
EULERIAN ON LAGRANGIAN CLOTH SIMULATION

A Thesis

presented to

the Faculty of California Polytechnic State University,

San Luis Obispo

In Partial Fulfillment

of the Requirements for the Degree

Master of Science in Computer Science

by

Kyle Piddington

June 2017

c© 2017

Kyle Piddington

ALL RIGHTS RESERVED

ii

COMMITTEE MEMBERSHIP

TITLE: Eulerian on Lagrangian Cloth Simulation

AUTHOR: Kyle Piddington

DATE SUBMITTED: June 2017

COMMITTEE CHAIR: Zoë Wood, Ph.D.

Professor of Computer Science

COMMITTEE MEMBER: Foaad Khosmood, Ph.D.

Assistant Professor of Computer Science

COMMITTEE MEMBER: John Clements, Ph.D.

Professor of Computer Science

iii

ABSTRACT

Eulerian on Lagrangian Cloth Simulation

Kyle Piddington

This thesis introduces a novel Eulerian-on-Lagrangian (EoL) approach for simu-

lating cloth. This approach allows for the simulation of traditionally difficult cloth

scenarios, such as draping and sliding cloth over sharp features like the edge of a table.

A traditional Lagrangian approach models a cloth as a series of connected nodes.

These nodes are free to move in 3d space, but have difficulty with sliding over hard

edges. The cloth cannot always bend smoothly around these edges, as motion can

only occur at existing nodes.

An EoL approach adds additional flexibility to a Lagrangian approach by con-

structing special Eulerian on Lagrangian nodes (EoL Nodes), where cloth material

can pass through a fixed point. On contact with the edge of a box, EoL nodes are

introduced directly on the edge. These nodes allow the cloth to bend exactly at the

edge, and pass smoothly over the area while sliding.

Using this ‘Eulerian-on-Lagrangian’ discretization, a set of rules for introducing

and constraining EoL Nodes, and an adaptive remesher, This simulator allows cloth

to move in a sliding motion over sharp edges. The current implementation is limited

to cloth collision with static boxes, but the method presented can be expanded to

include contact with more complicated meshes and dynamic rigid bodies.

iv

ACKNOWLEDGMENTS

Thanks to:

• Leanne Fiorentino, for her dedication and commitment to the Computer Science

department, and all of its students.

• Zoe Wood, for inspiring me on the path of Computer Graphics.

• Shinjiro Sueda, for encouraging me to pursue this project and a Masters at Cal

Poly, as well as support throughout the completion of this work.

• David Levin, for his suggestions, guidance, and support during this process.

• Chris, Teresa, and Leah Piddington for their endless support and love.

• Andrew Guenther, for uploading this template.

v

TABLE OF CONTENTS

Page

LIST OF TABLES . viii

LIST OF FIGURES . ix

CHAPTER

1 Introduction . 1

1.1 Terminology . 2

2 Background Information . 4

2.1 Traditional Models of Simulation . 4

2.2 Current Issues with Simulations . 4

2.3 Eulerian Discretization vs Lagrangian Discretization 5

3 Literature Review . 7

3.1 Equations of Motion . 7

3.2 Basic Simulation of Cloths . 8

3.2.1 Backwards Euler Integration 8

3.3 The Finite Element Method . 9

3.3.1 Strain . 11

3.3.2 Stress . 11

3.4 Eulerian on Lagrangian Methods . 13

3.4.1 Eulerian on Lagrangian Strands 13

3.5 Remeshing . 14

3.5.1 Adaptive Remeshing . 15

4 Implementation . 16

4.1 Overview of Algorithm . 16

4.2 EoL Cloth Dynamics . 18

4.3 Barycentric Coordinates . 18

4.4 Inertia . 19

4.5 Gravity . 21

4.6 Elasticity . 21

4.6.1 Membrane . 22

vi

4.6.2 Bending . 23

4.7 Transferring Local Matrices to Global Matrices 24

4.8 Equations of Motion . 25

4.9 Introducing Constraints . 25

4.10 EoL Cloth Constraints . 26

4.10.1 Constraints for Lagrangian Cloth 26

4.10.2 Constraints for EoL Cloth . 27

4.10.2.1 Contacts with corners 28

4.10.2.2 Edge Constraints . 29

5 Remeshing . 32

5.1 Solution A: Global Remeshing . 33

5.1.1 Types of Collisions . 34

5.1.2 Binning and Sorting Collisions into Polylines 35

5.1.3 Processing Polylines . 37

5.2 Basic Velocity Transfer . 37

5.3 Removing Constraints . 38

5.4 Solution B: Localized Remeshing . 39

5.5 Improved Velocity Transfer . 39

5.6 Solution C: Adaptive Remeshing . 40

6 Technology Overview . 42

6.1 System Design . 42

6.1.1 Core Integrator . 42

6.1.2 Simulated Objects . 42

6.1.3 Interactors . 43

6.1.4 Collision Handlers . 44

6.1.5 Collision Callbacks . 45

6.1.6 Post-Simulation Hooks . 45

6.2 Quadratic or Linear? . 45

7 Results . 47

8 Conclusion . 50

8.1 Future Work . 50

BIBLIOGRAPHY . 52

vii

LIST OF TABLES

Table Page

7.1 Performance analysis of example scenes. 49

viii

LIST OF FIGURES

Figure Page

1.1 Table cloth draped over a rectangular table. 2

2.1 An error seen in a Lagrangian simulation. The cloth cannot bend at
the edge, since the vertices are not aligned with the constraint. . . . 5

3.1 The force to stretch a rod is proportional to it’s relative elongation. 10

3.2 A visualization of a string and pulley system from “Highly constrained
strands”. 14

4.1 Material space to world space mapping. 16

4.2 Possible contact constraints for a strand-box collision without confor-
mal remeshing. 27

4.3 Possible contact constraints for a strand-box collision with conformal
remeshing. 31

4.4 Lagrangian constraints on cloth. 31

5.1 A simple remeshing operation in 5 stages. 35

5.2 Previous EOL points and collisions are built into polylines. 36

5.3 Removal of a polyline from a cloth. 39

5.4 Visual representation of the implemented remeshing algorithm. . . 40

6.1 Relationship between integrator and modules. 43

7.1 Visual results from the ‘Edge’ scene. 48

7.2 Visual results from the ‘Corner’ scene. 48

7.3 Visual results from the ‘Slide’ scene. 49

ix

Chapter 1

INTRODUCTION

The field of computer graphics includes the research and implementation of pro-

grams that create digital images for both scientific and artistic purposes. A subfield

of computer graphics research is engaged in work related to the field of physical

simulation. Researchers build, analyze, and display digital models of physical media.

One specific challenge in the field of simulation is creating realistic cloth simulations.

Many papers have attempted to capture different aspects of cloth. Most research

simulations do not incorporate all the cutting-edge research in the field due to the

technical and mathematical challenges of cloth simulation. Instead, simulators tend

to focus on one or two aspects of cloth simulation. Some papers explore physical

phenomena that can occur due to the underlying structure of a cloth [46]. Others

explore methods to decrease the time taken to simulate cloth [31]. This thesis presents

a method for performing cloth simulation in traditionally difficult edge cases, sliding

cloth constrained by sharp edges.

A wide range of cloth simulators rely on a Lagrangian discretization to perform

simulation. Methods that employ Lagrangian discretization adapt to a wide range of

work, and have had successes in improving cloth physics used in character animation

[16, 17, 23, 50], and material simulation [34, 8, 45, 49, 44, 46, 42].

However, a majority of simulations struggle with the interaction of cloth with

sharp geometric features. Such interactions are common when cloth interacts with

the real world, from a table cloth pulled over a table edge, to a sheet dragged off a

clothing line. Due to the fundamental limitations of the Lagrangian discretization,

work that relies on these methods are not able to handle sliding around sharp features

1

Figure 1.1: Table cloth draped over a rectangular table.

This thesis attempts to resolve this edge case with a novel approach: changing how

the cloth is discretized. This research builds off of the approach taken in “Simulation

of Highly Constrained Strands” [41]. In this thesis, a new Eulerian-on-Lagrangian

discretization for cloth is introduced. The additional flexibility from this discretization

allows cloth to slide over sharp constraints, like table edges, without performing any

approximations of either the cloth or the constraint. This work augments traditional

approaches to cloth simulation. Because this technique works in conjunction with

Lagrangian simulation schemes, it can be combined with state of the art approaches

mentioned above.

The results of this thesis are demonstrated through several examples of draping,

pulling, and wrapping cloth around sharp edges of a box. The results of this new

discretization are compared with a Lagrangian cloth simulator, highlighting the smooth

movement introduced by this discretization.

1.1 Terminology

A polygonal mesh consists of vertices, edges, and faces. Vertices are points in a

3D space on the surface of a cloth. Edges connect two vertices. Faces connect three

2

or more edges. Combining vertices, edges, and faces creates a thin shell in 3D space

[11]. In this thesis, a polygonal mesh will be used to represent the surface of a cloth.

The mesh approximates the surface of a cloth. The detail of a mesh is referred to as

the resolution.

3

Chapter 2

BACKGROUND INFORMATION

2.1 Traditional Models of Simulation

There are two common simulation models used cloth simulation: Mass-Spring

simulation and the Finite Element Method. Mass-Spring simulations model a cloth

as a series of discrete particles. In a Mass-Spring simulation, each vertex becomes a

mass particle. Each edge becomes a spring, and applies inter-cloth forces to hold the

cloth together. In this simulation, the movement of the cloth is determined by the

movement of the vertices [28].

