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HAZARD AVOIDANCE ALERTING WITH MARKOV DECISION PROCESSES 
 

BY 
 

LEE F. WINDER AND JAMES K. KUCHAR 
 
 
 
 

ABSTRACT 
 

 
This thesis describes an approach to designing hazard avoidance alerting systems based on a 
Markov decision process (MDP) model of the alerting process, and shows its benefits over 
standard design methods.  One benefit of the MDP method is that it accounts for future decision 
opportunities when choosing whether or not to alert, or in determining resolution guidance.  
Another benefit is that it provides a means of modeling uncertain state information, such as 
knowledge about unmeasurable mode variables, so that decisions are more informed. 
 
A mode variable is an index for distinct types of behavior that a system exhibits at different 
times.  For example, in many situations normal system behavior is safe, but rare deviations from 
the normal increase the likelihood of a harmful incident.  Accurate modeling of mode 
information is needed to minimize alerting system errors such as unnecessary or late alerts. 
 
The benefits of the method are ill ustrated with two alerting scenarios where a pair of aircraft 
must avoid colli sions when passing one another.  The first scenario has a fully observable state 
and the second includes an uncertain mode describing whether an intruder aircraft levels off 
safely above the evader or is in a hazardous blunder mode.   
 
In MDP theory, outcome preferences are described in terms of utiliti es of different state 
trajectories.  In keeping with this, alerting system requirements are stated in the form of a reward 
function.  This is then used with probabili stic dynamic and sensor models to compute an alerting 
logic (policy) that maximizes expected utilit y.  Performance comparisons are made between the 
MDP-based logics and alternate logics generated with current methods.  It is found that in terms 
of traditional performance measures (incident rate and unnecessary alert rate), the MDP-based 
logic can meet or exceed that of alternate logics. 
 
 
 
 
 
 
This document is based on the thesis of Lee F. Winder submitted to the Department of 
Aeronautics and Astronautics at the Massachusetts Institute of Technology in partial fulfill ment 
of the requirements for the degree of Doctor of Philosophy in Aeronautics and Astronautics. 
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Nomenclature 

 

Functions 
bs  Belief state 
E  Expected value 
O  Sensor function 
P  Probabilit y 
R  Reward function 
T  State transition function 
U  State expected utilit y 
Uτ  Trajectory utilit y 
 

Scalar Parameters and Variables 
a  Alerting system action 
a0  Deferral (nominal) action 
ap  Previous action 
AS  Alert status index 
ASp  Previous alert status 
BS  Belief state index 
CS  Combination state index 
D  Nominal vertical level-off separation 
c  Number of policy or value iterations 
γ  Reward discounting factor 
k  Discrete time index 
m  Mode variable, also number of utilit y recursions 
mi  Index of the i th mode 
n  Number of states in situation state space, S 
q  Number of actions in alert action space, A 
t  Time 
tc  Current time 
∆t  Time increment 
UCR  Correct rejection utilit y 
USA  Successful alert utilit y 
UUA  Unnecessary alert utilit y 
vclimb  Constant evasion climb rate 
vclosing  Constant horizontal closing rate 
vdescent  Constant nominal intruder descent rate 
vw  Climb rate disturbance input 
x  Horizontal separation 
xf  Final horizontal separation 
xp  Previous horizontal separation 
∆x  Horizontal position increment 
y  Vertical separation 
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yf  Final vertical separation 
yp  Previous vertical separation 
 

Sets 
A  Alert space 
H  Hazard space 
O  Observation space 
S  Situation space 
 

Trajectories 
τ  A trajectory in S 
τa  A trajectory of alerting actions 
 

Vectors 
a  Vector alert action signal 
ak  kth alert action 
dh  Disturbance input to humans 
dp  Disturbance input to plant 
ns  Sensor noise input 
o  Alerting system observations of situation 
s  Situation state 
u  Human input to plant 
xa  Alerting system state 
xh  Human state 
xp  Plant state 
y  Human observations of plant 
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1. Introduction 

 

1.1 Hazard Avoidance Alerting 

 Automatic alerting systems are often included in situations where humans interact 

with machines, such as in vehicles and industrial processes, and unnoticed failures can 

have serious consequences.  An alerting system monitors a situation and, when necessary, 

generates alerts and other signals to prevent an undesirable incident.  It can be as simple 

as an alarm triggered by an out-of-range sensor reading, but in recent years more 

complex alerting systems have appeared that gather comprehensive information, use 

sophisticated decision algorithms, and provide guidance to aid the human operator after 

the initial alert.  Such systems are possible thanks to increasing availabilit y of the needed 

sensor, communications and computer technology.  Examples of successful alerting 

systems are the mid-air colli sion (Harman, 1989; O’Hara, 1998; Nordwall , 2002) and 

terrain (Philli ps, 2001; Feith, 2002) avoidance systems installed in many aircraft cockpits.  

New alerting systems are frequently created or proposed, especially in aviation where 

they help counteract the negative safety effects of increasing use of airports and airspace, 

and reduced separation requirements (Scott, 2001; Jones, 2002; Cassell et al, 2001; 

Carpenter & Kuchar, 1997; Samanant et al, 2000; Zhao & Rock, 2002). 

An alerting system takes a stream of state measurements as input, and by some 

mathematical criteria or logic decides whether or not to alert.  If an alert has already 

happened, the logic decides what additional cues to give the operator.  Designing the 

logic traditionally means choosing a candidate logic, evaluating its performance with 

simulated scenarios, making changes to fix problems, and repeating the process.  The 

final logic may be significantly different or more complicated than the original due to 

cumulative improvements. 
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The initial candidate logic can be chosen in different ways.  One common 

approach is to think of the threshold as a boundary between normal and abnormal system 

behavior, so the alert indicates a loss of conformance.  An example is the “rumble strips” 

along the edges of many highways that alert a driver whose vehicle may be drifting off of 

the road.  A more complex approach to alerting is to predict the trajectory of state 

variables and issue an alert if the future proximity of the hazard calls for it.  Typically 

these predictive alerting logics use a rough trajectory model (e.g. not taking prediction 

uncertainties into account) in conjunction with a state space hazard model and limits on 

prediction time to avoid alerting too early.  Though reasoning explicitl y about the 

potential hazard, such a logic still requires performance analysis and tuning, since the 

model only roughly describes the conditions justifying an alert (Yang & Kuchar, 2002).  

Appendix B has a more complete discussion of these different philosophies of alerting. 

Recent research has produced design methods where alerting decisions are made 

based on metrics of predicted decision performance at that time, rather than on rough 

criteria (Yang & Kuchar, 2002; Kuchar & Yang, 2000).  The aim is to reduce the need for 

trial and error adjustment of a logic by more clearly stating the alerting requirements, and 

making more informed alerting decisions in the knowledge of these.  In systems with 

random dynamics, where only uncertain state predictions are possible, the required 

decision metrics tend to be probabili stic quantities (e.g. incident frequencies or 

probabiliti es of future incidents).   

