3,462 research outputs found

    Hazard Avoidance Alerting With Markov Decision Processes

    Get PDF
    This thesis describes an approach to designing hazard avoidance alerting systems based on a Markov decision process (MDP) model of the alerting process, and shows its benefits over standard design methods. One benefit of the MDP method is that it accounts for future decision opportunities when choosing whether or not to alert, or in determining resolution guidance. Another benefit is that it provides a means of modeling uncertain state information, such as knowledge about unmeasurable mode variables, so that decisions are more informed. A mode variable is an index for distinct types of behavior that a system exhibits at different times. For example, in many situations normal system behavior is safe, but rare deviations from the normal increase the likelihood of a harmful incident. Accurate modeling of mode information is needed to minimize alerting system errors such as unnecessary or late alerts. The benefits of the method are illustrated with two alerting scenarios where a pair of aircraft must avoid collisions when passing one another. The first scenario has a fully observable state and the second includes an uncertain mode describing whether an intruder aircraft levels off safely above the evader or is in a hazardous blunder mode. In MDP theory, outcome preferences are described in terms of utilities of different state trajectories. In keeping with this, alerting system requirements are stated in the form of a reward function. This is then used with probabilistic dynamic and sensor models to compute an alerting logic (policy) that maximizes expected utility. Performance comparisons are made between the MDP-based logics and alternate logics generated with current methods. It is found that in terms of traditional performance measures (incident rate and unnecessary alert rate), the MDP-based logic can meet or exceed that of alternate logics

    Autonomous Collision avoidance for Unmanned aerial systems

    Get PDF
    Unmanned Aerial System (UAS) applications are growing day by day and this will lead Unmanned Aerial Vehicle (UAV) in the close future to share the same airspace of manned aircraft.This implies the need for UAS to define precise safety standards compatible with operations standards for manned aviation. Among these standards the need for a Sense And Avoid (S&A) system to support and, when necessary, sub¬stitute the pilot in the detection and avoidance of hazardous situations (e.g. midair collision, controlled flight into terrain, flight path obstacles, and clouds). This thesis presents the work come out in the development of a S&A system taking into account collision risks scenarios with multiple moving and fixed threats. The conflict prediction is based on a straight projection of the threats state in the future. The approximations introduced by this approach have the advantage of high update frequency (1 Hz) of the estimated conflict geometry. This solution allows the algorithm to capture the trajectory changes of the threat or ownship. The resolution manoeuvre evaluation is based on a optimisation approach considering step command applied to the heading and altitude autopilots. The optimisation problem takes into account the UAV performances and aims to keep a predefined minimum separation distance between UAV and threats during the resolution manouvre. The Human-Machine Interface (HMI) of this algorithm is then embedded in a partial Ground Control Station (GCS) mock-up with some original concepts for the indication of the flight condition parameters and the indication of the resolution manoeuvre constraints. Simulations of the S&A algorithm in different critical scenarios are moreover in-cluded to show the algorithm capabilities. Finally, methodology and results of the tests and interviews with pilots regarding the proposed GCS partial layout are covered

    An Alternative Time Metric to Modified Tau for Unmanned Aircraft System Detect And Avoid

    Get PDF
    A new horizontal time metric, Time to Protected Zone, is proposed for use in the Detect and Avoid (DAA) Systems equipped by unmanned aircraft systems (UAS). This time metric has three advantages over the currently adopted time metric, modified tau: it corresponds to a physical event, it is linear with time, and it can be directly used to prioritize intruding aircraft. The protected zone defines an area around the UAS that can be a function of each intruding aircraft's surveillance measurement errors. Even with its advantages, the Time to Protected Zone depends explicitly on encounter geometry and may be more sensitive to surveillance sensor errors than modified tau. To quantify its sensitivity, simulation of 972 encounters using realistic sensor models and a proprietary fusion tracker is performed. Two sensitivity metrics, the probability of time reversal and the average absolute time error, are computed for both the Time to Protected Zone and modified tau. Results show that the sensitivity of the Time to Protected Zone is comparable to that of modified tau if the dimensions of the protected zone are adequately defined