Another common simulation technique is to model the cloth using the Finite

Element Method. In this method of simulation, each face of a polygonal mesh

represents one element. Deformed elements apply forces to attempt to return to

their original shapes [46]. Like the mass spring simulation, the motion of the cloth is

ultimately decided by the positions of the vertices.

2.2 Current Issues with Simulations

Mass-Spring and FEM simulations both exhibit inaccuracies when moving along

hard constraints, such as table edges or sharp corners. Because the cloth can only

bend at the vertices, issues can occur along sharp edges. In Figure 2.1, one such

inaccuracy is presented.

Increasing the resolution of the cloth mesh can help mitigate this issue, but

inaccuracies still exist. Further inaccuracies occur when the cloth is in motion.

Vertices moving over the edge can become stuck on the underside of the edge, causing

4

Figure 2.1: An error seen in a Lagrangian simulation. The cloth cannot
bend at the edge, since the vertices are not aligned with the constraint.

excess strain to build up on the cloth.

2.3 Eulerian Discretization vs Lagrangian Discretization

The proposed techniques (Mass-Spring and FEM) use a Lagrangian discretization

to define a simulation space. A Lagrangian discretization models a simulation by

observing how the elements of the simulation change over time. In contrast, an

Eulerian discretization fixes points in space, and measures how the system changes

at the fixed points. Liquid and gas simulations often choose to use an Eulerian

discretization to model media within a bounded space [29].

This thesis combines both methods of simulation by using an Eulerian-on-Lagrangian

(EoL) discretization [41]. This novel discretization allows the cloth to move over table

edges smoothly. Unconstrained sections of the cloth are modeled using a Lagrangian

discretization, allowing the cloth to move freely in unconstrained space. When the

cloth interacts with a sharp constraint, such as the edge of a box, the cloth is simu-

lated using an Eulerian-on-Lagrangian discretization. The Eulerian-on-Lagrangian

5

discretization gives vertices in the cloth freedom to move along the constraint in world

space, as well as through the cloth material, creating sliding motion through the

constraint.

6

Chapter 3

LITERATURE REVIEW

To understand Eulerian on Lagrangian simulation, it is important to review several

related topics. This section outlines the core mathematics and physics that drive the

EoL simulation, as well as remeshing techniques.

3.1 Equations of Motion

Understanding cloth simulation begins with understanding the physics at play. An

outline of these physics is found in In Baraff and Witkin’s work, “Large steps in Cloth

Simulation” [4]. To begin, Baraff and Witkin form several basic equations based off of

Newton’s second law of motion. f = mẍ. (Force = mass * acceleration). In order to

simulate a cloth, we must first derive its acceleration, ẍ. We can do this by dividing f

by m.

Barraff and Witkin formulate this relationship for a general cloth with the following

formula:

ẍ = M−1

(
−∂E
∂x

+ F

)
. (3.1)

In this equation, M represents the mass and geometry of a cloth, E(x) is a function

that describes the potential energy of a cloth at a position x, and F represents any

external forces acting on the cloth. This ordinary differential equation will be used to

guide the derivation of the equations of motion for cloth simulation.

7

3.2 Basic Simulation of Cloths

In “Large Steps in Cloth Simulation” [4], Baraff and Witkin show how basic

simulation for a cloth can be calculated through four discrete steps:

1. Calculate internal forces caused by the cloth, and external forces caused by

gravity or other phenomena.

2. Calculate the acceleration provided by the force.

3. Integrate the velocity by adding the acceleration times some small ∆t.

4. Integrate the position adding the previous velocity multiplied by some small ∆t.

Cloths are simulated by first calculating internal and external forces. In ‘Large

Steps’, internal forces are proportional to how far each triangle in the cloth is stretched.

External forces are applied through gravity, wind resistance, constraints, and col-

lisions. In addition, a diagonal mass matrix, M is created. M is of the form

M = diag(m1,m1,m1,m2,m2,m2...mn,mn,mn), where m1 is the mass of vertex 1.

With a mass matrix, and a function to calculate force, the Explicit Euler method

can be written as ∆x

∆ẋ

 = h

 ẋ0

M−1f(x0, ẋ0)

 . (3.2)

The Explicit Euler method is only stable at small time steps. At larger time steps,

the simulation accumulates force and becomes unstable.

3.2.1 Backwards Euler Integration

The Explicit Euler method constructs the next position and velocity based solely

off of the current position and velocity. In contrast, the Backwards Euler, or Implicit

8

Euler method considers the change in position and velocity when evaluating forces.

The Implicit Euler equation is written as∆x

∆ẋ

 = h

 ẋ0 + ∆ẋ

M−1f(x0 + ∆x, v0 + ∆ẋ)

 . (3.3)

In an Implicit Euler integration, the next ∆ẋ and ∆x are present in both sides of

the equation. Through a series of replacements and derivations [4], the second term of

the Implicit Euler method can be re-written as:

(M + hD + h2K)ẋk+1 = Mẋk + hf(xk). (3.4)

Solving this equation can be done through a series of Linear algebra methods, not

limited to exact methods such as LU decomposition. Iterative methods, such as a

Conjugate Gradient solver can also be used.

3.3 The Finite Element Method

In order to calculate the forces occurring from internal cloth energy, (eq 3.1), the

cloth must be discretized so energy can be evaluated per discretized element. In

Volino, Baraff, and Narain’s work, these elements are chosen to be triangles [46, 4, 31].

However, simulation is not limited only to triangles. Quadrilaterals are another

popular choice [20].

In Matthias Müller’s tutorial , “Real Time Physics”, Müller reviews the basics

of performing integration with finite elements, and demonstrates how to implement

finite elements for tetrahedron meshes [28]. The basics of which are replicated here.

The Finite Element Method derives forces from continuum mechanics. Continuum

mechanics are primarily concerned with the relationship between three quantities,

9

Figure 3.1: The force to stretch a rod is proportional to it’s relative elonga-
tion. Image credits: Matthias Müller-Fischer. [28]

displacement, stress, and strain. These quantities are related through Hooke’s Law:

σ = Eε, (3.5)

where σ, represents the applied stress, ε is the resulting strain,and E is a constant that

represents a material’s stiffness. Consider this equation in the context of extending a

rod (Figure 3.1). The force f required to stretch the rod some amount is proportional

to the distance the rod is extended:

f

A
= E

∆l

l
. (3.6)

Equation 3.5 is especially important when viewed not as the force required to cause

a deformation, but as the stress due to existing strain. Consider again an extended

rod. If the length of the extension ∆l and the original length of the rod l are known,

a stress value can be calculated, and could be used to simulate the rod returning to

base length, much like how a spring will experience internal forces that return it to a

resting state.

In the case of stretching a rod, the applied stress and displacement are expressed

with a scalar value. In a general 3d case, stress and strain will change from scalar

values to tensors.

10

3.3.1 Strain

In a general 3d case, strain is derived from the spatial derivatives of a displacement

field u at a material coordinate x, where u, x ∈ R3.

The strain tensor, ε ∈ R3x3 can be computed by one of two ways,

εG =
1

2
(∇u+ {∇uT}+ {∇uT}∇u), (3.7)

εC =
1

2
(∇u+ {∇uT}). (3.8)

In the previous equations, εG is Green’s nonlinear strain tensor. εC is the linearizion

of Green’s strain tensor, and is known as Cauchy’s strain tensor.

The biggest difference between Green strain and Cauchy strain occur when the

displacement field experiences rotation. Under a pure rotation, a mesh is not experi-

encing any deformation, and therefor should not be experiencing any strain. Green

strain correctly calculates a strain of zero under a pure rotation. However, Cauchy

strain will report a non-zero strain. Several techniques, including warped stiffness [28],

or corotated elements [39] can be used to deal with this limitation.

3.3.2 Stress

Once a strain tensor has been calculated, is used to compute a stress tensor. Recall

that the stress is related to the strain through equation 3.5.

Since both the stress and strain are symmetric tensors, they can be written in the

form
axx axy axz

· ayy ayz

· · azz

 , (3.9)

11

where dots indicate symmetry. The stress and strain vectors can be represented instead

as a column vector, we can map them through the following relationship:

σxx

σyy

σzz

σxy

σxz

σyz

= E ∗

εxx

εyy

εzz

εxy

εxz

εyz

. (3.10)

To calculate a resulting nodal force from stress, a measuring direction must be

chosen. In [28], we choose the direction of measurement to be the normal of a surface

at a material point.

∂f

∂A
= σ · n (3.11)

With a stress-strain relationship formed, and a function to evaluate force-per-area,

a final equation for calculating force for an infinitesimally small element can be written

as

fstress = ∇ · σ. (3.12)

Finally, the partial differential equation for simulating elastic materials can be

derived. In this equation, consider x to be a material point, an infinitesimally small

element within a simulated body. ρ is the density of the material at x. The acceleration

of the element is described by the formula

ρẍ = ∇ · σ + fext. (3.13)

Note the similarity to equation 3.1. Unfortunately, using this equation directly

for simulation does not work, as it describes how to integrate an infinitesimally small

12

point in a vector field, making the number of simulated elements infinite. Instead, the

simulated body is discretized into a series of Finite Elements, and the above equations

are evaluated per element.

In Mueller’s work, these elements are chosen to be tetrahedron. In this thesis,

these elements are chosen to be triangles, as the cloth is considered to be infinitely

thin. Chapter 4 expands on how the internal forces are evaluated.