Motivated by two new design considerations to be introduced next, this thesis 

continues in the vein of probabili stic prediction-based alerting, with the goals of 

improving alerting system performance and providing insight into alerting problems. 

1.2 Modes and Future Decisions 

In many cases a specific event can be identified (such as equipment failure or an 

operator error) as triggering a change in the dynamics of an observed human-controlled 

system, so that different models describe its behavior better at different times.  In 



 

19 

particular, the event may mark a change from safe to unsafe system behavior.  An 

example is a vehicle on a highway becoming dangerous after its driver falls asleep. 

Distinct dynamic behaviors a system can exhibit are termed modes.  Figure 1.1 

ill ustrates the mode idea for an aircraft in a situation where it could either crash into a 

mountain top (1) or climb safely over it (2), depending on the vertical path mode being  

 

 

 

Figure 1.1: Uncertain Situation Modes 

used by the aircraft’s autoflight system.  Uncertainty about which mode the aircraft is in 

makes it unclear whether an alert is needed:  alerting with mode 2 might cause an 

irritating, unnecessary alert if the human is already aware of the mountain, but faili ng to 

alert with mode 1 could allow a crash.  Due to the general diff iculty of avoiding all such 

errors in the presence of uncertainty (Kuchar, 1996), the alerting system may be forced to 

weigh the costs of different errors and make a probabilit y trade-off between the two.  Or 

the alerting system might take steps to reduce the mode uncertainty to allow more exact 

predictions and better decisions.  One objective of this thesis is to discuss the modeling of 

mode uncertainty, and show the benefits of a Bayesian probabili stic approach to mode 

uncertainty modeling. 

 A related issue is how knowledge about the system dynamics is used to achieve 

the goals of alerting.  This includes taking into account for the current alerting decision 

the fact that there will be new information available in the future, and future choices to 

make.  Figure 1.2 ill ustrates this issue, again using the aircraft and terrain example.  

Initially the alerting system is uncertain about the operating mode of the aircraft and it 

must decide whether or not to alert, triggering a climb avoidance maneuver, or defer the 

alert for possible use later.  If it issues an alert immediately the alert would be safe but 

 

1 
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Figure 1.2: Anticipating New Information and Decision Opportunities 

maybe unnecessary.  Because future observations will reduce uncertainty about the mode, 

deferring the alert would clarify the need for an alert once the path branching point b is 

passed.  The path taken would make the actual mode apparent.  If the colli sion path were 

taken, then alerting would not risk an unnecessary alert.  If deferring would also leave 

time for a safe avoidance maneuver, then it makes sense to defer the alert.  Typically, 

however, there is no clear branching point like point b in actual situations, making the 

decision to defer alerting more challenging.  There is an interesting balance between 

acting early on uncertain information, ensuring safety but maybe unnecessarily, versus 

delaying action to better know the mode being used and loosing flexibilit y for avoiding a 

threat.  Investigating the benefits of such reasoning in an alerting system, but in a more 

general probabili stic framework, is the second thesis objective. 

1.3 Thesis Overview 

 This thesis presents a new methodology for the design of hazard avoidance 

alerting, motivated by certain needs not yet addressed by existing design and analysis 

methods.  One need is to incorporate reasoning about future decision opportunities into 

an alerting and guidance logic.  Another is to include reasoning about uncertain, 

unobservable dynamic modes in the logic.  In both cases there is also a need to determine 

any benefits of such information.  Finally, there must be an approach to using the desired 

information in a way that is eff icient enough that alerting decisions can be made in real 

time. 

 Chapter 2 gives an overview of probabili stic prediction-based alerting and 

provides more detailed motivation for the two new considerations.  This includes 

Immediate alert Deferred alert 

b 
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formally defining model components and showing how different metrics of performance 

are used for defining and analyzing alerting thresholds. 

 Chapter 3 contains a review of related research, pointing out similarities to other 

work and significant differences that make this work necessary. 

 Chapter 4 covers the basics of Markov decision process (MDP) theory in the 

context of alerting, using model components defined in chapter 2.  After formulating the 

problem, some basic methods of deriving eff icient “policy” solutions are described.  

After this the use of partially observable Markov decision processes (POMDPs) to model 

uncertain modes is discussed, along with a basic POMDP solution method.  Finally, some 

considerations about humans in the system are discussed. 

 Chapter 5 uses an aircraft colli sion avoidance alerting process to ill ustrate MDP 

alerting concepts.  A policy is derived that defines the alerting threshold and also 

generates guidance to maximize safety after the alert.  The modeling of alerting 

preferences in terms of a reward function is shown.  Finally, the need for average as well 

as threshold performance metrics (utiliti es) is discussed. 

 Chapter 6 uses a more complex, 2-mode colli sion avoidance alerting process to 

look at modeling uncertain modes and updating of uncertain knowledge based on 

observations.  The benefit of such modeling is shown using specific scenarios and metrics 

of average performance.  Finally, the use of belief state domain simpli fications is 

discussed. 

 In Chapter 7 the main conclusions and contributions are summarized. 
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2. Probabili stic Alerting Overview and 

Thesis Motivation 

 

 This chapter describes in detail two new concepts for guiding the design of 

probabili stic alerting systems.  One is belief modeling of uncertain mode variables.  This 

is a method for describing uncertainty about which of multiple dynamic modes an 

observed system is in.  Another is anticipating future information gathering and decision 

opportunities when choosing an alerting system action.  Section 2.1 describes the alerting 

process and modeling assumptions in general.  Then section 2.2 covers the different 

measures of alerting system performance.  In section 2.3 the use of probabili stic 

trajectory prediction to define the alerting logic and achieve specific performance 

requirements is discussed.  This leads into an argument in section 2.4 for the importance 

of mode belief modeling and for considering future decisions when making the current 

alerting decision. 

2.1 Probabili stic Alerting Process Model1 

2.1.1 Components and Influences 

Figure 2.1 depicts the alerting process using the notation of multivariable systems 

theory.  Blocks represent physical elements, and arrows indicate the influences they have 

on one another.  An element that changes with time is characterized by a set of variables 

called the state vector or state of the element.  For example, the state of an n-variable 

element at time t is: 

                                                 
1 The process and hazard model and the terminology described in this chapter are similar to those used by 
Kuchar (Kuchar, 1995; Kuchar, 1996). 
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x(t) = [ x1(t)   x2(t)  …  xn(t) ]
T (2.1) 

Scalars, including time and the state variables, are italicized, while vectors are in 

boldface.  This is the convention throughout this thesis.  Another notational practice is to 

sometimes truncate the labels of parameters with understood dependencies:  e.g.  x(t) 

represented by x. 

