1,205 research outputs found

    Energy-efficiency evaluation of Intel KNL for HPC workloads

    Get PDF
    Energy consumption is increasingly becoming a limiting factor to the design of faster large-scale parallel systems, and development of energy-efficient and energy-aware applications is today a relevant issue for HPC code-developer communities. In this work we focus on energy performance of the Knights Landing (KNL) Xeon Phi, the latest many-core architecture processor introduced by Intel into the HPC market. We take into account the 64-core Xeon Phi 7230, and analyze its energy performance using both the on-chip MCDRAM and the regular DDR4 system memory as main storage for the application data-domain. As a benchmark application we use a Lattice Boltzmann code heavily optimized for this architecture and implemented using different memory data layouts to store its lattice. We assessthen the energy consumption using different memory data-layouts, kind of memory (DDR4 or MCDRAM) and number of threads per core

    Evaluation of DVFS techniques on modern HPC processors and accelerators for energy-aware applications

    Get PDF
    Energy efficiency is becoming increasingly important for computing systems, in particular for large scale HPC facilities. In this work we evaluate, from an user perspective, the use of Dynamic Voltage and Frequency Scaling (DVFS) techniques, assisted by the power and energy monitoring capabilities of modern processors in order to tune applications for energy efficiency. We run selected kernels and a full HPC application on two high-end processors widely used in the HPC context, namely an NVIDIA K80 GPU and an Intel Haswell CPU. We evaluate the available trade-offs between energy-to-solution and time-to-solution, attempting a function-by-function frequency tuning. We finally estimate the benefits obtainable running the full code on a HPC multi-GPU node, with respect to default clock frequency governors. We instrument our code to accurately monitor power consumption and execution time without the need of any additional hardware, and we enable it to change CPUs and GPUs clock frequencies while running. We analyze our results on the different architectures using a simple energy-performance model, and derive a number of energy saving strategies which can be easily adopted on recent high-end HPC systems for generic applications

    Zeroing memory deallocator to reduce checkpoint sizes in virtualized HPC environments

    Get PDF
    Virtualization has become an indispensable tool in data centers and cloud environments to flexibly assign virtual machines (VMs) to resources. Virtualization also becomes more and more attractive for high-performance computing (HPC). This is mainly due to the strong isolation of VMs which enables: (1) the sharing of cluster nodes and optimization of the system’s overall utilization; (2) load balancing by means of migrations due to the reduction of residual dependencies; and (3) the creation of system-level checkpoints increasing the fault tolerance in an application-transparent way. On the downside, the additional virtualization layer conceals information that is only available on the process level. This information has a direct influence on the checkpoint size which should be kept as small as possible. In this paper, we propose a novel technique for checkpoint size reduction in virtualized environments. We exploit the fact that the hypervisor detects zero pages which are omitted when capturing a checkpoint. Moreover, compression techniques are applied for a further reduction of the checkpoint size. We therefore fill freed memory regions with zeros supporting both the zero-page detection and the compression. We evaluate our approach by taking the example of HPC applications. The results reveal a reduction of the checkpoint size by up to 9% when compression is disabled in the hypervisor and up to 49% with compression enabled. Furthermore, memory zeroing is able to reduce VM migration time by up to 10% when compression is disabled and by up to 60% when compression is enabled

    A study of the potential of locality-aware thread scheduling for GPUs

    Get PDF
    Programming models such as CUDA and OpenCL allow the programmer to specify the independence of threads, effectively removing ordering constraints. Still, parallel architectures such as the graphics processing unit (GPU) do not exploit the potential of data-locality enabled by this independence. Therefore, programmers are required to manually perform data-locality optimisations such as memory coalescing or loop tiling. This work makes a case for locality-aware thread scheduling: re-ordering threads automatically for better locality to improve the programmability of multi-threaded processors. In particular, we analyse the potential of locality-aware thread scheduling for GPUs, considering among others cache performance, memory coalescing and bank locality. This work does not present an implementation of a locality-aware thread scheduler, but rather introduces the concept and identifies the potential. We conclude that non-optimised programs have the potential to achieve good cache and memory utilisation when using a smarter thread scheduler. A case-study of a naive matrix multiplication shows for example a 87% performance increase, leading to an IPC of 457 on a 512-core GPU

    A Study of the Potential of Locality-Aware Thread Scheduling for GPUs

    Full text link

    Massively parallel lattice–Boltzmann codes on large GPU clusters

    Get PDF
    This paper describes a massively parallel code for a state-of-the art thermal lattice–Boltzmann method. Our code has been carefully optimized for performance on one GPU and to have a good scaling behavior extending to a large number of GPUs. Versions of this code have been already used for large-scale studies of convective turbulence. GPUs are becoming increasingly popular in HPC applications, as they are able to deliver higher performance than traditional processors. Writing efficient programs for large clusters is not an easy task as codes must adapt to increasingly parallel architectures, and the overheads of node-to-node communications must be properly handled. We describe the structure of our code, discussing several key design choices that were guided by theoretical models of performance and experimental benchmarks. We present an extensive set of performance measurements and identify the corresponding main bottlenecks; finally we compare the results of our GPU code with those measured on other currently available high performance processors. Our results are a production-grade code able to deliver a sustained performance of several tens of Tflops as well as a design and optimization methodology that can be used for the development of other high performance applications for computational physics
    • …
    corecore