The finite element model has been extended to better approximate real cloth

material. Volino et al. present an Anisotripic stress-to-strain mapping in [46], adding

additional accuracy to cloth simulation. Wang et al. use real-world cloth data to

calculate a stress-to-strain mapping [48].

3.4 Eulerian on Lagrangian Methods

Eulerian on Lagrangian, (EOL) methods have seen success in various fields, includ-

ing strand simulation [41]. Eulerian on Lagrangian methods allow a system to exhibit

both Lagrangian degrees of freedom, in addition to Eulerian degrees of freedom. La-

grangian degrees of freedom are often represented as a world-space position or velocity,

as seen in most standard cloth simulations [28, 4] (and others). Lagrangian methods

excel at simulating an unbounded range of motion, but have difficulty in accurately

modeling motion of constrained fabric or strand material. Eulerian simulation methods

have seen much success in liquid simulation [12].

3.4.1 Eulerian on Lagrangian Strands

The basis for this work stems from Sueda, Jones, Levin, and Pai’s paper, Large-

Scale Dynamic Simulation of Highly Constrained Strands [41]. In ‘Highly Constrained

Strands’, Sueda et al. simulate strands moving around pulleys, through rigid bodies,

13

Figure 3.2: A visualization of a string and pulley system from “Highly
constrained strands”. E-nodes are represented by green boxes. Top: World space
representation of a string and pulley system. Bottom: Material space representation
of the same system.
When a force is applied to the strand, motion through the pulley is resolved through
material space motion.

and around geometry through the use of a construction referred to as a Eulerian node.

When unconstrained, the simulated strands use physics applicable for a Lagrangian

discretization. A strand is discretized into a sequence of nodes, and each node applies

spring forces to its two neighbors. In contrast, Eulerian nodes remain fixed in world

space. When resolving stress forces, the Eulerian nodes change their material-space

position along the strand. Instead of the strand moving at the node, the strand moves

through it. Figure 3.2 shows an example of this situation.

This Eulerian node concept will be further expanded in this thesis. In addition, this

thesis will attempt to resolve some of the limitations of ‘Highly Constrained Strands’.

This earlier work requires that the E-nodes present in the strands were specified before

simulation. In addition, the simulations presented in ‘Highly Constrained Strands’

never involve a case where an Eulerian node leaves the edge of a strand.

3.5 Remeshing

Cloth simulation techniques ultimately approximate a moving cloth. Finer details,

such as wrinkles, bending, and folds, can be achieved by increasing resolution of the

cloth. However, increasing the cloth resolution can slow down computation time. In

14

addition, small triangles can experience issues with imprecision and stability.

Instead of starting with a high resolution cloth, sections of the cloth can be changed

and modified at runtime to introduce both high resolution areas, and specific mesh

features, like seams and wrinkles. Some remeshing operations affect the whole mesh

[37]. Others make small changes in succession to achieve a better representation of a

real cloth [31].

3.5.1 Adaptive Remeshing

One approach to remeshing is to make a series of changes to the mesh, instead

of one large remeshing operation. This approach is best demonstrated in “Adaptive

Anisotropic Remeshing for Cloth Simulation” [31]. Narain et al. use a series of basic

mesh operations, combined with a measurement of how curved a mesh is to improve

the resolution of the mesh in high curvature areas. In addition, Narain’s algorithm

simplifies the mesh in low curvature areas to increase performance.

15

Chapter 4

IMPLEMENTATION

4.1 Overview of Algorithm

Eulerian on Lagrangian physics can be added to a standard FEM model such

as the one presented in [28] with the following changes. First, additional degrees of

freedom are introduced at some vertices of the mesh. In addition to storing standard

Lagrangian degrees of freedom, xi ∈ R3, some vertices store Eulerian degrees of

freedom, X i ∈ R2. The Lagrangian degrees of freedom are interpreted as the position

of a vertex within the world. The Eulerian degrees of freedom are interpreted as

the material space coordinates some vertex. These material space coordinates are

visualized as texture coordinates. In this simulation, the cloth has a grid texture

applied. Figure 4.1 demonstrates the mapping between material and world space. It

is important to note that in most traditional cloth simulations, all vertices contain both

world space positions and material space coordinates. However, in purely Lagrangian

simulations, material space coordinates are fixed to the vertices. As later sections will

describe, this property of fixed material coordinates is only true for some vertices in

the simulation.

Figure 4.1: Material space to world space mapping. Left: Material space
coordinates. Right: World space coordinates. Material space coordinates can be
visualized by applying a texture to the cloth mesh

16

These special vertices will be referred to as EoL vertices for the remainder of this

thesis. EoL vertices are created to help resolve cloth motion over sharp constraints.

For example, if the cloth is in contact with a box, EoL vertices will be created on the

edge, and the Eulerian degrees of freedom will be used to resolve the sliding motion.

Algorithm 1: Main cloth simulation loop

1 while simulating do

2 Detect Collisions /* External Call */

3 Perform Remesh /* Chapter 5 */

4 if Any new EoL points are Introduced then

5 Compute EoL Constraints on new mesh /* Section 4.10 */

6 Transfer velocities to new mesh /* Section 5.2 */

7 Integrate velocities and positions /* Section 4.2 */

The procedure presented in Algorithm 1 is run for each frame of simulation. The

remainder of chapter 4 derives the equations of motion used to simulate cloth dynamics,

and presents the extensions required to apply forces in the cloth’s material space.

Section 4.10 discusses the geometric rules used to introduce and constrain EoL vertices.

Chapter 5 discusses the challenges and approaches in creating a new mesh that includes

a set of EoL vertices, and the external libraries used to accomplish the task. Chapter

6 discusses the system architecture designed to implement this simulation.

In the following equations, A generalized set of coordinates qi is used to denote

the full DoF of a vertex. For a Lagrangian vertex, qi = xi ∈ R3, whereas for an EoL

vertex, qi = (xi X i)
T ∈ R5.

17

4.2 EoL Cloth Dynamics

This cloth simulation will be driven by an Implicit Euler formulation for velocity

integration. Therefor, the ultimate goal of this section is to build a set of matrices to

use in solving an equation similar to equation 3.4. The result of solving this equation

is a new set of velocities for every cloth vertex, q̇k+1

These velocities, in turn, can be used to integrate the current positions, thus

stepping the simulation by a small timestep, h.

In this simulation, the damping term D is ignored. The missing variables in our

equation are the matrices, M , K, and the force vector, f. The values of these matrices

are computed by considering each element in the mesh, Calculating values for M , K,

and f for the element, and blocking them into the corresponding global matrix.

The final equation used to integrate velocity is written as

(
M− h2K

)
q̇(k+1) = Mq̇(k) + hf.

4.3 Barycentric Coordinates

Let the three vertices of a triangle be denoted (a, b, c), and X ∈ R2 be an arbitrary

material point inside this triangle. (α, β, γ) , the barycentric coordinates of X, can be

computed from the Eulerian DoFs of the triangle, (Xa,Xb,Xc), using the standard

expression for barycentric coordinates. The world position x ∈ R3 corresponding to

this material point can then be computed as

x(X) = αxa + βxb + γxc, (4.1)

where (xa,xb,xc) are the Lagrangian DoFs of the triangle. The world position is not

only a function of the Lagrangian DoFs of the triangle but also of the Eulerian DoFs,

since the barycentric coordinates depend on these Eulerian DoFs.

18

The world space velocity of a chosen arbitrary point, ẋ can be written as

ẋ = (αẋa + βẋb + γẋc) + F (αẊa + βẊb + γẊc), (4.2)

where F ∈ R3×2 is the deformation gradient of the triangle. The deformation gradient

is written as

F = DxD
−1
X

Dx =

(
xb − xa xc − xa

)
DX =

(
Xb −Xa Xc −Xa

)
,

(4.3)

where Dx ∈ R3×2 and DX ∈ R2×2 are the matrices constructed from the edge vectors

of the triangle. The deformation gradient maps material space deformations to world

space deformations.

Finally, for any material point X inside a triangle, the Jacobian, J ∈ R3×15, for

mapping the generalized velocities of the three vertices of the triangle containing X

to the world velocity of the material point is

J =

(
αI βI γI αF βF γF

)
, (4.4)

where I is the 3× 3 identity matrix, and F is the deformation gradient from equation

4.3. The world space velocity of a material point is then ẋ = Jq̇, where q̇ ∈ R15 is the

concatenation of the Lagrangian and Eulerian DoFs of the triangle. The transpose of

the Jacobian maps a world force to a generalized force: f = JTf .

4.4 Inertia

The kinetic energy of a triangle can be expressed as

T =
1

2

∫
A

ρ ẋT ẋ dA, (4.5)

19

where ρ is the area density, and the integral is over the area of the triangle in material

space spanned by (Xa,Xb,Xc), the Eulerian DoFs of the triangle. Using α and β as

the variables of integration over the triangle (note γ = 1− α− β), the equation can

be re-written as.

T =
1

2

∫ 1

α=0

∫ 1−α

β=0

ρ ẋT ẋAdβ dα, (4.6)

where A = |det(DX)|/2 is the area of the triangle in material space. Integrating out

α and β and rearranging the terms leads us to equation 4.7.

