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Abstract: The aim of this paper is to design a human–interface system, using EMG signals elicited by
various wrist movements, to control a robot. EMG signals are normalized and based on joint torque.
A three-layer neural network is used to estimate posture of the wrist and forearm from EMG signals.
After training the neural network and obtaining appropriate weights, the subject was able to control the
robot in real time using wrist and forearm movements.
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INTRODUCTION

Muscle contraction is the functional unit of body motion
and posture control. Coordinated contractions by several
muscles allow for various movements of the musculo-
skeletal system. There are six specific movements asso-
ciated with the wrist and forearm. Those movements are
as follows:
• Flexion

Bending the joint resulting in a decrease of angle; moving
the palm of the hand toward the front of the forearm.

• Extension
Straightening the joint resulting in an increase of angle;
moving the back of the hand toward the back of the
forearm.

• Adduction (ulna deviation)
Medial movement toward the midline of the body; moving
the little finger side of the hand toward the medial side of
the forearm.

• Abduction (Radial deviation)
Lateral movement away from the midline of the body;
moving the thumb side of the hand toward the lateral side
of the forearm.

• Pronation
Internal rotation of the forearm resulting in the palm
moving posteriorly, or down.

• Supination
External rotation of the forearm resulting in the palm
moving posteriorly, or up.
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These movements are controlled by the central nervous
system (CNS). The CNS activates the muscles needed
to perform a musculo-skeletal movement, and this phe-
nomena can be observed using electromyography (EMG).
These NASA researchers have used EMG signals as a
substitute for mechanical joysticks and keyboards (Bluck
2001). In this system, the command was corresponded
to the gesture for controlling the joystick. This kind
of systems were developed in Biomedical engineering
field such as prosthetic arm. Also the BioMuse has been
demonstrated as an interface to music synthesizers (Atau
1993). Biomuse translated the EMG signals to MIDI
signals directly. These two methods are the other extreme.
We propose the intermediate systems for using EMG
signals. The relationship between EMG activity and the
resulting movement has been studied (Koike and Kawato
1995, Mori et al 1992, Koike and Kawato 1994). Previous
studies investigated the duration, magnitude, and timing
of phasic EMG bursts in relation to movement amplitude,
duration, and maximum speed.

METHODS

EMG signals and “quasi-tension”

In our estimation of arm posture in 3D space, we found that
low-pass-filtered EMG signals reflected the firing rate of α

motor neurons. We called the signals “quasi-tension” due
to their similarity to true muscle tensions. The relationship
between the EMG input signal (EMG) and the quasi-
tension output signal (T̂) can be represented as a finite
impulse response (FIR) filter:

T̂(t) =
n∑

j=1

h j · EMG(t − j + 1) (1)
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Joint-torque and moment arm

Joint-torque is determined by the product of muscle
tension and “moment arm”. Moment arm is defined as
the distance between the joint axis and the force action line
of the muscle. Joint-torque is produced by the difference
between agonist and antagonist muscle torques, which de-
pends on muscle tension and moment arm. Joint-torque
can be defined as:

τi =
10∑

j=1

αi j T̂ j (2)

where τi is the observed torque for each movement i (flex-
ion, abduction, etc), T̂ j is the quasi-tension of each muscle
j, and αi j is the moment arm. We used normalized quasi-
tension represented by “ai j T̂ j ”.

Three-layer artificial neural network for determining
“equilibrium postures”

A three-layer neural network was used to identify the
input EMG signals associated with each wrist/forearm
movement, i.e., equilibrium posture. The first layer of the
neural network consists of the EMG input signals from
each muscle. The second layer is the middle layer, and
third layer is the output equilibrium posture for each joint.

While the arm is controlled to take a specific posture in
3D space, only the force of gravity affects the arm if there is
no external force. The equilibrium between muscle forces
and gravitational forces for any joint can be described by
the following equation using joint angle θ (n-dimensional
vector) and motor command u (k-dimensional vector):

τm (u, θ ) + τg (θ ) = 0
−τm (u, θ ) = τg (θ ) = g · h(θ ) (3)

where τm represents the joint torque exerted by the mus-
cles, τ g represents the joint torque generated by the force
of gravity, g represents the acceleration of gravity, and h is a
nonlinear function which determines the torque generated
by the force of gravity from posture. This function can be
relatively and easily computed from kinematics knowledge
of the arm. Because both τm and h are nonlinear in θ , the
equilibrium position as a solution to equation (3) cannot
be solved analytically. But the mapping from u to θ is a
many-to-one mapping. So a neural network model can be
used to determine this relationship.

