572 research outputs found

    Eulerian on Lagrangian Cloth Simulation

    Get PDF
    This thesis introduces a novel Eulerian-on-Lagrangian (EoL) approach for simulating cloth. This approach allows for the simulation of traditionally difficult cloth scenarios, such as draping and sliding cloth over sharp features like the edge of a table. A traditional Lagrangian approach models a cloth as a series of connected nodes. These nodes are free to move in 3d space, but have difficulty with sliding over hard edges. The cloth cannot always bend smoothly around these edges, as motion can only occur at existing nodes. An EoL approach adds additional flexibility to a Lagrangian approach by constructing special Eulerian on Lagrangian nodes (EoL Nodes), where cloth material can pass through a fixed point. On contact with the edge of a box, EoL nodes are introduced directly on the edge. These nodes allow the cloth to bend exactly at the edge, and pass smoothly over the area while sliding. Using this ‘Eulerian-on-Lagrangian’ discretization, a set of rules for introducing and constraining EoL Nodes, and an adaptive remesher, This simulator allows cloth to move in a sliding motion over sharp edges. The current implementation is limited to cloth collision with static boxes, but the method presented can be expanded to include contact with more complicated meshes and dynamic rigid bodies

    ChainQueen: A Real-Time Differentiable Physical Simulator for Soft Robotics

    Full text link
    Physical simulators have been widely used in robot planning and control. Among them, differentiable simulators are particularly favored, as they can be incorporated into gradient-based optimization algorithms that are efficient in solving inverse problems such as optimal control and motion planning. Simulating deformable objects is, however, more challenging compared to rigid body dynamics. The underlying physical laws of deformable objects are more complex, and the resulting systems have orders of magnitude more degrees of freedom and therefore they are significantly more computationally expensive to simulate. Computing gradients with respect to physical design or controller parameters is typically even more computationally challenging. In this paper, we propose a real-time, differentiable hybrid Lagrangian-Eulerian physical simulator for deformable objects, ChainQueen, based on the Moving Least Squares Material Point Method (MLS-MPM). MLS-MPM can simulate deformable objects including contact and can be seamlessly incorporated into inference, control and co-design systems. We demonstrate that our simulator achieves high precision in both forward simulation and backward gradient computation. We have successfully employed it in a diverse set of control tasks for soft robots, including problems with nearly 3,000 decision variables.Comment: In submission to ICRA 2019. Supplemental Video: https://www.youtube.com/watch?v=4IWD4iGIsB4 Project Page: https://github.com/yuanming-hu/ChainQuee

    Learning and Simulation Algorithms for Constraint Physical Systems

    Get PDF
    This thesis explores two computational approaches to learn and simulate complex physical systems exhibiting constraint characteristics. The target applications encompass both solids and fluids. On the solid side, we proposed a new family of data-driven simulators to predict the behaviors of an unknown physical system by learning its underpinning constraints. We devised a neural projection operator facilitated by an embedded recursive neural network to interactively enforce the learned underpinning constraints and to predict its various physical behaviors. Our method can automatically uncover a broad range of constraints from observation point data, such as length, angle, bending, collision, boundary effects, and their combinations, in the context of a diverse set of physical systems including rigid bodies, ropes, articulated bodies, and multi-object collisions. On the fluid side, we proposed a gauge numerical simulator to model fluid phenomena using Clebsch wave functions. Our method combines the expressive power of Clebsch wave functions to represent coherent vortical structures and the generality of gauge methods to accommodate a broad array of fluid phenomena. We devised a transformed wave function as the system’s gauge variable to improve a fluid simulator’s vorticity generation and preservation ability. We showcase our method by simulating various types of incompressible flow phenomena, including complex vortex filament dynamics, fluids with different obstacles, and surface-tension flow

    Mechanics-Aware Modeling of Cloth Appearance

    Get PDF
    • …
    corecore