T =
1

2
q̇TMq̇, (4.7)

where M is the generalized inertia, and q̇ is the generalized velocity of the triangle,

written as (q̇a, q̇b, q̇c). M is obtained by using the Jacobian from eq. 4.4 and then

integrating the result: 1

M =
ρA

12

2I I I 2F F F

· 2I I F 2F F

· · 2I F F 2F

· · · 2F TF F TF F TF

· · · · 2F TF F TF

· · · · · 2F TF

. (4.8)

Here, the dots indicate symmetric terms. This generalized inertia matrix is 15× 15,

corresponding to the 9 Lagrangian DoFs and 6 Eulerian DoFs of the triangle. The

upper left 3× 3 blocks of the inertia matrix correspond to the Lagrangian DoFs and

are constant over time, an advantage exploited by Lagrangian simulators. The rest of

the inertia matrix needs to be computed at every time step, since F is a function of

both Lagrangian and Eulerian DoFs.

1The deformation gradient is introduced to the inertia matrix through the replacement of ẋ with
Jq̇

20

4.5 Gravity

The gravitational potential of a triangle is given by

Vg = −gT
∫
A

ρx dA, (4.9)

where g is the gravity vector. After applying change of coordinates to α and β as

before and integrating them out, Vg can be written as

Vg = −ρA
3
gT (xa + xb + xc). (4.10)

Taking the negative gradient with respect to q of a potential energy yields a force.

This property is used here to calculate the Lagrangian force, fLg and the Eulerian

force, fEg due to gravity. The Lagrangian component is the same for vertices a, b, and

c:

fLg =
ρA

3
g, (4.11)

which is constant over time. The Eulerian components for the three vertices are

fEg =
ρ

6
gT (xa + xb + xc)S

Xa

Xb

Xc

 , (4.12)

where S ∈ R6×6 is a skew-symmetric matrix that results from taking the derivative of

the determinant of DX :

S =

0 ST2 S2

S2 0 ST2

ST2 S2 0

 , S2 =

0 −1

1 0

 . (4.13)

4.6 Elasticity

The EoL approach works with any material model, as long as the energy density

function is available. It is more convenient to calculate separate energies for membrane

21

(stretching) energy and bending energy, instead of calculating one function to model

the internal energy of the entire cloth,

The generalized forces, f, acting on the DoFs are once again the negative gradient

of the energy V with respect to q. The derivatives corresponding to the Lagrangian

DoFs are exactly the same nodal forces used in the typical Lagrangian approaches,

whereas the derivatives corresponding to the Eulerian DoFs are the new Eulerian

forces novel to the Eulerian on Lagrangian approach approach. The stiffness matrix,

K, which is used in Section 4.8, is the gradient of f with respect to q. In the current

implementation of this simulation, both of these quantities, f and K, are computed

symbolically using Maple.

It is known that analytic forces and gradients are computationally more efficient

than those produced by symbolic differentiation [42]. However, symbolic differentiation

is a good alternative because (1) the EoL approach is not tied to a particular material

model and works well with any energy function, and (2) only a handful of cloth

elements require the more expensive EoL treatment.

4.6.1 Membrane

Membrane energies, potential energies due to deformation, are usually calculated

using a strain tensor, such as Green’s strain tensor [28]. However, Green strain is a

non-linear strain model, making calculations involving it slow. Linear approximations

of Green strain work well for stretching deformations, but will show artifacts with

rotations. The corotated linear model presented in [39] fixes these deformations while

allowing for a linear strain, making it a popular choice used often in computer graphics

[44, 39, 7] for the membrane energy of the triangle. Following the notation given in

22

the tutorial by Sifakis and Barbič [39], the potential energy for a triangle is

Vm = A

(
µ‖F̄ −R‖2F +

λ

2
tr2
(
RT F̄ − I

))
, (4.14)

where F̄ ∈ R2×2 is the projected deformation gradient, described below, R is the

rotation matrix obtained with the polar decomposition of F̄ , ‖ · ‖F is the Frobenius

norm, and tr(·) is the matrix trace.

However the deformation gradient from eqn. 4.3 is 3× 2, To use this deformation

gradient in eqn. 4.14 it must first be projected down to 2 dimensions, as described by

Bender and Deul [7]. The method of projection is reproduced here for completeness.

First compute the triangle normal as n = (xb − xa)× (xc − xa) and then compute

the tangent vectors as

px =
xb − xa
‖xb − xa‖

, py =
n× px
‖n× px‖

. (4.15)

Using these vectors, form the projection matrix P = (px py)
T ∈ R2×3. The

projected deformation gradient is F̄ = PF , and its polar decomposition is RS = F̄ ,

where R is a rotation matrix. Since F̄ is 2× 2, there is an efficient closed formula for

computing the polar decomposition [38]. The corotation is assumed be constant at

each time step. However, for more accuracy, it is possible to take the derivative of the

polar decomposition, as shown by Barbič [5].

4.6.2 Bending

In this implementation, bending energy is calculated using discrete Willmore

energy [49, 42]. Given as the sum over all internal edges, i:

Vb = K
3‖ei‖2

Ai
sin2

(
θi
2

)
, (4.16)

where ei is an internal edge, Ai is the sum of the areas of the two incident triangles, θi

is the angle between the triangle normals, and K is the bending stiffness. The angle,

23

θi, is a function of the Lagrangian DoFs, x, whereas ei and Ai are functions of the

Eulerian DoFs, X. Other bending energy functions can also be used [9, 21, 8].

4.7 Transferring Local Matrices to Global Matrices

Each of the above calculations works on a small group of vertices. Membrane

forces are evaluated for three vertices at a time. Bending forces are evaluated for four

vertices. Once local quantities for M, K, and f have been calculated for a group of

vertices, they must be transfered into a global matrix or vector.

Each node considered in the above equation has an index in the mesh that contains

it, and a number of degrees of freedom. Consider a vertex va. The index of va is i.

This node may have a variable number of DoF’s. To represent this, an integer-array

is formed represent all the indices of , where Ia = i+ 1, i+ 2..i+ n, where n are the

number of DOF’s. (5 for an EoL vertex, 3 for a non-EoL vertex). The global matrices

are updated with the following procedure. As a note, in the case where EOL physics

Algorithm 2: Algorithm to block matrices into global matrices

1 Let I = Ia,Ib,Ic

2 for i = 0 to len(I) do

3 for j = 0 to len(J) do

4 Mg[I[i],I[j]] += M[i,j]

5 Kg[I[i],I[j]] += K[i,j]

6 fg[I[i]] += f[i]

are being computed, M, K, and f are reduced from their original 15× 15 to a matrix

that matches the total degrees of freedom of the vertices.

24

4.8 Equations of Motion

To integrate velocity, a linearly implicit integration scheme at the velocity level,

popularized by Baraff and Witkin on their work on efficient cloth simulation [4]:

(
M− h2K

)
q̇(k+1) = Mq̇(k) + hf, (4.17)

where h is the time step, and the superscript k indicates the current time step. Note

that the EoL framework is not tied to a specific integration scheme, and should work

equally well with other schemes.

For integration steps without collision or inequality constraints (Sec 4.9), this

equation is linear, and can be solved quickly. However, most simulation steps produce

inequality constraints, either through collision events, or though the introduction

of Eulerian on Lagrangian constraints (Section 4.10). Inequality constraints are

resolved by applying Gauss’s Principle of Least Constraint [24]. The problem can be

reformulated as the following quadratic program:

minimize
q̇

1

2
q̇T M̃q̇− q̇T f̃

subject to Aeqq̇ = 0

Aineqq̇ ≥ 0,

(4.18)

where M̃ = M−h2K, and f̃ = Mq̇(k) +hf. The new vertex positions are then computed

as x(k+1) = x(k) + hẋ(k+1) and X(k+1) = X(k) + hẊ
(k+1)

.

4.9 Introducing Constraints

In the previous section, the equations to simulate EOL physics were derived.

However, these derivations come with an important caveat. The inertia matrix in

equation 4.8 can become singular, depending on how the initial cloth is configured.

This matrix can form when Eulerian and Lagrangian velocities cancel each other out.

25

As an example, imagine an undeformed cloth is laid flat on the X-Y plane. The

center vertex of this cloth is an EoL vertex. In this configuration, the Lagrangian

coordinates of the vertex (i.e., vertex position) can be moved in one direction, and the

Eulerian coordinates, (i.e., texture coordinates) can be moved in the other direction.

The end result is the cloth not moving at all in world space. This combination of

Eulerian and Lagrangian velocities lies in the nullspace of the inertia matrix, making

M singular. A singular matrix poses a problem, as it cannot be inverted.

One approach to solving this unique case is by first solving for the Lagrangian

velocities using a Least-Squares approximation [18, 27]. However, this singularity can

also be dealt with by carefully choosing constraints that apply to both the Lagrangian

and Eulerian domains. By constraining the Lagrangian and Eulerian velocities so

they run orthogonal to each other, this edge case can be avoided. In addition, these

constraints can limit the motion of EoL vertices so that the vertices stay along a fixed

edge.

4.10 EoL Cloth Constraints

Before describing the constraints applied to the EoL vertices (Section 4.10.2),

we first review how constraints can apply a Lagrangian cloth in contact with sharp

geometric features (Section 4.10.1). In a Lagrangian cloth simulation, Cloth to Box

intersections are resolved by restricting the world-space velocity of colliding vertices

and edges.

4.10.1 Constraints for Lagrangian Cloth

To simplify the scope of this problem, consider how a 1D strand may move over a

sharp constraint. Without conformal remeshing, the strand contacts the box corner

at some element, as shown in Figure 4.2. There are two normals at the box corner (a),

26

as well as the single normal from the strand element (c). If (a) is chosen, then the

strand will be over constrained and will be locked, unable to move left or down when

forces are applied. Two solutions that allow the cloth to move over the edge are to

use the average box normal (b), or the strand’s normal (c). Unfortunately, this will

cause the strand to lift off unnaturally, since the constrained point must stay in the

positive halfspace of the constraint.