 

 

 

 

 

 

 

 

Figure 2.1: Alerting Process 

 The alerting system, represented by the leftmost element, is a dynamic system 

with a state, xa.
2  It makes observations o and sends inputs a to some situation composed 

of humans and a plant they control.  The humans and plant are both dynamic systems 

with state vectors xh and xp respectively.  The situation is itself a dynamic system with an 

overall state vector s, made up of the human and plant states.  For a physical example, 

the situation might be highway traff ic, including multiple human drivers, their vehicles, 

and the road they travel on.  In that case, the humans are in one block, and the vehicles 

and road form the plant. 

                                                 
2 For example, the alerting system state could be an estimate of the current situation state. 

   

Sensors 

u(t) a(t) 

y(t) o(t) 

Situation state:  s(t) = { xh(t), xp(t) } 
Plant 

Disturbances 
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xh(t) 

 

Alerting System 
 

xa(t) 
 

Plant 
 

xp(t) 

 

Sensor noise 
ns(t)  

Human 
Disturbances 
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 The humans make observations y of the plant and perform actions u to control it .  

The observations y and o are the output of a sensors element.  This element is a function 

of s that describes which part of the plant state is actually observable to the humans and 

the alerting system.  Sensors may also provide information about the humans themselves, 

as shown.  The humans receive an alerting system signal a, which can include both 

discrete alert values (alerts in the conventional sense) and any continuous resolution 

guidance the alerting system might provide. 

Imperfections in the situation model result in observed state dynamics different 

from what is expected from the model.  Such errors are represented in the diagram by 

disturbance and noise inputs.  The human and plant models are subject to disturbances, 

dh and dp respectively, each a vector the same size as the corresponding state.  The 

sensor outputs y and o are corrupted by random noise that can include bias and high 

frequency noise components.  This is shown as the input vector ns, which is the 

combined size of the two sensor outputs. 

Note that even though humans are ultimately controlli ng the plant, the model 

presented here focuses on the effects of the alerting system on the overall situation 

(human and plant).  In a sense, from the alerting system’s point of view, the human and 

plant can be collectively considered as the controlled element.  The design issues then 

revolve around how to design the alerting system so that the human and plant system 

responds in an acceptable manner. 

2.1.2 Incidents and Hazards 

 The state s changes with time according to the internal situation dynamics and the 

effects of any alerting system input to the situation.  The purpose of the alerting system is 

to protect against an incident by influencing the path s takes in its space, S.  The space S 

is the set of all possible states and is termed the situation space.  An incident is some 

negative event that can happen within the situation, such as an accident, rule violation or 

mechanical failure. 
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As the state changes with time, there is some probabilit y of an incident happening 

over a given interval traveled.  The probabilit y is different for different paths that s can 

take, as figure 2.2 shows for a 2-dimensional state space.  From the current state s(tc) 

 

 

 

 

 

Figure 2.2: Incident Dependence on the Situation Trajectory  

two future paths (τ1 and τ2) are possible, beginning at the current state and continuing 

through time t1.  Each path has a different incident probabilit y.  A complete description of 

the situation must include a model specifying these probabiliti es.  The model should give 

incident probabiliti es for any possible future path segment beginning at any possible s.  

A common approach is to specify a hazardous region or hazard space within S, and 

assume an incident happens with probabilit y 1 if the state trajectory enters hazard space, 

and 0 otherwise.  Figure 2.3 ill ustrates this kind of incident model in the 2-variable state 

 

 

 

 

 

Figure 2.3: Example Incident Model 
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space, with H labeling the hazard space.  These incident modeling issues were identified 

and discussed in more detail by Kuchar (Kuchar, 1995). 

2.1.3 Situation Dynamics 

 The situation is assumed to have uncertain dynamics.  That is, knowledge of s at 

a given time does not allow an exact prediction of future states.  It is further assumed that 

the uncertainty is amenable to probabili stic modeling.  In terms of the variables already 

defined, this means that, given s at the current time tc, the state after some time interval 

∆t for a known control input τa (a trajectory of a(t)) over that interval is known within 

some probabilit y distribution over the states in S.  The dynamics can be expressed as a 

distribution T(⋅,⋅) conditioned on the initial state and control trajectory: 

s(tc+∆t) = T( s(tc), τa ) (2.2) 

This future-state distribution is called the transition function (Russell & Norvig).  Note 

that the distribution of the future state has no dependence on states prior to s(tc).  In other 

words, the assumption is that no information affecting the prediction is lost by forgetting 

past states.  By satisfying this condition, the state s is said to exhibit the Markov 

property, in the probabili stic sense of the term (Russell & Norvig). 

The value of a(t), chosen by the alerting system, could be a real-valued vector in 

general, but in practice is sometimes limited to a small set of possibiliti es: 

a(t) ∈ { a0, a1, a2, ... an } (2.3) 

This may be preferable or necessary due to limitations of the alerting display, or in a 

human’s abilit y to track and follow a command signal (Wickens, 1992).  For example, in 

an impending car accident scenario where the time to predicted colli sion is short, a hard 

braking command might be more realistic than complicated instructions to steer around 

an obstacle.  Since a hazard alerting system is meant for rare interventions only, one 

possible action is the nominal or deferral action, which is really the lack of an alert.  The 

deferral action is represented by a0. 
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Figure 2.4 ill ustrates probabili stic prediction uncertainty for a situation with a 

known current state and some implied control signal beginning at tc.  While s(tc) is 

known exactly, s(tc+∆t) has a distribution of possible states, with darker shading 

indicating a greater li kelihood of the state being at that point.  An effect of the trajectory 

uncertainty is that whether or not future events happen—such as crossing through hazard 

space—is also uncertain.  For the process shown, there is some probabilit y of the state 

being inside H at each point in time, and a probabilit y of s passing through H over all 

time.  These could be calculated numerically, such as with Monte Carlo simulation, if not 

analytically. 

 

 

 

 

 

Figure 2.4: Probabili stic Prediction Uncertainty 

The probabili stic dynamics and Markov state assumptions are consistent with 

existing methods of design and analysis of alerting systems (Carpenter & Kuchar, 1997; 

Yang & Kuchar, 1997, 2002; Kuchar, 1996).  While such modeling applies to alerting 

logic analysis, more relevant to this thesis are design methods where the alerting decision 

logic is defined in terms of decision metrics computed from a probabili stic prediction 

model.  The reasoning behind such an approach is that it can lead more directly to a logic 

with the desired performance than trial and error design methods (Yang & Kuchar, 2002). 

2.1.4 Situation Observabili ty 

To determine how decision options will affect future events, the alerting system 

uses available knowledge about the current situation state.  It may not know the exact 

state, but have limited information that some states are more likely than others.  The less 
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uncertainty there is, the more accurate predictions can be and the more effective its 

decisions are likely to be.  When state uncertainty is large, the alerting system can reduce 

it by incorporating information from new observations o of the situation into its existing 

knowledge.  An observation is a direct measurement of the current situation (e.g. reading 

a thermometer or other sensor of a physical quantity) (Russell & Norvig). 

