362 research outputs found

    Estimation of wrist angle from sonomyography using support vector machine and artificial neural network models

    Get PDF
    2008-2009 > Academic research: refereed > Publication in refereed journalAccepted ManuscriptPublishe

    Comparison of regression models for estimation of isometric wrist joint torques using surface electromyography

    Get PDF
    Background: Several regression models have been proposed for estimation of isometric joint torque using surfaceelectromyography (SEMG) signals. Common issues related to torque estimation models are degradation of modelaccuracy with passage of time, electrode displacement, and alteration of limb posture. This work compares theperformance of the most commonly used regression models under these circumstances, in order to assistresearchers with identifying the most appropriate model for a specific biomedical application.Methods: Eleven healthy volunteers participated in this study. A custom-built rig, equipped with a torque sensor,was used to measure isometric torque as each volunteer flexed and extended his wrist. SEMG signals from eightforearm muscles, in addition to wrist joint torque data were gathered during the experiment. Additional data weregathered one hour and twenty-four hours following the completion of the first data gathering session, for thepurpose of evaluating the effects of passage of time and electrode displacement on accuracy of models. AcquiredSEMG signals were filtered, rectified, normalized and then fed to models for training.Results: It was shown that mean adjusted coefficient of determination (R2a) values decrease between 20%-35% fordifferent models after one hour while altering arm posture decreased mean R2avalues between 64% to 74% fordifferent models.Conclusions: Model estimation accuracy drops significantly with passage of time, electrode displacement, andalteration of limb posture. Therefore model retraining is crucial for preserving estimation accuracy. Data resamplingcan significantly reduce model training time without losing estimation accuracy. Among the models compared,ordinary least squares linear regression model (OLS) was shown to have high isometric torque estimation accuracycombined with very short training times

    Neural network based patient recovery estimation of a PAM-based rehabilitation robot

    Get PDF
    Rehabilitation robots have shown a promise in aiding patient recovery by supporting them in repetitive, systematic training sessions. A critical factor in the success of such training is the patient’s recovery progress, which can guide suitable treatment plans and reduce recovery time. In this study, a neural network-based approach is proposed to estimate the patient’s recovery, which can aid in the development of an assist-as-needed training strategy for the gait training system. Experimental results show that the proposed method can accurately estimate the external torques generated by the patient to determine their recovery. The estimated patient recovery is used for an impedance control of a 2-DOF robotic orthosis powered by pneumatic artificial muscles, which improves the robot joint compliance coefficients and makes the patient more comfortable and confident during rehabilitation exercises

    Neuromechanical Tuning for Arm Motor Control

    Get PDF
    Movement is a fundamental behavior that allows us to interact with the external world. Its importance to human health is most evident when it becomes impaired due to disease or injury. Physical and occupational rehabilitation remains the most common treatment for these types of disorders. Although therapeutic interventions may improve motor function, residual deficits are common for many pathologies, such as stroke. The development of novel therapeutics is dependent upon a better understanding of the underlying mechanisms that govern movement. Movement of the human body adheres to the principles of classic Newtonian mechanics. However, due to the inherent complexity of the body and the highly variable repertoire of environmental contexts in which it operates, the musculoskeletal system presents a challenging control problem and the onus is on the central nervous system to reliably solve this problem. The neural motor system is comprised of numerous efferent and afferent pathways with a hierarchical organization which create a complex arrangement of feedforward and feedback circuits. However, the strategy that the neural motor system employs to reliably control these complex mechanics is still unknown. This dissertation will investigate the neural control of mechanics employing a “bottom-up” approach. It is organized into three research chapters with an additional introductory chapter and a chapter addressing final conclusions. Chapter 1 provides a brief description of the anatomical and physiological principles of the human motor system and the challenges and strategies that may be employed to control it. Chapter 2 describes a computational study where we developed a musculoskeletal model of the upper limb to investigate the complex mechanical interactions due to muscle geometry. Muscle lengths and moment arms contribute to force and torque generation, but the inherent redundancy of these actuators create a high-dimensional control problem. By characterizing these relationships, we found mechanical coupling of muscle lengths which the nervous system could exploit. Chapter 3 describes a study of muscle spindle contribution to muscle coactivation using a computational model of primary afferent activity. We investigated whether these afferents could contribute to motoneuron recruitment during voluntary reaching tasks in humans and found that afferent activity was orthogonal to that of muscle activity. Chapter 4 describes a study of the role of the descending corticospinal tract in the compensation of limb dynamics during arm reaching movements. We found evidence that corticospinal excitability is modulated in proportion to muscle activity and that the coefficients of proportionality vary in the course of these movements. Finally, further questions and future directions for this work are discussed in the Chapter 5