If conformal remeshing is applied, as shown in Figure 4.3, then there are now two

normals to choose from the two neighboring strand elements (c). Using these two

strand normals is still over constraining, since it will not allow the colliding node to

go below the top of the box. A Lagrangian simulator must still use averaged normals

(b) or (c), since otherwise the strand will be over constrained as in the non-conformal

case. To summarize, conformal remeshing helps a Lagrangian simulator when the

cloth is static, but it does not resolve the problem stemming from sliding motion.

4.10.2 Constraints for EoL Cloth

The EoL approach to approaching edge collisions allows for the use of unavenged

normals, while still allowing the cloth to move around sharp features. As mentioned

in section 4.9 , constraint choice must avoid forming a configuration where a cloth can

(a) Box normals (b) Box average normal (c) Strand normal

Figure 4.2: Possible contact constraints for a strand-box collision without
conformal remeshing. (a) If both normals of the box corner are used, the strand
would be over constrained. (b & c) If the averaged box normal or the strand normal
is used, it would result in an unnatural lift off.

27

move in such a way so that no movement occurs at all.

As before, consider a 1D strand as an illustration, like the one shown in shown in

Figure 4.3. Subfigures (a) through (e) are the options for constraining the Lagrangian

velocities. Among these, which one ensures that the Lagrangian and Eulerian velocities

will be as orthogonal as possible for any configuration of the strand? Subfigure (d)

provides a scheme for adding constraints that works equally well when the strand is

straight or bent completely at 90◦. When the strand is straight, the cone collapses into

a vertical line, making the Lagrangian and Eulerian velocities be exactly orthogonal.

When the strand is bent at 90◦, the cone turns into (a), making the Lagrangian and

Eulerian velocities be orthogonal if the strand is pulled to the left or downward. This

Lagrangian constraint can be expressed at the velocity level using the dual cone defined

by the binormals of the neighboring elements. We construct a binormal by forming a

vector orthogonal to the normal, and ensuring that the vertex velocity is positive with

respect to the binormal. Applying these constraint to a purely Lagrangian simulator,

the strand would result in the simulation being stuck; for example, in Figure 4.3d, the

strand cannot slide left or down. Only by allowing Eulerian motion can the strand

slide properly around the corner.

Applying this same logic to a 2D cloth requires considering two distinct cases:

contact with corner and contact with edge.

4.10.2.1 Contacts with corners

Contact with corners restricts vertex movement to a tight space near the corner.

Figure 4.4a shows a cloth vertex in contact with a box corner. The vertex’s neighboring

faces have their normals shown in green. The Lagrangian constraint for this vertex

is formed by the cone whose edges are these incident face normals, ni (Figure 4.4b).

Each face of this cone is defined by the binormal, bi, which is the vector orthogonal to

28

the two neighboring cloth normals ni and ni+1. The Lagrangian velocity constraint

is then bTi ẋ ≥ 0. Analogously to the strand case, the Eulerian DoF allows the cloth

to slide freely around the corner. We do not need any constraints on the Eulerian

velocity for these corner vertices.

The constraint cone formed by these binormals should be oriented facing away

from the box. This is accomplished by performing a dot product between the collision

normal of the corner, (An averaged normal), and each binormal. If the dot product is

negative, the binormal is flipped.

4.10.2.2 Edge Constraints

Figure 4.4c shows a cloth vertex in contact with a box edge. Again, the vertex’s

neighboring faces have their normals shown in green. The Lagrangian constraint for

this vertex is constructed from these incident face normals, ni, and the direction of

the box edge, t. In this case, vertex will be able to move freely (in the Lagrangian

sense) along the box tangent, t, while being constrained to be in the cone constructed

from the incident faces. This defines a wedge formed by the box tangent and the two

most constraining face normals (Figure 4.4d). The Lagrangian velocity constraint is

again bTi ẋ ≥ 0, where bi = t× ni, with i corresponding to the two most constraining

normals. As in the previous section, the wedge’s normal must face away from the

box edge. This is ensured by dotting each binormal with the average edge normal. A

negative dot product results in the flip of a binormal.

The Eulerian velocity constraint depends on whether the vertex is on the cloth

border or not. For EoL vertices on the cloth border, the Eulerian constraint is

bTẊ = 0, where b is the vector orthogonal the cloth border. This constraint ensures

that the cloth material remains affixed to the border. For internal EoL vertices, the

Eulerian constraint is t̄
T
Ẋ = 0, where t̄ is the averaged tangent in material space

29

Algorithm 3: EoL Constraint Generation

1 for each EoL vertex v do

2 if v colliding with box corner then

3 Lagrangian Constraint: normal cone

4 Eulerian Constraint: none

5 else if v colliding with box edge then

6 Lagrangian Constraint: normal wedge

7 if v on cloth border then

8 Eulerian Constraint: orthogonal to cloth border

9 else

10 Eulerian Constraint: averaged tangent

constructed from the two edges in the material space mesh that coincide with the

box edge. This constraint ensures that any motion of the cloth along the box edge is

realized by the Lagrangian DoF, by constraining the Eulerian motion along t̄.

All of the local constraints described in this section are collected into global

matrices so that the constraints can be written as Aeqq̇ = 0 and Aineqq̇ ≥ 0 where q̇ is

the concatenation of all nodal Lagrangian and Eulerian velocities.

30

(a) Box normals (b) Box average normal

(c) Strand normals (d) Strand binormals (e) Strand average normal

Figure 4.3: Possible contact constraints for a strand-box collision with con-
formal remeshing. Constraint scheme (d), a cone defined by the binormals of the
neighboring elements, was chosen for the EOL approach.

(a) (b) (c) (d)

Figure 4.4: Lagrangian constraints on cloth. (a-b) corner collision and the
corresponding cone; (c-d) edge collision and the corresponding cone (wedge).

31

Chapter 5

REMESHING

In order to use the EoL constraints introduced in Section 4.10, the cloth must

be remeshed so that vertices and edges exist directly on a box edge or a box corner.

This remeshing operation is a necessary step in modeling smooth sliding motion.

In addition to creating these exact vertices, the new mesh should also not contain

extremely small or inverted triangles. Finally, the remeshing scheme used should be

temporally coherent, so that the geometry of the mesh at one timestep is similar to

the geometry of the mesh in the next.

The EoL simulation treats remeshing as a black box. During implementation, this

made it easy to experiment with various remeshing implementations.

In this section, three solutions are presented to handle remeshing. Solution (A)

presents a simple remesher that creates a mesh that conforms to constraints, but does

not attempt to preserve mesh geometry from one time step to the next. Solution (B)

attempts to reduce temporal aliasing by performing remeshing in areas of interest.

Solution (C) combines solution (B) with a third party remesher, ARCSim, to show that

the simulation framework is flexible and compatible with state-of-the-art remeshers.

The remeshing operations presented in Solution (A) and Solution (B) are run

under when one of three states occurs:

1. New edge-edge or face-vert collisions are recorded, introducing new EoL vertices.

2. A previously introduced EoL vertex is removed.

3. A triangle is at risk of becoming degenerate.

It is important to note that all three of these remeshers work in the cloth’s material

32

space, although they may use world-space data in the process of performing remeshing.

At the end of all three of these remeshers, a final step is performed to create world

space positions and velocities for new vertices, as outlined in section 5.2.

5.1 Solution A: Global Remeshing

The simplest possible remeshing scheme for use with the EoL framework performs

conforming remeshing. The global remesher ensures that the mesh’s geometry will

match constraints due to collision. For example, if a cloth was colliding with a box

edge, the global remesher would guarantee that vertices existed directly on an edge,

and that no triangle edge in the mesh would cross the edge.

The majority of the remeshing operation is handled by a third-party library,

Triangle [37]. Triangle creates a mesh that conforms to a Planar Straight Line Graph,

and can also enforce mesh quality options, such as maximum or minimum triangle

area, and maximum and minimum triangle angles.

The algorithm to produce a conforming mesh is described in the next sections.

33

Algorithm 4: GlobalRemesh Creates a mesh conforming to constraints,

but does not attempt to reduce remeshing artifacts

Input: A set of collisions c, the previous simulation mesh m

Output: a new simulation mesh

1 //Collect old data, and organize data

2 Collect all new edge-edge collisions from c

3 Collect all new face-vertex collisions from c

4 Collect previously created EoL Vertices from edge-edge collisions from m

5 Collect previously created EoL Vertices from face-vertex collisions from m

6 p = PSLG() //Planar Straight Line Graph

7 Bin all edge-edge collisions and EoL vertices created from edge-edge collisions by

edge

8 Sort all vertices in each bin by interpolation along edge

9 //Construct polylines

10 Construct irregularly sampled polylines for each bin

11 Resample polylines

12 Add polylines to p

13 Add vertex-face collisions to p

14 return createMesh(p)

5.1.1 Types of Collisions

Three kinds of collisions are generated between a cloth and a box. The first is a

vertex-face collision, where a vertex from the cloth intersects with the face of a box.

These collisions are not used by the remesher.

The second kind of collision is the most common, an edge-edge intersection. These

collisions occur between a triangle edge and a box edge. These collisions are used in

34

Figure 5.1: A simple remeshing operation in 5 stages. I: Collisions are reported
to the remesher. II: Collision points are collected in material space. III: Collisions
are sorted and connected to form polylines. IV: Polylines are resampled for a better
discretization. V: Triangle uses a PSLG to create a conforming triangulation.

the remesher as the basis for forming polylines.