One healthy subject, 24 years of age, participated in
this study. Joint torque was measured using a force–torque
sensor ( JR3). Simultaneously, EMG signals were recorded
using the bipolar configuration.

MEASUREMENT

Torque measurement

The subject was seated with his right forearm supported
by a fiberglass cuff. The cuff was fixed to the bench at
a height comfortable for the subject. The subject’s right

Table 1 Calculated moment arm for muscles
controlling wrist posture

( j) Muscle α j (m)

(1) Flexor carpi radialis –0.0400525
(2) Palmaris longus –0.0410920
(3) Flexor carpi ulnaris 0.0767250
(4) Extensor carpi radialis longus –0.7886365
(5) Extensor carpi radialis brevis –0.0403064
(6) Extensor carpi ulnaris 0.1630652
(7) Pronator teres 0.3135149
(8) Pronator quadratus 0.4091931
(9) Supinator 0.1059284
(10) Anconeus –0.0910412

hand was inserted into a molded plastic grip. The force–
torque sensor was attached to the grip at the center of each
of the degree axes of motion. The design of the grip allowed
for multiple mounting points for the sensor. The cuff and
grip apparatus served several purposes:

1. kept the subject’s hand and forearm at a fixed position,
maintaining consistent readings

2. kept the subject’s hand at a zero-degree position in ref-
erence to his forearm; this prevented deviations in joint
angle that would affect the direction and magnitude of
the force readings

3. allowed the subject to rest his arm and hand; this pre-
vented muscle activations that would have occurred if the
subject had to support the weight of his forearm and hand
(i.e., hold his arm up). This resulted in a zero equilibrium
EMG signal.

To measure joint torque, the subject was asked to flex
his hand about a single axis, toward switching directions
(e.g., abduction, adduction, abduction, adduction, . . .) for
8 s. EMG signals from all muscles were simultaneously
recorded.

Joint-torque estimation

Using equation (2), we calculated moment arm α j from the
experimental measure of joint-torque τ and quasi-tension
T̂ j for each muscle j.

The moment arm α j are shown in Table 1.
With the calculated α j , we can precisely estimate joint-

torque for a given quasi-tension extrapolation from an
EMG signal. Coefficient correlations between measured
and estimated joint torques for abd/add, flex/ext and
pro/sup were 0.94, 0.97 and 0.92, respectively.

EMG measurement

Using pairs of silver–silver chloride surface electrodes,
EMG activity was recorded for ten muscles, shown in
Figure 1, responsible for movement of the wrist and fore-
arm during 5 s. The subject changed the posture for 44
trials. These muscles and their associated movements are
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Figure 1 Muscle positions.

as follows:

• Flexion:
Flexor carpi radialis, flexor carpi ulnaris, palmaris longus

• Extension
Extensor carpi radialis longus, extensor carpi radialis
brevis, extensor carpi ulnaris

• Abduction
Flexor carpi ulnaris, extensor carpi ulnaris

• Adduction
Extensor carpi radialis longus, extensor carpi radialis
brevis, flexor carpi radialis

• Pronation
Pronator teres, pronator quadratus, flexor carpi radialis,
anconeus

• Supination
Supinator

Neural network training

Each joint angle was estimated from normalized quasi-
tension using an artificial neural network model.
Figure 2 shows the employed three-layer neural network
model. For training, we used the data recorded at 3 s inter-
vals (600 samples) for 44 trials. Therefore, 26,400 samples
were used for training.

The training was stopped before the error for the
test data began to rise (cross validation method). The
correlation coefficients for flexion/extension, abduc-
tion/adduction and pronation/supination were 0.90, 0.85
and 0.86, respectively.

Robot control

After classification by the neural network, EMG signals
were translated into commands for a Sony Corporation
of Japan, AIBO Robot. Movements by the subject’s wrist
and forearm were mimicked by the robot’s head and neck,

Figure 2 Three-layer neural network model.

which shared the same 3 degrees of freedom. These com-
mands were transmitted wirelessly from the computer to
the AIBO robot. The entire process, from EMG sampling
to robot movement, occurred in real time.