    Robot Control Using Electromyography (EMG) Signals of the Wrist

    Get PDF
    The aim of this paper is to design a human–interface system, using EMG signals elicited by various wrist movements, to control a robot. EMG signals are normalized and based on joint torque. A three-layer neural network is used to estimate posture of the wrist and forearm from EMG signals. After training the neural network and obtaining appropriate weights, the subject was able to control the robot in real time using wrist and forearm movements

    Advancing Medical Technology for Motor Impairment Rehabilitation: Tools, Protocols, and Devices

    Get PDF
    Excellent motor control skills are necessary to live a high-quality life. Activities such as walking, getting dressed, and feeding yourself may seem mundane, but injuries to the neuromuscular system can render these tasks difficult or even impossible to accomplish without assistance. Statistics indicate that well over 100 million people are affected by diseases or injuries, such as stroke, Parkinson’s Disease, Multiple Sclerosis, Cerebral Palsy, peripheral nerve injury, spinal cord injury, and amputation, that negatively impact their motor abilities. This wide array of injuries presents a challenge to the medical field as optimal treatment paradigms are often difficult to implement due to a lack of availability of appropriate assessment tools, the inability for people to access the appropriate medical centers for treatment, or altogether gaps in technology for treating the underlying impairments causing the disability. Addressing each of these challenges will improve the treatment of movement impairments, provide more customized and continuous treatment to a larger number of patients, and advance rehabilitative and assistive device technology. In my research, the key approach was to develop tools to assess and treat upper extremity movement impairment. In Chapter 2.1, I challenged a common biomechanical[GV1] modeling technique of the forearm. Comparing joint torque values through inverse dynamics simulation between two modeling platforms, I discovered that representing the forearm as a single cylindrical body was unable to capture the inertial parameters of a physiological forearm which is made up of two segments, the radius and ulna. I split the forearm segment into a proximal and distal segment, with the rationale being that the inertial parameters of the proximal segment could be tuned to those of the ulna and the inertial parameters of the distal segment could be tuned to those of the radius. Results showed a marked increase in joint torque calculation accuracy for those degrees of freedom that are affected by the inertial parameters of the radius and ulna. In Chapter 2.2, an inverse kinematic upper extremity model was developed for joint angle calculations from experimental motion capture data, with the rationale being that this would create an easy-to-use tool for clinicians and researchers to process their data. The results show accurate angle calculations when compared to algebraic solutions. Together, these chapters provide easy-to-use models and tools for processing movement assessment data. In Chapter 3.1, I developed a protocol to collect high-quality movement data in a virtual reality task that is used to assess hand function as part of a Box and Block Test. The goal of this chapter is to suggest a method to not only collect quality data in a research setting but can also be adapted for telehealth and at home movement assessment and rehabilitation. Results indicate that the data collected in this protocol are good and the virtual nature of this approach can make it a useful tool for continuous, data driven care in clinic or at home. In Chapter 3.2 I developed a high-density electromyography device for collecting motor unit action potentials of the arm. Traditional surface electromyography is limited by its ability to obtain signals from deep muscles and can also be time consuming to selectively place over appropriate muscles. With this high-density approach, muscle coverage is increased, placement time is decreased, and deep muscle activity can potentially be collected due to the high-density nature of the device[GV2] . Furthermore, the high-density electromyography device is built as a precursor to a high-density electromyography-electrical stimulation device for functional electrical stimulation. The customizable nature of the prototype in Chapter 3.2 allows for the implementation both recording and stimulating electrodes. Furthermore, signal results show that the electromyography data obtained from the device are of high quality and are correlated with gold standard surface electromyography sensors. One key factor in a device that can record and then stimulate based on the information from the recorded signals is an accurate movement intent decoder. High-quality movement decoders have been designed by closed-loop device controllers in the past, but they still struggle when the user interacts with objects of varying weight due to underlying alterations in muscle signals. In Chapter 4, I investigate this phenomenon by administering an experiment where participants perform a Box and Block Task with objects of 3 different weights, 0 kg, 0.02 kg, and 0.1 kg. Electromyography signals of the participants right arm were collected and co-contraction levels between antagonistic muscles were analyzed to uncover alterations in muscle forces and joint dynamics. Results indicated contraction differences between the conditions and also between movement stages (contraction levels before grabbing the block vs after touching the block) for each condition. This work builds a foundation for incorporating object weight estimates into closed-loop electromyography device movement decoders. Overall, we believe the chapters in this thesis provide a basis for increasing availability to movement assessment tools, increasing access to effective movement assessment and rehabilitation, and advance the medical device and technology field