The final kind of collision is a face-vertex collision, a collision between a cloth

face and a box corner. These collisions are tracked separately in the remesher, and

resolved after polylines resulting from edge-edge collisions are formed.

5.1.2 Binning and Sorting Collisions into Polylines

The first step in building a PSLG is forming material-space lines that conform to

world-space positions along a box edge. First, edge-edge collisions binned according to

the edge they collided with. The collision information passed to the remesher includes

a pointer to the colliding object, and information about the id of the box edge. These

attributes are combined to form an edge hash.

The hashes are used to bin edge-edge collisions according to the box they collided

with, and the edge on said box.

These hashes and collision events are stored from one application of remeshing to

35

Figure 5.2: Previous EOL points and collisions are built into polylines.
I: Collision info and previous EOL info are collected. Dot color indicate a hash built
from an edge ID and colliding object ID.
II: Collision and EoL information is unordered when received from the collision
detector. Face-Face collisions are separated for processing later.
III: Collisions are binned according to their hash ID
IV: Each bin is sorted according to each data point’s edge interpolation.
V: Data points are joined into polylines, and the remeshing algorithm proceeds to
resampling. Single points are introduced later.

the next. In the next run of the remesher, the remesher will use these hashes, and the

vertex information associated with the hashes to re-bin old collisions.

Once all the collisions have been binned, Each bin is sorted by their position along

an edge. Figure 5.2 demonstrates how the binning and sorting works.

If any face-vertex collisions exist, They are inserted either at the head or tail of

a polyline, as they will not occur in the middle of an edge. These collisions can be

shared between polylines. However, two polylines sharing a face-vertex collision does

not necessarily mean that the polylines will be merged into one polyline. Keeping

them un-merged allows for three (or more) polylines to share a single face-vertex

point.

36

5.1.3 Processing Polylines

Each sorted bin can be used to form a polyline, an ordered collection of line

segments and vertices. However, when the polylines are built directly from collisions

the spacing between each vertex in the polyline is irregular. For a higher quality

remesh, the polyline is resampled so that each segment of the polyline has the same

length.

Once the polylines have been resampled, they must be added to a PSLG. The

Planar Straight Line Graph will consist of a border representing the cloth extents, and

any polylines embedded in the mesh. Of particular importance is ensuring that the

PSLG does not contain any crossed segments. If the polylines are naively added to

the PSLG after the border, they may intersect with the material border segments. A

preprocessing step combines any segment vertices that touch the border with vertices

along the border.

The PSLG is sent to Triangle for processing, as well as a few additional parameters

to ensure mesh quality. Triangle returns a set of material space vertices, and indices

of triangles. These vertices and indicies are used, along with the old mesh to create a

mesh that matches the topology of the original mesh, but not necessarily the geometry.

5.2 Basic Velocity Transfer

Whenever the cloth is remeshed, the velocities must be interpolated at the new

vertex positions. Simple barycentric interpolation will allow for velocities to be

transfered, but may lead to inaccurate velocities at constrained vertices. In order

to transfer velocity, we choose to minimize the difference between the new and old

velocities under the kinetic metric: 1
2
‖q̇new − q̇old‖2M.

Here, q̇old is the vector of velocities at the new mesh vertices, using information

37

about the previous mesh to calculate velocity. To form q̇old, we interpolate the

velocity field from the old mesh at each vertex from the new mesh using barycentric

interpolation. q̇old = αq̇a + βq̇b + γq̇c, where (a, b, c) are the vertex indices from the

old mesh, and (α, β, γ) are the corresponding barycentric weights. To solve for the

new constraint-adhering velocities, the following quadratic program is solved:

minimize
q̇

1

2
q̇TMq̇ + q̇TMq̇old

subject to Aeqq̇=0

Aineqq̇ ≥ 0,

(5.1)

where M is the generalized inertia matrix (Eqn. 4.8), and Aeq and Aineq are the global

constraint matrices constructed from the EoL constraints described in Section 4.10.

These matrices are constructed once and used for both the velocity transfer step and

the velocity integration step (Eqn. 5.1 and Eqn. 4.18).

5.3 Removing Constraints

After several simulation steps, the EoL Constraints will eventually reach the edge

of the material space domain. In order to avoid degenerate triangles along the border

of a cloth, a ’Lagrangian Zone’ is defined. This zone determines whether or not EoL

Constraints should persist until the next frame. If two consecutive constrained vertices

lie within the Lagrangian zone, they are turned into Lagrangian vertices.

In addition to removing vertices within the Lagrangian Zone, the remesher will

also turn vertices that have lifted off a constraining edge or corner into Lagrangian

vertices.

Figure 5.3 shows the sequence of a polyline being created, moved, and removed.

38

Figure 5.3: Removal of a polyline from a cloth. A cloth is pulled by two corners
over a box edge. The red line shows a polyline embedded in material space. The green
dotted border shows the Lagrangian zone. I: The cloth is falling to the box. II: The
middle of the cloth has collided with the box. III: The cloth slides over the edge. IV:
The polyline enters the LAG zone, and is removed.

5.4 Solution B: Localized Remeshing

Significant speedups in remeshing, and improvements in quality can be achieved

with a few modifications to Solution A. Outside of polylines, the current remeshing

solution does not attempt to preserve any geometry features from one timestep to the

next. Instead of remeshing the entire mesh each timestep, vertices can be marked as

‘preserved’, and unmarked if they fall within one ring of a polyline segment.

5.5 Improved Velocity Transfer

If a vertex is copied from the old mesh to the new mesh, it does not need to have

its velocity transfered. Instead of building a quadratic program for the full mesh, a

transfer matrix is used to build a smaller velocity transfer.

Let q̇RM denote the concatenation our EoL nodes with any newly introduced vertices.

Then, the new velocities of the whole mesh can be expressed as q̇new = Pq̇RM + p, for

39

Figure 5.4: Visual representation of the implemented remeshing algorithm.
(Left) The collision detector returns a set of collision features, shown as orange circles.
The blue circles are the existing EoL vertices. (Center) The collision features are
resampled and combined with the existing EoL vertices, and nearby triangles are
removed. If two consecutive vertices lie in near the border of the cloth, they are turned
into Lagrangian vertices. (Right) The removed region is re-triangulated.

some matrix P that puts q̇RM into the appropriate rows of q̇new, and a vector p that

contains the old velocities of untouched vertices. After some rearranging, the kinetic

metric turns into the following quadratic program:

minimize
q̇RM

1

2
q̇TRMP

TMPq̇RM + q̇TRMP
TM (p− q̇old)

subject to AeqPq̇RM = 0

AineqPq̇RM ≥ 0,

(5.2)

5.6 Solution C: Adaptive Remeshing

Solutions (A) and (B) present conforming remeshing solutions. However, neither

attempt to use information about the structure and energy of the mesh when performing

a remeshing operation. Solution C adds a per-frame post-processing step, and uses

ARCSim’s curvature based remeshing scheme helps avoid visually unappealing changes

to the triangle mesh [31]. Special care must be taken to preserve EoL vertices and

edges while ARCSim performs a remesh. However, no other changes need to be made

to the current remeshing scheme.

40

Solution C highlights the power of the Eulerian on Lagrangian scheme, in terms

of treating a remesher as a black box. If a remesher is able to create a conforming

remesh around an obstacle, then it could be used almost directly with the rest of the

simulator.

41

Chapter 6

TECHNOLOGY OVERVIEW

6.1 System Design

The simulator implemented for this thesis has been built for rapid prototyping.

A variety of approaches have been taken to allow for core parts of the system to be

swapped out at any time.

The largest design choice was to include mesh simulation, collision resolution, and

additional behavior as modules that could be attached to a core integrator.

The next section explores each part of Figure 6.1 in more detail.

6.1.1 Core Integrator

All mesh processing and interaction feeds through a core integrator class. This

integrator makes heavy use of interface classes to treat multiple kinds of simulated

meshes as a same base object. In addition, the integrator provides several hooks

to attach mesh interaction modules, collision handling modules, remeshing modules,

debug information, and post-simulation hooks. Using interfaces allows the integrator

to support a wide range of interactions, and makes enabling and disabling features

simple.

6.1.2 Simulated Objects

All simulated objects must implement a simulated mesh interface. The interface

requires that these objects implement methods to find values for force, stiffness, mass,

and damping given a timestep, to build constraint vectors given collisions, and to

42

Figure 6.1: Relationship between integrator and modules.

update velocities and positions given a new set of velocities.

In the current simulator, simulated objects consist of both cloths, and rigid bodies.

However, support for EoL constraints and rigidbodies has not been implemented.

Each frame, the integrator uses a simulated object’s ‘fill’ method to calculate forces

and simulation values per degree of freedom. Once new velocities are calculated, the

simulated object’s ‘update’ method is called to allow the object to update velocities

and positions.

6.1.3 Interactors

Interesting simulations require some sort of external interaction, whether it is from

user forces, or from constraints or collisions. Since the manner of this interaction can

vary widely, two interfaces were created. One for interacting with simulations through

equality constraints, and one for interacting through inequality constraints.

43

The basic Interactor interface supports adding equality constraints and forces to a

cloth. The main use of this interface is for applying a velocity at a certain grouping of

vertices on the mesh. The basic velocity interactor applies velocity equality constraints

to ensure that a material-space selection of vertices will be pulled.

The Interactor interface could be extended to provide other interactions, such as

user-driven forces, wind, or more interesting velocity constraints, such as sinusoidal

motion.