SIMPLE METHOD FOR ESTIMATING 2 DEGREE
OF FREEDOMS

We confirmed that the 3 degrees of freedom of the wrist
were precisely estimated from EMG signals of the ten mus-
cles associated with wrist movement. In order to estimate
the posture precisely, we need to measure EMG signals
from several muscles. For the human interface, decreasing
the number of electrodes improves efficiency, shortening
the time spent locating optimal electrode locations, attach-
ing the electrodes and calibrating the EMG equipment. In
this way, 2 degrees of freedom of the wrist were estimated
using four channels of EMG signals. We used four muscles
for flexion/extension and abduction/adduction as follows:

• Flexion
Flexor carpi ulnaris, palmaris longus

• Extension
Extensor carpi ulnaris

• Abduction
Flexor carpi ulnaris, extensor carpi ulnaris

• Adduction
Extensor carpi radialis longus

The artificial neural network was trained using 23,600
samples. We tested the neural network on another data set,
recorded on a different day. Figure 3 shows the estimation
results for the test data. The correlation coefficients for
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Figure 4 AIBO control command.

Figure 5 AIBO control with CCD camera.

flexion/extension and abduction/adduction were 0.86 and
0.75, respectively.

It takes approximately 10 min for training using a Pen-
tium 4 (1.8 GHz) processor. In order to reduce the training
time, we used the same weight files for estimating left wrist
posture with the same subject. We also tested the same

Ry
X

Z

X

Rz

Y
X

Figure 6 Shoulder movement.

Table 2 Correlation coefficients for flex/ext and
abd/add among four subjects

Correlation Coefficients

Flex/Ext Abd/Add

Subject A 0.80 0.68
Subject B 0.80 0.65
Subject C 0.82 0.77
Subject D 0.65 0.51

weight files for other subjects. The resulting correlation
coefficients from these tests are shown in Table 2.

Robot control

After classification by the neural network, EMG signals
were translated into commands for the AIBO Robot. As
shown in Figure 4, movements by the subject’s wrist
and forearm were translated to the forward/backward
and turning left/right. These commands were transmit-
ted wirelessly from the computer to the AIBO robot.

The entire process, from EMG sampling to robot move-
ment, occurred in real time. We can switch the control
mode, which corresponds to the neck movement and the
robot movement. When a muscle on the left arm is acti-
vated, the mode is changed. Also AIBO has a CCD camera
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Figure 7 Estimation result for the shoulder movement.

101C© 2005 Woodhead Publishing Ltd doi:10.1533/abbi.2004.0054 ABBI 2005 Vol. 2 No. 2



C. DaSalla, J. Kim and Y. Koike

on head and the subject can see the screen on which AIBO’s
view is projected. We can control the AIBO while watching
the screen as shown in Figure 5.

Controlled by the shoulder movement

For a paralyzed person, it may be difficult for measuring
the EMG signal from the wrist to the forearm. This
technique is also used to apply in another joint, for example
neck or shoulder. In this paper, we use two pairs of muscles
for 2 degree of freedoms. In this section, we apply this tech-
nique to the shoulder movement. After training the neural
network, each input signals correspond to the flexor or ex-
tensor for the degree of freedom. Movements of the scapula
are retraction/protraction and elevation/depression. For
each movement, the muscles trapezius/serratus anterior
and levator scapulae/trapezius are operated in Figure 6.

Figure 7 shows the estimation result using the same
weight parameters for the neural network.

As you can see, estimation result was accurate and
enough for controlling the robot.

CONCLUSION

Joint-torque was estimated from EMG signals in all
3 degrees of freedom of the wrist and forearm.
Comparisons between estimated and actual measured
joint-torque showed high correlations. This supports
the accuracy of our joint-torque model described by
equation (2).

The most effective robot control was achieved using
the neural network model. When the subject performed
abduction/adduction and flexion/extension movements,
the robot responded accurately by mimicking those
movements with its head and neck. This proves that
the neural network was successful in discriminating the

different EMG signals for abduction/adduction and
flexion/extension. The robot was also controlled by
estimated wrist posture.

We need to measure the posture and EMG signals
simultaneously for training. However, this process would
be a very difficult job for daily use. We showed the ability
of the neural network to estimate the joint angles precisely
using different person’s weight file. Also, even if we use
different parts of the body that have similar degrees of
freedom, we can control the robot. These results indicate
that the amputee patient also use this system without any
measurement and training.

The accuracy of joint-torque estimation by moment arm
and quasi-tension, in addition to the successful control of
the robot in 2 degrees of freedom using a three-layer neural
network model, proves this design to be a viable human–
interface system.
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