2 research outputs found

    Recognition of prokaryotic promoters based on a novel variable-window Z-curve method

    Get PDF
    Transcription is the first step in gene expression, and it is the step at which most of the regulation of expression occurs. Although sequenced prokaryotic genomes provide a wealth of information, transcriptional regulatory networks are still poorly understood using the available genomic information, largely because accurate prediction of promoters is difficult. To improve promoter recognition performance, a novel variable-window Z-curve method is developed to extract general features of prokaryotic promoters. The features are used for further classification by the partial least squares technique. To verify the prediction performance, the proposed method is applied to predict promoter fragments of two representative prokaryotic model organisms (Escherichia coli and Bacillus subtilis). Depending on the feature extraction and selection power of the proposed method, the promoter prediction accuracies are improved markedly over most existing approaches: for E. coli, the accuracies are 96.05% (σ70 promoters, coding negative samples), 90.44% (σ70 promoters, non-coding negative samples), 92.13% (known sigma-factor promoters, coding negative samples), 92.50% (known sigma-factor promoters, non-coding negative samples), respectively; for B. subtilis, the accuracies are 95.83% (known sigma-factor promoters, coding negative samples) and 99.09% (known sigma-factor promoters, non-coding negative samples). Additionally, being a linear technique, the computational simplicity of the proposed method makes it easy to run in a matter of minutes on ordinary personal computers or even laptops. More importantly, there is no need to optimize parameters, so it is very practical for predicting other species promoters without any prior knowledge or prior information of the statistical properties of the samples

    Assessing the effects of data selection and representation on the development of reliable E. coli sigma 70 promoter region predictors

    Get PDF
    As the number of sequenced bacterial genomes increases, the need for rapid and reliable tools for the annotation of functional elements (e.g., transcriptional regulatory elements) becomes more desirable. Promoters are the key regulatory elements, which recruit the transcriptional machinery through binding to a variety of regulatory proteins (known as sigma factors). The identification of the promoter regions is very challenging because these regions do not adhere to specific sequence patterns or motifs and are difficult to determine experimentally. Machine learning represents a promising and cost-effective approach for computational identification of prokaryotic promoter regions. However, the quality of the predictors depends on several factors including: i) training data; ii) data representation; iii) classification algorithms; iv) evaluation procedures. In this work, we create several variants of E. coli promoter data sets and utilize them to experimentally examine the effect of these factors on the predictive performance of E. coli σ70 promoter models. Our results suggest that under some combinations of the first three criteria, a prediction model might perform very well on cross-validation experiments while its performance on independent test data is drastically very poor. This emphasizes the importance of evaluating promoter region predictors using independent test data, which corrects for the over-optimistic performance that might be estimated using the cross-validation procedure. Our analysis of the tested models shows that good prediction models often perform well despite how the non-promoter data was obtained. On the other hand, poor prediction models seems to be more sensitive to the choice of non-promoter sequences. Interestingly, the best performing sequence-based classifiers outperform the best performing structure-based classifiers on both cross-validation and independent test performance evaluation experiments. Finally, we propose a meta-predictor method combining two top performing sequence-based and structure-based classifiers and compare its performance with some of the state-of-the-art E. coli σ70 promoter prediction methods.NPRP grant No. 4-1454-1-233 from the Qatar National Research Fund (a member of Qatar Foundation).Scopu
    corecore