20,778 research outputs found

    Particle Swarm Optimization Based Source Seeking

    Get PDF
    Signal source seeking using autonomous vehicles is a complex problem. The complexity increases manifold when signal intensities captured by physical sensors onboard are noisy and unreliable. Added to the fact that signal strength decays with distance, noisy environments make it extremely difficult to describe and model a decay function. This paper addresses our work with seeking maximum signal strength in a continuous electromagnetic signal source with mobile robots, using Particle Swarm Optimization (PSO). A one to one correspondence with swarm members in a PSO and physical Mobile robots is established and the positions of the robots are iteratively updated as the PSO algorithm proceeds forward. Since physical robots are responsive to swarm position updates, modifications were required to implement the interaction between real robots and the PSO algorithm. The development of modifications necessary to implement PSO on mobile robots, and strategies to adapt to real life environments such as obstacles and collision objects are presented in this paper. Our findings are also validated using experimental testbeds.Comment: 13 pages, 12 figure

    Visual servoing of an autonomous helicopter in urban areas using feature tracking

    Get PDF
    We present the design and implementation of a vision-based feature tracking system for an autonomous helicopter. Visual sensing is used for estimating the position and velocity of features in the image plane (urban features like windows) in order to generate velocity references for the flight control. These visual-based references are then combined with GPS-positioning references to navigate towards these features and then track them. We present results from experimental flight trials, performed in two UAV systems and under different conditions that show the feasibility and robustness of our approach

    Node Density Estimation in VANETs Using Received Signal Power

    Get PDF
    Accurately estimating node density in Vehicular Ad hoc Networks, VANETs, is a challenging and crucial task. Various approaches exist, yet none takes advantage of physical layer parameters in a distributed fashion. This paper describes a framework that allows individual nodes to estimate the node density of their surrounding network independent of beacon messages and other infrastructure-based information. The proposal relies on three factors: 1) a discrete event simulator to estimate the average number of nodes transmitting simultaneously; 2) a realistic channel model for VANETs environment; and 3) a node density estimation technique. This work provides every vehicle on the road with two equations indicating the relation between 1) received signal strength versus simultaneously transmitting nodes, and 2) simultaneously transmitting nodes versus node density. Access to these equations enables individual nodes to estimate their real-time surrounding node density. The system is designed to work for the most complicated scenarios where nodes have no information about the topology of the network and, accordingly, the results indicate that the system is reasonably reliable and accurate. The outcome of this work has various applications and can be used for any protocol that is affected by node density

    Optimisation of Mobile Communication Networks - OMCO NET

    Get PDF
    The mini conference “Optimisation of Mobile Communication Networks” focuses on advanced methods for search and optimisation applied to wireless communication networks. It is sponsored by Research & Enterprise Fund Southampton Solent University. The conference strives to widen knowledge on advanced search methods capable of optimisation of wireless communications networks. The aim is to provide a forum for exchange of recent knowledge, new ideas and trends in this progressive and challenging area. The conference will popularise new successful approaches on resolving hard tasks such as minimisation of transmit power, cooperative and optimal routing

    Optimal Self-Organization

    Full text link
    We present computational and analytical results indicating that systems of driven entities with repulsive interactions tend to reach an optimal state associated with minimal interaction and minimal dissipation. Using concepts from non-equilibrium thermodynamics and game theoretical ideas, we generalize this finding to an even wider class of self-organizing systems which have the ability to reach a state of maximal overall ``success''. This principle is expected to be relevant for driven systems in physics like sheared granular media, but it is also applicable to biological, social, and economic systems, for which only a limited number of quantitative principles are available yet.Comment: This is the detailled revised version of a preprint on ``Self-Organised Optimality'' (cond-mat/9903319). For related work see http://www.theo2.physik.uni-stuttgart.de/helbing.html and http://angel.elte.hu/~vicsek
    • …
    corecore