179 research outputs found

    Virtual Reality Games for Motor Rehabilitation

    Get PDF
    This paper presents a fuzzy logic based method to track user satisfaction without the need for devices to monitor users physiological conditions. User satisfaction is the key to any product’s acceptance; computer applications and video games provide a unique opportunity to provide a tailored environment for each user to better suit their needs. We have implemented a non-adaptive fuzzy logic model of emotion, based on the emotional component of the Fuzzy Logic Adaptive Model of Emotion (FLAME) proposed by El-Nasr, to estimate player emotion in UnrealTournament 2004. In this paper we describe the implementation of this system and present the results of one of several play tests. Our research contradicts the current literature that suggests physiological measurements are needed. We show that it is possible to use a software only method to estimate user emotion

    Fourteenth Biennial Status Report: März 2017 - February 2019

    No full text

    Seventh Biennial Report : June 2003 - March 2005

    No full text

    Eight Biennial Report : April 2005 – March 2007

    No full text

    Coded Projection and Illumination for Television Studios

    Get PDF
    We propose the application of temporally and spatially coded projection and illumination in modern television studios. In our vision, this supports ad-hoc re-illumination, automatic keying, unconstrained presentation of moderation information, camera-tracking, and scene acquisition. In this paper we show how a new adaptive imperceptible pattern projection that considers parameters of human visual perception, linked with real-time difference keying enables an in-shot optical tracking using a novel dynamic multi-resolution marker techniqu

    Fast Rendering of Forest Ecosystems with Dynamic Global Illumination

    Get PDF
    Real-time rendering of large-scale, forest ecosystems remains a challenging problem, in that important global illumination effects, such as leaf transparency and inter-object light scattering, are difficult to capture, given tight timing constraints and scenes that typically contain hundreds of millions of primitives. We propose a new lighting model, adapted from a model previously used to light convective clouds and other participating media, together with GPU ray tracing, in order to achieve these global illumination effects while maintaining near real-time performance. The lighting model is based on a lattice-Boltzmann method in which reflectance, transmittance, and absorption parameters are taken from measurements of real plants. The lighting model is solved as a preprocessing step, requires only seconds on a single GPU, and allows dynamic lighting changes at run-time. The ray tracing engine, which runs on one or multiple GPUs, combines multiple acceleration structures to achieve near real-time performance for large, complex scenes. Both the preprocessing step and the ray tracing engine make extensive use of NVIDIA\u27s Compute Unified Device Architecture (CUDA)

    Dagstuhl Annual Report January - December 2011

    Get PDF
    The International Conference and Research Center for Computer Science is a non-profit organization. Its objective is to promote world-class research in computer science and to host research seminars which enable new ideas to be showcased, problems to be discussed and the course to be set for future development in this field. The work being done to run this informatics center is documented in this report for the business year 2011
    • …
    corecore