An ideal observation provides suff icient information to determine the exact and 

entire current value of s.  When this is possible, the state is said to be fully observable 

(Russell & Norvig).  There is no requirement that the variables in s be directly measured.  

It may be more convenient or realistic to measure a different vector o that can be 

transformed into the value of s.  For example, in figure 2.5 the relative position of the 

two aircraft might be defined as one pair of variables { xm, ym } (2.5a), but easier to 

determine by measuring a different, equivalent, pair { r, θ } (2.5b) that can be 

transformed into the other variables. 

 

 

 

 

 

Figure 2.5: State-Observation Relationship 

As mentioned in section 2.1.1, an ideal observation of the state is not always 

possible.  One reason is that imperfect sensors can add random measurement errors.  The 

uncertainty due to such errors is often modeled in terms of probabilit y distributions over 

the space of o or observation space, O.  This kind of observation uncertainty is pictured 

in figure 2.6a, assuming no state knowledge beforehand (i.e. a uniform state distribution 

on the x-y plane). 
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Figure 2.6: Sources of Observation Uncertainty 

Even without measurement error, full observabilit y can fail to hold if there are too 

few variables in o to determine the current s.  For example, in figure 2.6b the observation 

is reduced to o = { r }, with r exactly measurable and θ unmeasurable, resulting in a locus 

of possible states all equally li kely.  Effectively, the measurement error of θ is uniformly 

distributed if there was no prior knowledge about the variable.  If either missing-sensor or 

sensor-error uncertainty limit the observation, the state is termed partially observable 

(Russell & Norvig). 

Assuming o consists of measured variables with probabili stic error uncertainty, 

the relationship between the current state and observation of the state is denoted by the 

sensor function (Russell & Norvig): 

o(tc) = O( s(tc) ) (2.4) 

The function O(⋅) is a probabilit y distribution over the space of possible measurements O, 

conditional on the current state, s(tc). 

2.2 Alerting System Performance 

 There are three main aspects of alerting system performance:  the system’s abilit y 

to avoid unsuccessful alerts, unnecessary alerts and improper alerts. 
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An unsuccessful alert is defined as any alert that is followed by an incident (Yang 

& Kuchar, 1997).  An example would be receiving a colli sion warning so late that there is 

not enough time to actually avoid a colli sion (a late alert (LA)). 

An unnecessary alert (UA) occurs when no incident would have occurred had 

there been no alert (Yang & Kuchar, 1997).  This category is relevant because, in calli ng 

for an avoidance response, an unnecessary alert interferes with the human operator’s 

achievement of goals, such as maximizing productivity or minimizing time-to-completion 

of a task.  In addition, an unnecessary alert can actually lead to an incident (an induced 

incident (II ) (Carpenter & Kuchar, 1997)) that would not have happened otherwise.  For 

example, in maneuvering to avoid an incorrectly predicted colli sion with one car, a driver 

could crash into another.  Note that a successful alert can be either necessary or 

unnecessary:  these alerts are not mutually exclusive events. 

An improper alert (IA) is an alerting system action perceived as erroneous by a 

human operator.  This could happen for different reasons.  For example, the alert might 

be known or believed to be unnecessary or premature (a nuisance alert (NA)).  Another 

possibilit y is that the alert is issued later than preferred (or not at all ).  Improper alerts, 

particularly nuisance alerts, are a problem because experiencing these over time can 

cause an operator to mistrust the alerting system and become less likely to conform to 

alerts and guidance.  This issue was studied in the context of aircraft colli sion avoidance 

by Pritchett (Pritchett & Hansman, 1997).  In principle, an improper alert can also be an 

unnecessary alert, an unsuccessful alert, both, or neither.  Figure 2.7 ill ustrates the 

possible interdependencies of the three error events with a Venn diagram.  Drawn this 

way, an ideal alerting system would never operate inside the elli pses:  every alert would 

be proper, necessary and successful.  But as will be discussed, a more realistic goal is not 

to achieve an ideal alerting system, but one with an acceptable trade-off between different 

error types. 

Whereas unsuccessful and unnecessary alerts are clearly and objectively defined, 

improper alerts are more ambiguous because of the diff iculty of understanding or 

predicting operator preferences.  By some means, however, they must be addressed, and 
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preferably at an early stage in design.  Otherwise, they will have to be dealt with through 

trial and error with test subjects or user feedback. 

 

 

 

 

Figure 2.7: Alerting Performance Aspects 

Alerting system performance can be quantified using probabiliti es or frequencies 

of the three error events.  The frequencies of unnecessary alerts and incidents 

(unsuccessful alerts3) in particular are common metrics of overall performance.  The 

performance of the alerting system in a given trajectory scenario can be described in 

terms of the conditional probabiliti es of the different events at the time of the alert: 

P( Unsuccessful Alert | s is at Threshold ) (2.5) 

P( Unnecessary Alert | s is at Threshold ) (2.6) 

P( Improper Alert | s is at Threshold ) (2.7) 

For any of the error events it is best to have a low probabilit y or frequency, but 

due to uncertainty in the situation dynamics, it is usually impossible to optimize all 

metrics at the same time.  For instance, adjusting the logic to minimize the probabilit y of 

an unnecessary alert tends to increase the probabilit y of an unsuccessful alert, 

necessitating a trade-off between the two.  One way to visualize this trade-off is with a 

System Operating Characteristic (SOC) plot as in figure 2.8 (Kuchar 1995, 1996). 

 

                                                 
3 If an incident happens before there is an alert, the alert can be thought of as happening at the time of the 
incident { 0, 0 } (Winder & Kuchar, 1999). 
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Figure 2.8: System Operating Characteristic Plot 

A point on the SOC plane is a plot of the successful alert probabilit y (1 minus the 

unsuccessful alert probabilit y) against the unnecessary alert probabilit y at a given time.  

The operating point at the moment an alert is triggered (when s is at the threshold) is a 

measure of alerting performance for that particular scenario.  The curve shown 

corresponds to a hypothetical situation trajectory that ends in an incident along the 

nominal trajectory if no alert ever occurs.  The point traces a path from the upper right 

corner toward the left as the incident becomes increasingly li kely.  If evasive action is 

taken early on, the probabilit y of avoiding the incident is high, as is the probabilit y that 

the alert is unnecessary.  As the alert is deferred, the probabilit y that it would be safe or 

unnecessary decreases.  Ultimately, if the alert is deferred for too long, the incident 

becomes unavoidable due to the limitations of escape options, and the operating point 

goes to (0, 0).  The ideal place for an alert to occur is at the upper left corner, where the 

alert is known to be necessary and there is no chance of an incident when the alert occurs.  

