53,062 research outputs found

    Learning Exact Topology of a Loopy Power Grid from Ambient Dynamics

    Full text link
    Estimation of the operational topology of the power grid is necessary for optimal market settlement and reliable dynamic operation of the grid. This paper presents a novel framework for topology estimation for general power grids (loopy or radial) using time-series measurements of nodal voltage phase angles that arise from the swing dynamics. Our learning framework utilizes multivariate Wiener filtering to unravel the interaction between fluctuations in voltage angles at different nodes and identifies operational edges by considering the phase response of the elements of the multivariate Wiener filter. The performance of our learning framework is demonstrated through simulations on standard IEEE test cases.Comment: accepted as a short paper in ACM eEnergy 2017, Hong Kon

    A large geometric distortion in the first photointermediate of rhodopsin, determined by double-quantum solid-state NMR

    No full text
    Double-quantum magic-angle-spinning NMR experiments were performed on 11,12-C-13(2)-retinylidene-rhodopsin under illumination at low temperature, in order to characterize torsional angle changes at the C11-C12 photoisomerization site. The sample was illuminated in the NMR rotor at low temperature (similar to 120 K) in order to trap the primary photointermediate, bathorhodopsin. The NMR data are consistent with a strong torsional twist of the HCCH moiety at the isomerization site. Although the HCCH torsional twist was determined to be at least 40A degrees, it was not possible to quantify it more closely. The presence of a strong twist is in agreement with previous Raman observations. The energetic implications of this geometric distortion are discussed

    Gridless Two-dimensional DOA Estimation With L-shaped Array Based on the Cross-covariance Matrix

    Full text link
    The atomic norm minimization (ANM) has been successfully incorporated into the two-dimensional (2-D) direction-of-arrival (DOA) estimation problem for super-resolution. However, its computational workload might be unaffordable when the number of snapshots is large. In this paper, we propose two gridless methods for 2-D DOA estimation with L-shaped array based on the atomic norm to improve the computational efficiency. Firstly, by exploiting the cross-covariance matrix an ANM-based model has been proposed. We then prove that this model can be efficiently solved as a semi-definite programming (SDP). Secondly, a modified model has been presented to improve the estimation accuracy. It is shown that our proposed methods can be applied to both uniform and sparse L-shaped arrays and do not require any knowledge of the number of sources. Furthermore, since our methods greatly reduce the model size as compared to the conventional ANM method, and thus are much more efficient. Simulations results are provided to demonstrate the advantage of our methods

    A study of pilot modeling in multi-controller tasks

    Get PDF
    A modeling approach, which utilizes a matrix of transfer functions to describe the human pilot in multiple input, multiple output control situations, is studied. The approach used was to extend a well established scalar Wiener-Hopf minimization technique to the matrix case and then study, via a series of experiments, the data requirements when only finite record lengths are available. One of these experiments was a two-controller roll tracking experiment designed to force the pilot to use rudder in order to coordinate and reduce the effects of aileron yaw. One model was computed for the case where the signals used to generate the spectral matrix are error and bank angle while another model was computed for the case where error and yaw angle are the inputs. Several anomalies were observed to be present in the experimental data. These are defined by the descriptive terms roll up, break up, and roll down. Due to these algorithm induced anomalies, the frequency band over which reliable estimates of power spectra can be achieved is considerably less than predicted by the sampling theorem

    Subtraction-noise projection in gravitational-wave detector networks

    Get PDF
    In this paper, we present a successful implementation of a subtraction-noise projection method into a simple, simulated data analysis pipeline of a gravitational-wave search. We investigate the problem to reveal a weak stochastic background signal which is covered by a strong foreground of compact-binary coalescences. The foreground which is estimated by matched filters, has to be subtracted from the data. Even an optimal analysis of foreground signals will leave subtraction noise due to estimation errors of template parameters which may corrupt the measurement of the background signal. The subtraction noise can be removed by a noise projection. We apply our analysis pipeline to the proposed future-generation space-borne Big Bang Observer (BBO) mission which seeks for a stochastic background of primordial GWs in the frequency range 0.11\sim 0.1-1 Hz covered by a foreground of black-hole and neutron-star binaries. Our analysis is based on a simulation code which provides a dynamical model of a time-delay interferometer (TDI) network. It generates the data as time series and incorporates the analysis pipeline together with the noise projection. Our results confirm previous ad hoc predictions which say that BBO will be sensitive to backgrounds with fractional energy densities below Ω=1016\Omega=10^{-16}Comment: 54 pages, 15 figure

    Hyper-spherical and Elliptical Stochastic Cycles

    Get PDF
    A univariate first order stochastic cycle can be represented as an element of a bivariate first order vector autoregressive process, or VAR(1), where the transition matrix is associated with a Givens rotation. From the geometrical viewpoint, the kernel of the cyclical dynamics is described by a clockwise rotation along a circle in the plane. The reduced form of the cycle is either ARMA(2,1), with complex roots, or AR(1), when the rotation angle equals 2k\pi or (2k + 1)\pi; k = 0; 1;... This paper generalizes this representation in two directions. According to the first, the cyclical dynamics originate from the motion of a point along an ellipse. The reduced form is also ARMA(2,1), but the model can account for certain types of asymmetries. The second deals with the multivariate case: the cyclical dynamics result from the projection along one of the coordinate axis of a point moving in Rn along an hyper-sphere. This is described by a VAR(1) process whose transition matrix is obtained by a sequence of n-dimensional Givens rotations. The reduced form of an element of the system is shown to be ARMA(n, n - 1). The properties of the resulting models are analyzed in the frequency domain, and we show that this generalization can account for a multimodal spectral density. The illustrations show that the proposed generalizations can be fitted successfully to some well known case studies of the econometric and time series literature. For instance, the elliptical model provides a parsimonious but effective representation of the mink-muskrat interaction. The hyperspherical model provides an interesting re-interpretation of the cycle in US Gross Domestic Product quarterly growth and the cycle in the Fortaleza rainfall series.State space models; Predator-Prey Interaction; Givens Rotations.
    corecore