    Evaluation of remain well clear and collision avoidance for drones

    Get PDF
    One of the cornerstones that should enable inserting unmanned aircraft into the airspace is the development of Detect and Avoid (DAA) systems. DAA systems will improve the Remote Pilot (RP) situational awareness by means of electronic conspicuity devices, providing them with the necessary means to Remain Well Clear (RWC) from other traffic and, if necessary, avoid Mid-Air collisions (MAC). DAA systems will compensate for the loss of a pilot on board, which drastically reduces the capacity to keep a safe separation from traffic, making current Rules of the Air very challenging to achieve. Given the growing popularity of drone operations for commercial and recreational purposes, new standards should include them in the not-too-distant future. Since current DAA standards and algorithms (DO-365 and ED-258) are being developed targeting large, mostly military Remotely Piloted Aircraft Systems (RPAS), this project proposes a new set of detection volumes and alert thresholds for U-Space users according to an aircraft type classification. This will allow adapting the existing DAA algorithms to small drones, complying with the new European framework of services and applications for drones (U-Space). Because testing new safety nets (such as new DAA algorithms) on real aircraft would be dangerous and inadequate, radar reports and computer-based simulations allow for a risk-free and faster evaluation of safety net performances. Due to the current lack of real drone radar tracks, this project has developed a multi-rotor drone encounter generator tool (called DEG). This software is able to generate a large number of synthetic pairwise quadcopter drone conflict tracks, simulating the instant prior to a MAC. The way trajectories are generated by DEG strongly depends on the type of operation being flown (inspection/surveillance flights and logistic flights) and the aircraft type (including a DJI F450 and a faster version called DJI F450 FAST). The results of this project include a drone conflict trajectory example generated with DEG and an investigation of the performance and effectiveness of the DEG tool using a tailored existing DAA algorithm (DAIDALUS).Objectius de Desenvolupament Sostenible::9 - Indústria, Innovació i Infraestructur

    Volcanic Hot-Spot Detection Using SENTINEL-2: A Comparison with MODIS−MIROVA Thermal Data Series

    Get PDF
    In the satellite thermal remote sensing, the new generation of sensors with high-spatial resolution SWIR data open the door to an improved constraining of thermal phenomena related to volcanic processes, with strong implications for monitoring applications. In this paper, we describe a new hot-spot detection algorithm developed for SENTINEL-2/MSI data that combines spectral indices on the SWIR bands 8a-11-12 (with a 20-meter resolution) with a spatial and statistical analysis on clusters of alerted pixels. The algorithm is able to detect hot-spot-contaminated pixels (S2Pix) in a wide range of environments and for several types of volcanic activities, showing high accuracy performances of about 1% and 94% in averaged omission and commission rates, respectively, underlining a strong reliability on a global scale. The S2-derived thermal trends, retrieved at eight key-case volcanoes, are then compared with the Volcanic Radiative Power (VRP) derived from MODIS (Moderate Resolution Imaging Spectroradiometer) and processed by the MIROVA (Middle InfraRed Observation of Volcanic Activity) system during an almost four-year-long period, January 2016 to October 2019. The presented data indicate an overall excellent correlation between the two thermal signals, enhancing the higher sensitivity of SENTINEL-2 to detect subtle, low-temperature thermal signals. Moreover, for each case we explore the specific relationship between S2Pix and VRP showing how different volcanic processes (i.e., lava flows, domes, lakes and open-vent activity) produce a distinct pattern in terms of size and intensity of the thermal anomaly. These promising results indicate how the algorithm here presented could be applicable for volcanic monitoring purposes and integrated into operational systems. Moreover, the combination of high-resolution (S2/MSI) and moderate-resolution (MODIS) thermal timeseries constitutes a breakthrough for future multi-sensor hot-spot detection systems, with increased monitoring capabilities that are useful for communities which interact with active volcanoes

    Method selection and adaptation for distributed monitoring of infectious diseases for syndromic surveillance