Realistic systems tend not to occupy this point, but a designer may try to achieve alerting 

points as near to it as possible (Yang & Kuchar, 1997).  The nearness that can be 

achieved depends on the predictabilit y of the situation and the effectiveness of escape 

options. 
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For SOC points below the diagonal li ne an alert would be more likely to cause a 

colli sion than prevent one.  At the diagonal the alerting system is equally li kely to cause a 

colli sion as prevent one.  So at minimum, alerts should occur over the diagonal. 

 An SOC plot can also be used as an analysis tool to help visualize the overall 

performance of an alerting system (Winder & Kuchar, 1999).  Whereas in the previous 

discussion the SOC point was an incident probabilit y at the threshold, the coordinates can 

also be defined as the global successful and unnecessary alert averages resulting from a 

set of alerting process trajectories.  This use will be important in later chapters. 

2.3 Probabili stic Prediction-Based Alerting 

Figure 2.9 redraws the alerting process with the alerting system’s inner process 

broken down into two phases:  belief state updating and the action logic. 

 

 

 

 

 

 

 

Figure 2.9: Alerting System Structure 

2.3.1 Belief State Updating 

The Belief Updating block is a process of assimilating the stream of observations 

of the situation into a probabilit y distribution, bs(t), describing the overall uncertainty of 

the current state.  Even if each observation has great uncertainty due to the reasons 
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described earlier, the combined evidence of many observations over time, plus 

knowledge about the nature of observation errors, of the situation dynamics, and of 

alerting actions taken, will t end to reduce current-state uncertainty.  Because probabili stic 

state uncertainty can also be thought of as the knowledge or reasonable beliefs about the 

state, the distribution bs is called the belief state (Russell & Norvig). 

Probabilit y theory describes the process of incorporating evidence into the belief 

state (“ filtering”  (Russell & Norvig)) using the sensor and transition functions that were 

defined in section 2.1.  This process is described in appendix A.  Thus, these two 

functions are included in figure 2.9 as inputs to the belief updating process, along with 

the observations and past alerting actions.  Depending on the situation, belief f iltering can 

be a computationally intensive and time-consuming process.  But for special cases of the 

sensor and transition functions, eff icient numerical algorithms exist that make hardware 

implementation of the process more practical.  For example, Kalman filtering is a 

common technique that produces a valid state distribution when sensor errors are 

Gaussian noise and the state dynamics can be expressed as linear equations.  Such 

algorithms are common in alerting system design. 

2.3.2 Performance Metr ic-Based Alerting 

The Action Logic in figure 2.9 uses the current belief state and the prediction 

model to choose an alerting action.  As shown, it can also take the previous action as an 

input.  Most of the time the alerting system operates in the background, monitoring the 

state for conditions that justify an alert.  During that time the action logic should suggest 

a deferral action, a0 (section 2.1.3), because intervention is not yet warranted.  Once an 

alert happens, the logic continues to monitor the state, now using gathered information to 

best guide the human operators in avoiding an incident. 

 In prediction-based alerting, the logic chooses its actions based on the relative 

quality of predicted outcomes for each option.  The option that would have the best result 

(according to some value scheme) is chosen over the others.  Predicting outcomes 

requires the current-state distribution and the state transition model.  The incident model, 

introduced in section 2.1.2, is also required at this stage.  As they are determined by 
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probabili stic process model components, outcome predictions are themselves 

probabili stic quantities.  For example, for a particular sequence of actions it is possible to 

calculate the probabiliti es of future events such as hazard encounters, or the probabilit y 

that an alert issued now would be an unnecessary alert. 

As discussed in section 2.2, such probabiliti es are basic measures of the 

performance of the alerting threshold.  When these quantities are computed in real time 

within the alerting system, and known at the time an alert happens, the performance of 

the threshold for that scenario is directly controllable with the decision.  For example, in 

Figure 2.10 an airborne alerting system monitors the nominal probabilit y of crashing into 

 

 

 

 

 

 

 

 

 

 

Figure 2.10: Performance Metr ic Threshold 

a mountain, and defers alerting until reaching a threshold probabilit y that the alert is 

needed to avert a colli sion.  Generally there are requirements on safety of the escape 

maneuver (successful alert probabilit y) too, so that there may be a defined region in the 

SOC space where alerts are acceptable if they occur, and outside of which they are not.  
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The idea of probabili stic prediction-based hazard avoidance alerting is to define the 

alerting logic directly in terms of predictive metrics such as these, and the path they take 

through the metric space, as figure 2.11 ill ustrates (Yang & Kuchar, 1997, 2002). 

 

 

 

 

 

 

 

Figure 2.11: SOC Alert Threshold 

2.4 New Design Considerations 

 This thesis looks at two new design considerations for prediction-based alerting, 

and their effects on performance.  In this section the considerations are identified, and 

their anticipated importance is explained in relation to current design practices. 

2.4.1 Mode Beliefs 

 The situation state, s, was described in section 2.1 as a set of variables that 

satisfies the Markov property, so that probabili stic predictions can be made based on the 

current state.  These are most often real-valued variables representing physical quantities 

like distance or speed.  Another kind of variable, termed a mode, is of particular interest 

in this thesis.  A mode is a variable having a discrete domain, and whose value tends to 

persist over long intervals of time.  The mode serves to index a set of distinct behaviors 

that the situation can exhibit at different times.  These can be expressed as a set of 

transition functions (expression 2.8), one for each possible mode, mi.  For example, 
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figure 2.12 redraws the terrain colli sion scenario from chapter 1 in probabili stic form.  

Though future states are uncertain in either mode, in one the aircraft will nominally tend 

to crash into the mountain, and in the other it will t end to climb over it, as separate 

probabili stic transition functions can describe.  In general, a mode’s value at a given time 

can be a deterministic function of inputs or other state variables (e.g. an autopilot tracking 

mode at a known setting), or a random process (e.g. pilot mental lapse, weather 

conditions).  The mode can be observable or unobservable by the alerting system, but 

only the latter case is of interest in this thesis. 

   T1( s(tc), τa ),           mi = m1 (2.8) 

s(tc+∆t) =    T2( s(tc), τa ),                  m2  

   Tn( s(tc), τa ),              … mn  

 

 

 

 

 

Figure 2.12: Transition Function Indexing with a Mode Var iable 

 When there are mode variables in the situation state, the filtering process 

described in section 2.3 still applies, resulting in a belief state description of mode 

uncertainty.  In this case the belief state is a discrete probabilit y distribution.  Even if no 

direct measurement of a mode variable is possible, the estimation process will i nfer 

information about the mode through its known influence on the transition function.  This 

is similar to using a filter to estimate speed from repeated position measurements when 

speed is not directly measurable:  the equation relating the two allows observations of one 

to improve knowledge about the other. 
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 The action logic part of the alerting system uses the total belief state at the current 

time, bs(t), to make predictions for each possible alerting action.  Note that there are two 

contributors of uncertainty in predicted states:  current-state uncertainty (the belief state) 

and inherent prediction uncertainty due to the transition function.  The uncertainty of the 

predicted state increases with an increase in either component.  Figure 2.13 shows the 

effect of increasing belief state uncertainty on the distribution of predicted states.  In a 

case where the uncertainty contribution of one source is small , neglecting that uncertainty 

(i.e. replacing the distribution with a single assumed value) may have littl e effect on the 

overall prediction uncertainty, and be a reasonable approximation to make.  This 

simpli fication is commonly done with the output of f iltering processes, where the 

intention is usually to find a best estimate of the state value rather than a full uncertainty 

description.  For example, the mean value or maximum-likelihood value of the belief 

state might be taken as the estimate. 

