointing to the molecular determinants thereof. In this work, we present a computational geometry-based approach for the characterization of the shape and dynamics of biological ion channels or pores to be used in combination with MD trajectories. This technique relies on the earliest works of Edelsbrunner and on the NanoShaper software, which makes use of the alpha shape theory to build the solvent-excluded surface of a molecular system in an aqueous solution. In this framework, a channel can be simply defined as a cavity with two entrances on the opposite sides of a molecule. Morphological characterization, which includes identification of the main axis, the corresponding local radius, and the detailed description of the global shape of the cavity, is integrated with a physico-chemical description of the surface facing the pore lumen. Remarkably, the possible existence or temporary appearance of fenestrations from the channel interior towards the outer lipid matrix is also accounted for. As a test case, we applied the present approach to the analysis of an engineered protein channel, the mechanosensitive channel of large conductance

    SfM-based method to assess gorgonian forests (Paramuricea clavata (Cnidaria, Octocorallia))

    Get PDF
    Animal forests promote marine habitats morphological complexity and functioning. The red gorgonian, Paramuricea clavata, is a key structuring species of the Mediterranean coralligenous habitat and an indicator species of climate effects on habitat functioning. P. clavata metrics such as population structure, morphology and biomass inform on the overall health of coralligenous habitats, but the estimation of these metrics is time and cost consuming, and often requires destructive sampling. As a consequence, the implementation of long-term and wide-area monitoring programmes is limited. This study proposes a novel and transferable Structure from Motion (SfM) based method for the estimation of gorgonian population structure (i.e., maximal height, density, abundance), morphometries (i.e., maximal width, fan surface) and biomass (i.e., coenenchymal Dry Weight, Ash Free Dried Weight). The method includes the estimation of a novel metric (3D canopy surface) describing the gorgonian forest as a mosaic of planes generated by fitting multiple 5 cm × 5 cm facets to a SfM generated point cloud. The performance of the method is assessed for two different cameras (GoPro Hero4 and Sony NEX7). Results showed that for highly dense populations (17 colonies/m2), the SfM-method had lower accuracies in estimating the gorgonians density for both cameras (60% to 89%) than for medium to low density populations (14 and 7 colonies/m2) (71% to 100%). Results for the validation of the method showed that the correlation between ground truth and SfM estimates for maximal height, maximal width and fan surface were between R2 = 0.63 and R2 = 0.9, and R2 = 0.99 for coenenchymal surface estimation. The methodological approach was used to estimate the biomass of the gorgonian population within the study area and across the coralligenous habitat between −25 to −40 m depth in the Portofino Marine Protected Area. For that purpose, the coenenchymal surface of sampled colonies was obtained and used for the calculations. Results showed biomass values of dry weight and ash free dry weight of 220 g and 32 g for the studied area and to 365 kg and 55 Kg for the coralligenous habitat in the Marine Protected Area. This study highlighted the feasibility of the methodology for the quantification of P. clavata metrics as well as the potential of the SfM-method to improve current predictions of the status of the coralligenous habitat in the Mediterranean sea and overall management of threatened ecosystems

    A Framework for the Semantics-aware Modelling of Objects

    Get PDF
    The evolution of 3D visual content calls for innovative methods for modelling shapes based on their intended usage, function and role in a complex scenario. Even if different attempts have been done in this direction, shape modelling still mainly focuses on geometry. However, 3D models have a structure, given by the arrangement of salient parts, and shape and structure are deeply related to semantics and functionality. Changing geometry without semantic clues may invalidate such functionalities or the meaning of objects or their parts. We approach the problem by considering semantics as the formalised knowledge related to a category of objects; the geometry can vary provided that the semantics is preserved. We represent the semantics and the variable geometry of a class of shapes through the parametric template: an annotated 3D model whose geometry can be deformed provided that some semantic constraints remain satisfied. In this work, we design and develop a framework for the semantics-aware modelling of shapes, offering the user a single application environment where the whole workflow of defining the parametric template and applying semantics-aware deformations can take place. In particular, the system provides tools for the selection and annotation of geometry based on a formalised contextual knowledge; shape analysis methods to derive new knowledge implicitly encoded in the geometry, and possibly enrich the given semantics; a set of constraints that the user can apply to salient parts and a deformation operation that takes into account the semantic constraints and provides an optimal solution. The framework is modular so that new tools can be continuously added. While producing some innovative results in specific areas, the goal of this work is the development of a comprehensive framework combining state of the art techniques and new algorithms, thus enabling the user to conceptualise her/his knowledge and model geometric shapes. The original contributions regard the formalisation of the concept of annotation, with attached properties, and of the relations between significant parts of objects; a new technique for guaranteeing the persistence of annotations after significant changes in shape's resolution; the exploitation of shape descriptors for the extraction of quantitative information and the assessment of shape variability within a class; and the extension of the popular cage-based deformation techniques to include constraints on the allowed displacement of vertices. In this thesis, we report the design and development of the framework as well as results in two application scenarios, namely product design and archaeological reconstruction

    A Robust and Versatile Pipeline for Automatic Photogrammetric-Based Registration of Multimodal Cultural Heritage Documentation