    Musculoskeletal Modeling and Control of the Human Upper Limb during Manual Wheelchair Propulsion: Application in Functional Electrical Stimulation Rehabilitation Therapy

    Get PDF
    Manual wheelchair users rely on their upper limbs for independence and daily activities. The high incidence of upper limb injuries can be attributed to the significant muscular demands imposed by propulsion as a repetitive movement. People with spinal cord injury are at high risk for upper limb injuries, including neuromusculoskeletal pathologies and nociceptive pain, as human upper limbs are poorly designed to facilitate chronic weight-bearing activities, such as manual wheelchair propulsion. Comprehending the underlying biomechanical mechanisms of motor control and developing appropriate rehabilitation tasks are essential to deal with the effects of poor motor control on the performance of manual wheelchair users and prevent long-term upper limb disability, which can interrupt electrical signals between the brain and muscles. Functional electrical stimulation utilizes low-intensity electrical signals to artificially generate body movements by stimulating the damaged peripheral nerves of patients with impaired motor control. Therefore, this study investigates the central nervous system strategy to control human movements, which can be used for task-specific functional electrical stimulation rehabilitation therapy. To this aim, two degrees of freedom musculoskeletal model of the upper limb, including six muscles, is developed, and an optimal controller consisting of two separate optimal parts is proposed to track the desired trajectories in the joint space and estimate the optimal muscle activations regarding physiological constraints. The simulation results are validated with electromyography datasets collected from twelve participants. This study's primary advantages are generating optimal joint torques, accurate trajectory tracking, and good similarities between estimated and measured muscle activations

    Multifingered robot hand robot operates using teleoperation

    Get PDF
    The purpose of research on anthropomorphic dextrous manipulation is to develop anthropomorphic dextrous robot hand which approximates the versatility and sensitivity of the human hand by teleoperation methods that will communicate in master– slave manners. Glove operates as master part and multi-fingered hand as slave. The communication medium between operator and multi-fingered hand is via KC-21 Bluetooth wireless modules. Multi-fingered hand developed using 5 volt, 298:1 gear ratio micro metal dc motors which controlled using L293D motor drivers and actuator controlled the movement of robot hand combined with dextrous human ability by PIC18F4520 microcontroller. The slave components of 5 fingers designed with 15 Degree of Freedom (DOF) by 3 DOF for each finger. Fingers design, by modified IGUS 07-16-038-0 enclosed zipper lead E-Chain® Cable Carrier System, used in order to shape mimic as human size. FLEX sensor, bend sensing resistance used for both master and slave part and attached as feedback to the system, in order to control position configuration. Finally, the intelligence, learning and experience aspects of the human can be combined with the strength, endurance and speed of the robot in order to generate proper output of this project
    corecore