 

 

 

 

 

 

Figure 2.13: Effect of Current-State Uncertainty on Predictions 

 As figure 2.14 ill ustrates, with a 1-dimensional state, that a distribution with a 

suff iciently small variance (2.14a) can ensure that errors due to a state approximation 

nearly always remain within specified bounds of acceptabilit y.  If the filtering process 

leaves large enough uncertainties in the state, as with the broad distribution in (2.14b), 

state estimation error becomes unacceptable. 
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 As with continuous variables, a maximum-likelihood approximation can be used 

to estimate a mode from its distribution.  This means assuming that the present mode is 

the one with the highest probabilit y.  This assumed mode can then be used to predict 

future outcomes, which might allow easier decision metric computation or even 

avoidance of computations if certain modes are known in advance to be safe or unsafe.  

This suggests a specialized version of the alerting process where the alerting decision is 

based on a hypothesis test on the current mode belief state rather than on explicit 

prediction of the future effects of the current state. 

 

 

 

 

 

Figure 2.14: State Approximations 

 Because belief updating can be complicated and slow in some cases, another 

inclination might be to avoid the Bayes updating process by leaving the belief state or 

part of the belief state (over some but not all uncertain variables) fixed at a single 

distribution.  This could be a viable option in some cases, if the simpli fications are 

justifiable using known transition and sensor function properties. 

2.4.2 Anticipating Knowledge Gain and Decision Opportunities 

 Up to now the only assumptions about the action logic of the alerting system are 

that it makes use of a current belief state for the situation, an incident model and 

probabili stic state predictions to generate metrics for comparing possible actions.  Based 

on existing alerting methods there are different ways to proceed.  These will be described 

and compared next, along with a new method of planning with possible benefits over the 

existing options. 
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 The simplest way to use state predictions in planning is to base action choices on 

the predicted outcomes of one or more maneuvers.  A maneuver policy will refer to a 

predetermined control law that maps any belief state, bs, into an alert action, a.  A 

maneuver is the state trajectory resulting from repeatedly using a single maneuver policy 

to generate the alerting action.  Figure 2.15 ill ustrates the maneuver idea for the extreme 

case (for simplicity) of no prediction or current-state uncertainty.  The maneuvers shown 

include the nominal maneuver (N), where the maneuver policy is to take the nominal 

action regardless of bs, and possible escape maneuvers (Ei).  Each escape maneuver 

policy, when used repeatedly, causes the system to seek some state goal.  For example, 

one maneuver policy for an aircraft could involve achieving a certain heading or climb 

rate, so repeated use of the maneuver would cause convergence to that goal. 

 

 

 

 

 

Figure 2.15: Planning with Maneuvers 

 For each maneuver there is some probabilit y of an incident occurring.  The action 

decision is made by optimizing or satisficing a cost function defined in terms of the 

probabiliti es of future events.  For example, prior to any alert the rule might be to issue 

the alert if the probabilit y of an incident along the nominal trajectory exceeds some 

threshold (as in figure 2.10).  Or, it could be based on a maximum allowable probabilit y 

of an incident for the available escape maneuvers, where reaching a minimum safety 

level triggers the alert, as done in (Carpenter & Kuchar, 1997).  It could also be a rule 

using both nominal and escape maneuver predictions. 
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After an alert happens, the simplest approach is to use the safest maneuver, and 

cease any further planning.  Then there are no further choices to make, and the resulting 

probabilit y of an incident will be as predicted at the time of the alert for that maneuver.  

For the most predictable evasion performance, the maneuver may take the form of an 

understood procedure the human operators rehearse, so that no display or interpretation 

of complex guidance is needed after the alert (e.g. evacuation procedures for fire alarms 

in a building).  In aviation alerting this was assumed during development of the AILS 

colli sion avoidance logic for close parallel approaches (Winder & Kuchar, 1999; 

Samanant et al, 2000), where the tactical nature of the alerts made quick and precise 

execution of escape maneuvers important. 

 A more flexible use of maneuver policies is allowing the alerting system to switch 

between maneuvers (replan) even after an alert occurs.  This gives the alerting system 

greater freedom in acting to attain its objectives, but the method of choosing the next 

action becomes less clear.  Probably the most obvious approach is to choose the 

maneuver resulting from a fixed maneuver policy assumption as before, but to repeat the 

decision at later times, each time using the maneuver policy for the maneuver that is 

predicted to be safest.  This could result in a sequence of maneuver segments such as 

shown in figure 2.16.  Note that there is an inconsistency in assuming that the maneuver  

 

 

 

 

 

Figure 2.16: Replanning with Maneuvers 

policy is fixed when in fact it can be changed later (the fixed-maneuver logic of f igure 

2.15 has this same inconsistency, since choosing the nominal maneuver does not actually 

force a nominal trajectory to be followed in the future).  However, the escape maneuver 
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replanning method can still decrease the probabilit y of an incident over that of the fixed-

maneuver planning method once an alert has occurred, making it a safer method while 

not increasing the unnecessary alert rate.  The method has been used in alerting 

systems—for example, by the TCAS logic in the post-alert phase (RTCA, 1983; Harman, 

1989). 

 Figure 2.17 shows the difference between safety as computed using a fixed-

maneuver assumption, and the more realistic safety probabilit y the alerting system would 

predict if it were able to take future decisions into account.  The more accurate 

knowledge would have an impact the alerting decision at tc, possibly causing the alert to 

be deferred longer than it would be otherwise.  This would reduce the unnecessary alert 

probabilit y, assuming the SOC trajectory continued moving leftward. 

 

 

 

 

 

 

 

 

Figure 2.17: Err or in Computed Safety 

Another important observation to make is that if the alerting system has only 

uncertain knowledge of the situation state (a belief state), then taking future decisions 

into account in probabilit y calculations also requires considering future belief states.  

This is because at future points in time the alerting system will have made additional 
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observations of the situation, and as a result it will have gained new information that will 

affect the decision made at that time. 