    Get PDF
    Imaging techniques and Image Based-Modeling (IBM) practices in the field of Cultural Heritage (CH) studies are nowadays no longer used as one-shot applications but as various and complex scenarios involving multiple modalities; sensors, scales, spectral bands and temporalities utilized by various experts. Current use of Structure from Motion and photogrammetric methods necessitates some improvements in iterative registration to ease the growing complexity in the management of the scientific imaging applied on heritage assets. In this context, the co-registration of photo-documentation among other imaging resources is a key step in order to move towards data fusion and collaborative semantic enrichment scenarios. This paper presents the recent development of a Totally Automated Co-registration and Orientation library (TACO) based on the interoperability of open-source solutions to conduct photogrammetric-based registration. The proposed methodology addresses and solves some gaps in term of robustness and versatility in the field of incremental and global orientation of image-sets dedicated to CH practices

    Understanding the Structure of 3D Shapes

    Get PDF
    Compact representations of three dimensional objects are very often used in computer graphics to create effective ways to analyse, manipulate and transmit 3D models. Their ability to abstract from the concrete shapes and expose their structure is important in a number of applications, spanning from computer animation, to medicine, to physical simulations. This thesis will investigate new methods for the generation of compact shape representations. In the first part, the problem of computing optimal PolyCube base complexes will be considered. PolyCubes are orthogonal polyhedra used in computer graphics to map both surfaces and volumes. Their ability to resemble the original models and at the same time expose a very simple and regular structure is important in a number of applications, such as texture mapping, spline fitting and hex-meshing. The second part will focus on medial descriptors. In particular, two new algorithms for the generation of curve-skeletons will be presented. These methods are completely based on the visual appearance of the input, therefore they are independent from the type, number and quality of the primitives used to describe a shape, determining, thus, an advancement to the state of the art in the field

    Understanding the Structure of 3D Shapes

    Get PDF
    Compact representations of three dimensional objects are very often used in computer graphics to create effective ways to analyse, manipulate and transmit 3D models. Their ability to abstract from the concrete shapes and expose their structure is important in a number of applications, spanning from computer animation, to medicine, to physical simulations. This thesis will investigate new methods for the generation of compact shape representations. In the first part, the problem of computing optimal PolyCube base complexes will be considered. PolyCubes are orthogonal polyhedra used in computer graphics to map both surfaces and volumes. Their ability to resemble the original models and at the same time expose a very simple and regular structure is important in a number of applications, such as texture mapping, spline fitting and hex-meshing. The second part will focus on medial descriptors. In particular, two new algorithms for the generation of curve-skeletons will be presented. These methods are completely based on the visual appearance of the input, therefore they are independent from the type, number and quality of the primitives used to describe a shape, determining, thus, an advancement to the state of the art in the field

    SfM-based method to assess gorgonian forests (Paramuricea clavata (Cnidaria, Octocorallia))

    Get PDF
    Animal forests promote marine habitats morphological complexity and functioning. The red gorgonian, Paramuricea clavata, is a key structuring species of the Mediterranean coralligenous habitat and an indicator species of climate effects on habitat functioning. P. clavata metrics such as population structure, morphology and biomass inform on the overall health of coralligenous habitats, but the estimation of these metrics is time and cost consuming, and often requires destructive sampling. As a consequence, the implementation of long-term and wide-area monitoring programmes is limited. This study proposes a novel and transferable Structure from Motion (SfM) based method for the estimation of gorgonian population structure (i.e., maximal height, density, abundance), morphometries (i.e., maximal width, fan surface) and biomass (i.e., coenenchymal Dry Weight, Ash Free Dried Weight). The method includes the estimation of a novel metric (3D canopy surface) describing the gorgonian forest as a mosaic of planes generated by fitting multiple 5 cm × 5 cm facets to a SfM generated point cloud. The performance of the method is assessed for two different cameras (GoPro Hero4 and Sony NEX7). Results showed that for highly dense populations (17 colonies/m2), the SfM-method had lower accuracies in estimating the gorgonians density for both cameras (60% to 89%) than for medium to low density populations (14 and 7 colonies/m2) (71% to 100%). Results for the validation of the method showed that the correlation between ground truth and SfM estimates for maximal height, maximal width and fan surface were between R2 = 0.63 and R2 = 0.9, and R2 = 0.99 for coenenchymal surface estimation. The methodological approach was used to estimate the biomass of the gorgonian population within the study area and across the coralligenous habitat between −25 to −40 m depth in the Portofino Marine Protected Area. For that purpose, the coenenchymal surface of sampled colonies was obtained and used for the calculations. Results showed biomass values of dry weight and ash free dry weight of 220 g and 32 g for the studied area and to 365 kg and 55 Kg for the coralligenous habitat in the Marine Protected Area. This study highlighted the feasibility of the methodology for the quantification of P. clavata metrics as well as the potential of the SfM-method to improve current predictions of the status of the coralligenous habitat in the Mediterranean sea and overall management of threatened ecosystems

    Visual analytics in digital & computational pathology

    Get PDF
    • …
    corecore