The QP-Interactor interface can be used to introduce inequality constraints to the

simulation. In the current system, a subclass of this interactor is used to introduce

EoL constraints to the simulation, after the remesher creates them.

6.1.4 Collision Handlers

Much like interactors, the integrator also accepts multiple modules to handle

collisions.

Although each collision handler receives a vector of simulation meshes and obstacle

meshes, the actual collision handler does not need to make use of all of this information.

For instance, one collision handler could be created to handle box→ cloth interactions,

and another could be created to handle cloth self intersections.

The two implemented collision handlers are a box → cloth collision handler, and

a collision handler that creates a colliding ‘polyline’, to simulate an edge of a table.

This second collision handler was useful in debugging, but is not currently used in the

simulation.

Collision events are returned in a standard format. The integrator asks the involved

simulation meshes to process the collision to form constraint vectors by calling each

the involved mesh’s collision method. Separating collision into detection and response

44

allows for interactions between a cloth mesh with rigid bodies, as both handle collisions

differently.

6.1.5 Collision Callbacks

Additional code may need to run once collisions have been registered. These

sections of code include the EoL remesher, as well as debug visualization code. Any

code that requires access to the collisions can adapt to the I-CollisionCallback interface.

Any code that does will receive a list of collisions that occurred during the last simulated

frame.

The most important class that implements this callback is the EoL remeshing

routine. The algorithms presented in Chapter 5 run in response to collision events.

6.1.6 Post-Simulation Hooks

After a simulation step is completed, additional post processing may occur. The

integrator accepts modules that adapt to the interface I-PostSimStep to be run once

at the end of each frame.

The most notable subclass of I-PostSimStep is the ARCsim remesher. Currently,

ARCsim runs an adaptive remeshing routine at the end of each frame, further dis-

cretizing high-curvature areas of the mesh, and simplifying low curvature areas.

6.2 Quadratic or Linear?

Depending on the state of the cloth and the interactors, the integrator may be

able to integrate velocities and positions without having to solve a quadratic program.

Once all forces, constraints, and matrices have been built, the integrator checks

to see if any inequality constraints have been formed. If not, solving equation 4.17

45

can be done through a LU decomposition, rather than solving a quadratic program.

Equality constraints are modeled with a KKT system [3]. The linear algebra library

Eigen handles solving linear equations. However, once inequality constraints form,

linear equations no longer suffice. Instead of encoding equality constraints directly

into the solving matrix, they are separated into a constraint matrix and a constraint

vector. The MOSEK library is then used to solve the resulting minimization problem.

46

Chapter 7

RESULTS

The system was implemented in the C++ programming language and all results

were executed on a consumer laptop. The code is single-threaded and uses Eigen for

linear algebra and MOSEK for solving quadratic equations. Figures 7.1-7.3, show

some still frames from the simulations. In Table 7.1, performance numbers are listed.

Cloth pulled over box edges: In this example, the cloth is pulled over the edges

of a box (Figure 7.1). A purely Lagrangian simulation is used as a comparison. As

expected, the Lagrangian cloth shows non-smooth sliding around the edge—when the

cloth is pulled, it initially gets locked at the edge, builds up energy, and then jumps

over the edge. On the other hand, the EoL cloth smoothly slides around the edge

with a perfectly straight line at the box edge, despite the coarser discretization. In

addition, the time required to perform collision detection goes down slightly with EoL

since EoL vertices do not need to be passed into the collision detector. The total time

spent per step is higher with EoL than with Lagrangian, mainly due to the velocity

transfer step, which is a second global QP (Section 5.2). An optimization to the

velocity transfer routine has been implemented, but was turned off when capturing

the results of this simulation. On average, the optimization caused the time spent

transferring velocity to be cut in half.

Cloth pulled over box corners: The next example shows how the EoL cloth can

also slide over box corners(autoreffig:resultsCorner). A cloth is dragged over two edges

and a corner. As shown in Figure 7.2 (3rd column), the EoL cloth is able to sharply

bend around the edges and the corner, whereas the Lagrangian cloth can only bend

47

Figure 7.1: Visual results from the ‘Edge’ scene. (Top row) An Eulerian cloth
smoothly slides over the edge. (Bottom row) A Lagrangian cloth with a regular mesh
gets stuck at the edge, stretches, and then jumps over the edge.

Figure 7.2: Visual results from the ‘Corner’ scene. The front and right corners
are pulled toward the camera. (Top row) The Eulerian cloth smoothly slides over
the edge and the corner. Note the sharp creases along the edge and at the corner.
(Bottom row) The Lagrangian cloth is unable to bend or slide smoothly over the edge
or the corner.

roughly due to the initial discretization of the cloth.

Cloth sliding over boxes: The final scene shows a cloth sliding over a rotated

box(Figure 7.3). In the second nd column of Figure 7.3, the EoL cloth shows a sharp

crease around the horizontal box edge, whereas the Lagrangian cloth does not. In

the third column, the EoL again shows a sharp crease around the rotated box edge,

whereas the Lagrangian cloth does not. The fourth column shows a close up of the

two cloths bending around this rotated box edge.

48

Figure 7.3: Visual results from the ‘Slide’ scene. The front corners are pulled
toward the camera and slides over boxes. (Top row) The Eulerian cloth smoothly
slides over sharp features. (Bottom row) The Lagrangian cloth is unable to bend or
slide smoothly over sharp features. In each row, the right-most column is a close-up
shot showing how a sharp seam is obtained for EoL, but not for Lagrangian.

Table 7.1: Performance analysis of example scenes.
#V: Maximum number of vertices.
%E: Maximum EoL vertex percentage.
%CD: Percentage spent in collision detection.
%RM: Percentage spent in remesh.
%VT: Percentage spent in velocity transfer.
%VI: Percentage spent in velocity integration.
T: Total time per step (ms).

#V %E %CD %RM %VT %VI T

Edges (LAG) 174 - 9.8 - - 90.1 81.6

Edges (EoL) 135 29.6 3.9 1.7 40.4 51.9 127.9

Corner (LAG) 464 - 9.9 - - 90.0 226.0

Corner (EoL) 538 7.2 4.4 3.3 32.0 59.3 417.9

Slide (LAG) 464 - 10.3 - - 89.5 218.4

Slide (EoL) 533 7.6 5.1 3.3 26.7 67.0 404.3

49

Chapter 8

CONCLUSION

This thesis introduced a novel Eulerian-on-Lagrangian cloth simulation framework

that can robustly simulate the cloth sliding over sharp features, a scenario that cannot

be simulated by other methods due to the fundamental limitation of purely Lagrangian

simulators. In this framework, both Eulerian and Lagrangian degrees of freedom are

used to simulate vertices at the sharp features. This work showed how to derive the

equations of motion for elements that involve these special vertices. It also defined a

simple set of geometric rules for constraining these vertices to remove the redundancy

that exists between the Eulerian and Lagrangian degrees of freedom. Finally, this thesis

showed various examples of how the EoL framework is able to robustly handle difficult

scenarios involving sliding over sharp edges and corners. Following the completion of

this thesis, the source code for the C++ simulator will be released to the public, in

order to encourage future research in Eulerian-on-Lagrangian cloth simulation.

8.1 Future Work

This work is the first work to use an Eulerian discretization for cloth. The

framework has shown promise of many avenues of future work. First, an important

obvious extension is to include rigid body dynamics. This can be accomplished by

modifying the constraints in Section 4.10 to include rigid body velocities. Constraints

would limit the relative velocity between the cloth and the rigid body. In the same vein,

allowing EoL style contact handling for cloth-cloth, cloth-fluid and cloth-deformable

body interactions would allow for more seamless simulations of such phenomena.

In the current implementation we simply default to purely Lagrangian handling for

50

any contact which is not between cloth and a static rigid body. Another interesting

avenue of future work is to remove the restriction that the border vertices must be

Lagrangian (corner nodes cannot be Eulerian; edge nodes can only be Eulerian along

the edge tangent). The ‘Lagrangian Zone’ mentioned in Section 5.3 is a workaround

to ensure no triangle becomes degenerate. However, a ‘ghost mesh’ approach may

allow for discretization to continue outside the boundaries of the EoL mesh. With

this modification, we expect to see better transition of EoL to Lagrangian vertices

near the border of the cloth.

51

BIBLIOGRAPHY

[1] Cal Poly Github. http://www.github.com/CalPoly.

[2] S. Ainsley, E. Vouga, E. Grinspun, and R. Tamstorf. Speculative parallel

asynchronous contact mechanics. ACM Trans. Graph., 31(6):151:1–151:8, Nov.

2012.

[3] D. Baraff. Linear-time dynamics using lagrange multipliers. In Proceedings of the

23rd annual conference on Computer graphics and interactive techniques, pages

137–146. ACM, 1996.

[4] D. Baraff and A. Witkin. Large steps in cloth simulation. In Proceedings of the

25th Annual Conference on Computer Graphics and Interactive Techniques,

SIGGRAPH ’98, pages 43–54, New York, NY, USA, 1998. ACM.

[5] J. Barbič. Exact corotational linear fem stiffness matrix. Technical report,

University of Southern California, 2012.

[6] J. Barbič and D. L. James. Real-time subspace integration for st.

venant-kirchhoff deformable models. ACM Trans. Graph., 24(3):982–990, July

2005.

[7] J. Bender and C. Deul. Adaptive cloth simulation using corotational finite

elements. Computers & Graphics, 37(7):820 – 829, 2013.