If it can be done, this kind of probabilit y estimate would enable decision making 

that is more rational and potentially better than others in that, to achieve a specific goal, 

the decision maker uses more of the information available in the alerting process model 

and from observations than in simpler methods.  Methods currently available for solving 

this kind of decision problem are described in Markov decision process (MDP) theory, 

and will be applied later in this thesis.  This is a novel approach to designing hazard 

avoidance alerting systems, because existing probabili stic prediction-based logics tend to 

use the simpler maneuver-based methods. 

An issue that comes up and will be addressed later is that this most general 

method of probabili stic planning has the potential to be more complex numerically, and 

too diff icult to carry out in real time with trajectory simulation-based methods like Monte 

Carlo simulation. 

2.4.3 Strategy to Avoid Improper Alerts 

 For the alerting system to be accepted by its users, it should avoid significant 

numbers of nuisance alerts.  Ideally it would avoid all improper alerts, meaning operators 

would agree with its actions in all scenarios (section 2.2).  The design process should 

include a strategy for minimizing such alerts. 

 An alerting system’s improper alert tendencies are usually detected and 

eliminated in a process of trial and error, using simulations or other tests along with 

human judgment.  Because improper alerts are inherently subjective, it is unclear how to 

control them directly through definition of the alerting threshold and avoidance logic.  

Assumptions are sometimes made, at least implicitl y, that improper alerts are closely 

related to unnecessary alerts, so that minimizing unnecessary alerts also minimizes 

nuisance alerts.  Assuming this relationship is true, it still does not provide a means of 

avoiding delayed alerts that could also be considered improper. 
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 In this thesis an assumption is made that a more general and complete description 

is needed of what causes improper alerts, and this description should guide the basic 

definition of the alerting threshold.  Part of the motive for a decision theoretic approach 

to alerting is an hypothesis that, by approximating a rational decision process and basing 

it on goals compatible with operator preferences, an alerting logic will t end to avoid 

improper alerts.  This notion will be discussed in more detail i n chapter 4. 

2.5 Chapter Summary 

 This chapter described the basic ideas of probabili stic prediction-based alerting as 

it is typically done, and then argued the need for certain improvements in design:  mode 

uncertainty modeling and accounting for future decision opportunities. 

 First the alerting process was described in mathematical terms.  The alerting 

system can be though of as a controller of a situation made up of human operators and a 

plant they interact with.  States of dynamic process elements are expressed as state 

vectors, and the overall situation has a state s.  The dynamics of s are described by a 

probabili stic transition function T(s(tc), τa), which is the conditional distribution of 

possible next states resulting from a given alert signal τa and current state s(tc).  The 

alerting system makes observations of the situation through the probabili stic sensor 

function O(s(tc)), which is the conditional distribution of possible measurements o of the 

current state. 

 The fundamental aspects of alerting system performance were reviewed.  There 

are three types of error that an alerting system can make:  unsuccessful alerts, 

unnecessary alerts and improper alerts.  An unsuccessful alert is one where an alert is 

followed by an incident, either because the alert was too late or because it actually caused 

an incident that would not have happened otherwise (an induced incident).  An 

unnecessary alert is one where the alert is not necessary to prevent an incident, and 

results in an unneeded evasion maneuver or an induced incident.  An improper alert is an 

outcome where a human operator feels an alert is incorrect—either too early or too late—

and can harm operator conformance to alerts over time. 
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 Next, the use of probabili stic state filtering in alerting systems was discussed, 

followed by how probabili stic performance metrics are used to define the alerting 

threshold. 

 Finally, new decision considerations were discussed in relation to current 

methods, with the overall aim of increasing the amount of available information that is 

applied to the decision.  One is the possibilit y of using belief state filtering to model 

uncertainty of dynamic modes.  Another is the use of information about future decision 

options, including possible future belief states, to make more informed alerting decisions, 

both at the threshold and during the evasion guidance phase.  Finally, a short discussion 

of improper alert reduction as a goal of design was included.  The need was stressed for 

use of an improper alert model early in the design to minimize trial and error improper 

alert reduction later. 
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3. Related Work 
 

 This research concerns methods for designing tactical hazard avoidance alerting 

systems of the kind increasingly used in aviation safety applications.  These systems are 

characterized by their use as backup safety devices for infrequent hazards, numerous 

input state variables, complex alert signals such as staged alerts and dynamically 

generated resolution guidance, and multiple dynamic modes in the monitored situation.  

This thesis will apply methods from Markov decision Process (MDP) theory to such 

systems to guide design and improve performance.  Figure 3.1 ill ustrates the relationship 
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Figure 3.1: Related Research 
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of this problem to broader existing areas of research.  The following sections give an 

overview of the most closely related work, sharing two or more of the large categories 

and identified in the diagram with shading. 

3.1 Time-Critical Hazard Alerting Systems 

 Existing alerting system designs can be divided roughly into three categories:  

conformance-based, simple trajectory-based and complex trajectory-based. 

 Conformance-based alerting systems operate under the reasoning that abnormal 

system behavior justifies an alert.  An example is the Precision Runway Monitor (PRM) 

alerting system for preventing colli sions during closely spaced parallel runway 

approaches (Shank, 1994).  In this case alerts are triggered when a radar-tracked aircraft 

crosses into a “no transgression zone” separating two approach paths, as in figure 3.2. 

 

 

 

 

Figure 3.2: PRM Conformance-Based Alerting Threshold 

Such an alerting system has no inherent tendency to avoid unnecessary alerts (where no 

incident would occur without the alert).  For example, PRM would trigger an alert even if 

there were no aircraft in the adjacent approach path to be endangered. 

 A more sophisticated type of logic is simple trajectory-based alerting.  In this 

method alerts are triggered through a combination of a rough state prediction model and 

incident proximity criteria.  For example, the TCAS aircraft colli sion avoidance system 

uses range and time threshold criteria along with an assumption of constant range rate.  In 

such an alerting system there may be several threshold parameters that must be tuned to 

give acceptable performance in terms of unnecessary alerts and safety.   Other examples 
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of this type of alerting in aviation are the Ground Proximity Warning System (GPWS) 

terrain avoidance logic and Airborne Information for Lateral Spacing (AILS) logic for 

parallel approach colli sion avoidance. 

 Complex trajectory-based alerting uses a more realistic trajectory model and 

threshold criteria that are stated directly in terms of alerting performance requirements.  

An example is the parallel approach logic by Teo & Tomlin (2003) that triggers alerts 

according to worst-case safety requirements for escape maneuvers.  More common are 

alerting logics that use probabili stic state prediction models and decision metrics.  At 

MIT logics have been developed (Carpenter & Kuchar; Yang & Kuchar, 2002) using 

probabili stic safety and unnecessary alert performance metrics (P(Successful Alert) and 

P(Unnecessary Alert)) to define the alerting threshold. 