    Get PDF
    AbstractBackgroundAutomated surveillance systems require statistical methods to recognize increases in visit counts that might indicate an outbreak. In prior work we presented methods to enhance the sensitivity of C2, a commonly used time series method. In this study, we compared the enhanced C2 method with five regression models.MethodsWe used emergency department chief complaint data from US CDC BioSense surveillance system, aggregated by city (total of 206 hospitals, 16 cities) during 5/2008–4/2009. Data for six syndromes (asthma, gastrointestinal, nausea and vomiting, rash, respiratory, and influenza-like illness) was used and was stratified by mean count (1–19, 20–49, ⩾50 per day) into 14 syndrome-count categories. We compared the sensitivity for detecting single-day artificially-added increases in syndrome counts. Four modifications of the C2 time series method, and five regression models (two linear and three Poisson), were tested. A constant alert rate of 1% was used for all methods.ResultsAmong the regression models tested, we found that a Poisson model controlling for the logarithm of total visits (i.e., visits both meeting and not meeting a syndrome definition), day of week, and 14-day time period was best. Among 14 syndrome-count categories, time series and regression methods produced approximately the same sensitivity (<5% difference) in 6; in six categories, the regression method had higher sensitivity (range 6–14% improvement), and in two categories the time series method had higher sensitivity.DiscussionWhen automated data are aggregated to the city level, a Poisson regression model that controls for total visits produces the best overall sensitivity for detecting artificially added visit counts. This improvement was achieved without increasing the alert rate, which was held constant at 1% for all methods. These findings will improve our ability to detect outbreaks in automated surveillance system data

    Method selection and adaptation for distributed monitoring of infectious diseases for syndromic surveillance

    Get PDF
    AbstractBackgroundAutomated surveillance systems require statistical methods to recognize increases in visit counts that might indicate an outbreak. In prior work we presented methods to enhance the sensitivity of C2, a commonly used time series method. In this study, we compared the enhanced C2 method with five regression models.MethodsWe used emergency department chief complaint data from US CDC BioSense surveillance system, aggregated by city (total of 206 hospitals, 16 cities) during 5/2008–4/2009. Data for six syndromes (asthma, gastrointestinal, nausea and vomiting, rash, respiratory, and influenza-like illness) was used and was stratified by mean count (1–19, 20–49, ⩾50 per day) into 14 syndrome-count categories. We compared the sensitivity for detecting single-day artificially-added increases in syndrome counts. Four modifications of the C2 time series method, and five regression models (two linear and three Poisson), were tested. A constant alert rate of 1% was used for all methods.ResultsAmong the regression models tested, we found that a Poisson model controlling for the logarithm of total visits (i.e., visits both meeting and not meeting a syndrome definition), day of week, and 14-day time period was best. Among 14 syndrome-count categories, time series and regression methods produced approximately the same sensitivity (<5% difference) in 6; in six categories, the regression method had higher sensitivity (range 6–14% improvement), and in two categories the time series method had higher sensitivity.DiscussionWhen automated data are aggregated to the city level, a Poisson regression model that controls for total visits produces the best overall sensitivity for detecting artificially added visit counts. This improvement was achieved without increasing the alert rate, which was held constant at 1% for all methods. These findings will improve our ability to detect outbreaks in automated surveillance system data

    How “good” are real-time ground motion predictions from Earthquake Early Warning systems?

    Get PDF
    Real-time ground motion alerts, as can be provided by Earthquake Early Warning (EEW) systems, need to be both timely and sufficiently accurate to be useful. Yet how timely and how accurate the alerts of existing EEW algorithms are is often poorly understood. In part, this is because EEW algorithm performance is usually evaluated not in terms of ground motion prediction accuracy and timeliness but in terms of other metrics (e.g., magnitude and location estimation errors), which do not directly reflect the usefulness of the alerts from an end user perspective. Here we attempt to identify a suite of metrics for EEW algorithm performance evaluation that directly quantify an algorithm's ability to identify target sites that will experience ground motion above a critical (user-defined) ground motion threshold. We process 15,553 recordings from 238 earthquakes with M > 5 (mostly from Japan and southern California) in a pseudo-real-time environment and investigate two end-member EEW methods. We use the metrics to highlight both the potential and limitations of the two algorithms and to show under which circumstances useful alerts can be provided. Such metrics could be used by EEW algorithm developers to convincingly demonstrate the added value of new algorithms or algorithm components. They can complement existing performance metrics that quantify other relevant aspects of EEW algorithms (e.g., false event detection rates) for a comprehensive and meaningful EEW performance analysis
    corecore