[8] M. Bergou, M. Wardetzky, D. Harmon, D. Zorin, and E. Grinspun. A quadratic

bending model for inextensible surfaces. In Proc. Symposium on Geometry

Processing, pages 227–230, Aire-la-Ville, Switzerland, 2006. Eurographics

Association.

52

[9] R. Bridson, S. Marino, and R. Fedkiw. Simulation of clothing with folds and

wrinkles. In Proc. ACM SIGGRAPH/Eurographics Symposium on Computer

Animation, pages 28–36, Aire-la-Ville, Switzerland, 2003. Eurographics

Association.

[10] T. Brochu, E. Edwards, and R. Bridson. Efficient geometrically exact continuous

collision detection. ACM Trans. Graph., 31(4):96:1–96:7, July 2012.

[11] Z. W. Casella, Tyler. Artist-driven fracturing of polyhedral surface meshes.

Master’s thesis, Cal Poly, San Luis Obispo, 2013.

[12] N. Chentanez and M. Müller. Real-time eulerian water simulation using a

restricted tall cell grid. ACM Transactions on Graphics (TOG), 30(4):82, 2011.

[13] G. Cirio, J. Lopez-Moreno, D. Miraut, and M. A. Otaduy. Yarn-level simulation

of woven cloth. ACM Trans. Graph., 33(6):207:1–207:11, Nov. 2014.

[14] G. Cirio, J. Lopez-Moreno, and M. A. Otaduy. Efficient simulation of knitted

cloth using persistent contacts. In Proc. ACM SIGGRAPH / Eurographics

Symposium on Computer Animation, pages 55–61, New York, NY, USA, 2015.

ACM.

[15] M. B. Cline and D. K. Pai. Post-stabilization for rigid body simulation with

contact and constraints. In Robotics and Automation, 2003. Proceedings.

ICRA’03. IEEE International Conference on, volume 3, pages 3744–3751. IEEE,

2003.

[16] F. Cordier and N. Magnenat-Thalmann. Real-time animation of dressed virtual

humans. In Computer Graphics Forum, volume 21, pages 327–335, 2002.

[17] F. Cordier and N. Magnenat-Thalmann. A data-driven approach for real-time

53

clothes simulation. In Computer Graphics Forum, volume 24, pages 173–183,

2005.

[18] Y. Fan, J. Litven, D. I. W. Levin, and D. K. Pai. Eulerian-on-lagrangian

simulation. ACM Trans. Graph., 32(3):22:1–22:9, July 2013.

[19] Y. Fan, J. Litven, and D. K. Pai. Active volumetric musculoskeletal systems.

ACM Trans. Graph., 33(4):152:1–152:9, July 2014.

[20] R. Goldenthal, D. Harmon, R. Fattal, M. Bercovier, and E. Grinspun. Efficient

simulation of inextensible cloth. ACM Trans. Graph., 26(3), July 2007.

[21] E. Grinspun, A. N. Hirani, M. Desbrun, and P. Schröder. Discrete shells. In

Proc. ACM SIGGRAPH/Eurographics Symposium on Computer Animation,

pages 62–67, Aire-la-Ville, Switzerland, 2003. Eurographics Association.

[22] D. M. Kaufman, S. Sueda, D. L. James, and D. K. Pai. Staggered projections for

frictional contact in multibody systems. ACM Trans. Graph., 27(5):164:1–164:11,

Dec 2008.

[23] T.-Y. Kim, N. Chentanez, and M. Müller-Fischer. Long range attachments - a

method to simulate inextensible clothing in computer games. In Proc. ACM

SIGGRAPH / Eurographics Symp. Comput. Anim., pages 305–310, 2012.

[24] C. Lanczos. The variational principles of mechanics. Dover, 4 edition, 1986.

[25] D. I. W. Levin, J. Litven, G. L. Jones, S. Sueda, and D. K. Pai. Eulerian solid

simulation with contact. ACM Trans. Graph., 30(4):36:1–36:10, July 2011.

[26] D. Li, S. Sueda, D. R. Neog, and D. K. Pai. Thin skin elastodynamics. ACM

Trans. Graph., 32(4):49:1–49:10, July 2013.

54

[27] R. Malgat, B. Gilles, D. I. W. Levin, M. Nesme, and F. Faure. Multifarious

hierarchies of mechanical models for artist assigned levels-of-detail. In Proc.

ACM SIGGRAPH / Eurographics Symp. Comput. Anim., pages 27–36, 2015.

[28] M. Müller, J. Stam, D. James, and N. Thürey. Real time physics: Class notes.

In ACM SIGGRAPH 2008 Classes, SIGGRAPH ’08, pages 88:1–88:90, New

York, NY, USA, 2008. ACM.

[29] M. Müller-Fischer. Fast water simulation for games using height fields.

[30] R. Narain, T. Pfaff, and J. F. O’Brien. Folding and crumpling adaptive sheets.

ACM Transactions on Graphics (TOG), 32(4):51, 2013.

[31] R. Narain, A. Samii, and J. F. O’Brien. Adaptive anisotropic remeshing for cloth

simulation. ACM Trans. Graph., 31(6):152:1–152:10, Nov. 2012.

[32] T. Pfaff, R. Narain, J. M. de Joya, and J. F. O’Brien. Adaptive tearing and

cracking of thin sheets. ACM Transactions on Graphics, 33(4):xx:1–9, July 2014.

To be presented at SIGGRAPH 2014, Vancouver.

[33] K. Piddington, D. I. W. Levin, D. K. Pai, and S. Sueda. Eulerian-on-lagrangian

cloth. In Proceedings of the 14th ACM SIGGRAPH / Eurographics Symposium

on Computer Animation, SCA ’15, pages 196–196, New York, NY, USA, 2015.

ACM.

[34] X. Provot. Deformation constraints in a mass-spring model to describe rigid

cloth behavior. In Graphics Interface, pages 147–154, 1996.

[35] P. Sachdeva, S. Sueda, S. Bradley, M. Fain, and D. K. Pai. Biomechanical

simulation and control of hands and tendinous systems. ACM Trans. Graph.,

34(4):42:1–42:10, July 2015.

55

[36] P. Sachdeva, S. Sueda, S. Bradley, M. Fine, and D. K. Pai. Biomechanical

simulation and control of hands and tendinous systems. ACM Trans. Graph.,

34(4), July 2015.

[37] J. R. Shewchuk. Triangle: Engineering a 2D Quality Mesh Generator and

Delaunay Triangulator. In M. C. Lin and D. Manocha, editors, Applied

Computational Geometry: Towards Geometric Engineering, volume 1148 of

Lecture Notes in Computer Science, pages 203–222. Springer-Verlag, May 1996.

From the First ACM Workshop on Applied Computational Geometry.

[38] K. Shoemake and T. Duff. Matrix animation and polar decomposition. In

Proceedings of the Conference on Graphics Interface ’92, pages 258–264, San

Francisco, CA, USA, 1992. Morgan Kaufmann Publishers Inc.

[39] E. Sifakis and J. Barbič. Fem simulation of 3d deformable solids: A practitioner’s

guide to theory, discretization and model reduction. In ACM SIGGRAPH 2012

Courses, SIGGRAPH ’12, pages 20:1–20:50, New York, NY, USA, 2012. ACM.

[40] L. Sigal, M. Mahler, S. Diaz, K. McIntosh, E. Carter, T. Richards, and

J. Hodgins. A perceptual control space for garment simulation. ACM Trans.

Graph., 34(4):117:1–117:10, July 2015.

[41] S. Sueda, G. L. Jones, D. I. W. Levin, and D. K. Pai. Large-scale dynamic

simulation of highly constrained strands. ACM Trans. Graph., 30(4):39:1–39:10,

July 2011.

[42] R. Tamstorf and E. Grinspun. Discrete bending forces and their jacobians.

Graph. Models, 75(6):362–370, Nov. 2013.

[43] R. Tamstorf, T. Jones, and S. F. McCormick. Smoothed aggregation multigrid

for cloth simulation. ACM Trans. Graph., 34(6):245:1–245:13, Oct. 2015.

56

[44] B. Thomaszewski, S. Pabst, and W. Strasser. Continuum-based strain limiting.

Computer Graphics Forum, 28(2):569–576, 2009.

[45] B. Thomaszewski, M. Wacker, and W. Straßer. A consistent bending model for

cloth simulation with corotational subdivision finite elements. In Proc. ACM

SIGGRAPH / Eurographics Symp. Comput. Anim., pages 107–116, 2006.

[46] P. Volino, N. Magnenat-Thalmann, and F. Faure. A simple approach to

nonlinear tensile stiffness for accurate cloth simulation. ACM Trans. Graph.,

28(4):105:1–105:16, Sept. 2009.

[47] H. Wang. Defending continuous collision detection against errors. ACM Trans.

Graph., 33(4):122:1–122:10, July 2014.

[48] H. Wang, J. F. O’Brien, and R. Ramamoorthi. Data-driven elastic models for

cloth: Modeling and measurement. ACM Trans. Graph., 30(4):71:1–71:12, July

2011.

[49] M. Wardetzky, M. Bergou, D. Harmon, D. Zorin, and E. Grinspun. Discrete

quadratic curvature energies. Comput. Aided Geom. Des., 24(8-9):499–518, Nov.

2007.

[50] W. Xu, N. Umentani, Q. Chao, J. Mao, X. Jin, and X. Tong.

Sensitivity-optimized rigging for example-based real-time clothing synthesis.

ACM Trans. Graph., 33(4):107:1–107:11, July 2014.

57