 Of these three alerting approaches, the Markov decision process alerting method 

described in this thesis is most similar to complex trajectory-based alerting with 

probabili stic modeling and decision metrics.  This is because it too uses explicit 

probabili stic prediction modeling and probabili stic decision metrics to define the logic.  It 

is distinct, however, in that existing approaches have not made use of probabili stic mode 

uncertainty models or information about possible future decisions.  Alerting logics 

typically involve continuous or observable state variables, and decision metrics are 

computed with an assumption that a fixed control sequence will be followed. 

3.2 Hazard Avoidance with Mode Modeling 

 An overlapping area of research concerns hazard avoidance using uncertain mode 

modeling, which includes more strategic forms of detection and avoidance. 

At MIT recent attention has been given to conformance monitoring as an 

approach to avoiding incidents in an airspace environment (Reynolds & Hansman).  In 

this work a fault detection approach was used to judge whether aircraft were conforming 

or not to an expected path.  As with conformance-based tactical alerting systems such as 

PRM, the driving philosophy in this case is that detection of abnormal system behavior 

justifies intervention.  This point of view is consistent with the current air traff ic control 
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system, where aircraft in controlled airspace are monitored continuously for deviations as 

they fly along pre-approved routes. 

The Markov decision process alerting method differs from this in two main ways.  

One is that fault detection results in a conclusion that the system is in a specific mode, 

whereas with the MDP method mode probabiliti es are maintained and used to weight the 

outcomes predicted for the different possible modes.  Another difference is that in the 

MDP case alerting decisions depend on predicted final outcomes, whereas interventions 

are justified by the mode in a fault detection method. 

There are other mode-based hazard avoidance methods more similar to MDP 

alerting in that they use state prediction and mode probabilit y updating.  An MIT group 

(Yang et al, 2004) has applied mode uncertainty modeling and estimation to automotive 

colli sion avoidance.  Probabiliti es are computed in real time for a number of possible 

dynamic models (modes) using a multiple Kalman filter approach.  A mode estimate is 

determined from this and used with a hazard prediction model to choose the alerting 

action.  Another method recently suggested (Hwang et al, 2003) for aircraft conflict 

detection combines mode estimation with a probabili stic trajectory prediction model to 

estimate colli sion probabiliti es.  The MDP approach proposed here differs from both of 

these methods in that the mode probabilit y distribution rather than a mode estimate taken 

from the distribution is used in making predictions.  Also, in the MDP approach 

predictions will i nclude information about future decisions yet to be made, whereas both 

of these assume a predetermined control sequence will be followed, as described in 

section 2.4.2. 

3.3 Alerting with Markov Decision Processes 

 Markov decision processes have been applied in various decision aids such as 

navigation advisors that continuously help users optimize their movements.  They have 

also been used for alerting applications. 

One relevant case is an alarm system concept designed at Stanford to assist ICU 

physicians in making optimal use of limited attention resources (Huang, 1999).  
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Successive alerts would direct physicians to patients most urgently needing attention.  

This application involved a fully observable Markov patient model, whereas the proposed 

alerting application allows a partially observable state (uncertain modes).  

Another related use of Markov decision processes is work by Horvitz with others 

on designing MDP-based software agents to help humans accomplish tasks, including 

during time-criti cal decision situations such as medical emergencies (Horvitz & 

Rutledge, 1991; Horvitz & Seiver, 1997).  One application combined Markov decision 

processes with an uncertain user attention model to optimize the timing of email alerts 

(Horvitz et al, 1999).  This latter research is very similar to the proposed use of MDPs, 

but differs in that the present work concerns time-criti cal hazard avoidance alerting and 

specific issues for this kind of alerting, including escape guidance, uncertain dynamic 

modes.  In addition this thesis also discusses MDP-based alerting in the context of current 

hazard alerting methods, including specific peformance measures such as P(SA), P(UA) 

and improper alert rates, in order to point out differences and benefits. 
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4. Alerting with Markov Decision Processes 

 

4.1 Introduction 

 Richard Bellman introduced Markov decision processes in 1957 as a variant of his 

more general “dynamic programming” theory of optimal control, itself based on work by 

Hamilton and Jacobi in the 1800s (Sutton & Barto, 1998; Bellman 1957a,b).  Dynamic 

programming is a method of controlli ng dynamic systems to optimize some measure of 

the state trajectory.  A typical problem is controlli ng a vehicle’s speed to minimize fuel 

use on the way to a destination.  A Markov decision process is such a problem where 

time is discrete and the process dynamics exhibit probabili stic randomness.  Since its 

invention, the theory has been extended to allow probabili stic current-state uncertainty 

due to limited observabilit y.  Such a process is termed a partially observable Markov 

decision process (POMDP). 

 Markov decision processes have been applied in economics, operations research, 

control systems design, and artificial intelli gence (AI) among other areas.  In AI research, 

MDP theory has gained favor as a model of rational decision making in well -defined 

circumstances where an intelli gent agent’s outcome preferences can be expressed as a 

trajectory utilit y function (Russel & Norvig).  This point of view is supported by the 

success of MDP-based systems in complex reasoning tasks such as playing master-level 

backgammon against humans (Tesauro, 1994).  As demonstrated in that work, MDPs can 

sometimes be combined with reinforcement learning techniques to avoid the need to 

directly define utilit y and reward functions.  Russell and Norvig (2003) give a good 

introduction to MDPs from an AI point of view, and are the main resource for MDP 

theory and terminology in this chapter.  Other popular references include Bertsekas 

(1987, 1995) and Puterman (1994).  
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 The purpose of this chapter is to give an overview of MDP theory in an alerting 

systems context.  Most of the needed components—the Markov state, probabili stic 

dynamics and sensor functions—were introduced in chapter 2. 

4.2 Problem Formulation 

 MDP theory requires the alerting process to be modeled in discrete time.  Time is 

represented as a series of integers, k, where each k corresponds to a point in time, tk.  

Hazard alerting processes are often discrete anyway, due to the nature of the hardware 

implementation, which can involve digital computers and sensors with limited update 

rates. 

 

 

 

 

 

Figure 4.1: Markov Alerting Process 

4.2.1 MDP Alerting Model 

Figure 4.1 shows the Markov alerting process model and necessary components. 

A basic process includes: 

s, S Markov situation state and state space  

a, A Alerting actions and action space  

sk+1 = T( sk, a ) Probabili stic transition function describing the 
distribution of next states within S due to a given 
action from at the current state 

(4.1) 
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Uτ( sk, sk+1, … sn ) Trajectory utilit y function defining the total utilit y 
of a state trajectory τ, where n can be infinitely 
large 

(4.2) 

The notation “sk” is short for s(k).  In a standard MDP as defined above, the state is 

assumed to be fully observable.  A more general version of the problem, called a partially 

observable Markov decision process or POMDP, allows for an uncertain observation or 

sensor function: 

o, O Set of possible observations of the state  

ok = O( sk ) Probabili stic observation sensor function describing the 
distribution of observations within O for a given state. 

(4.3) 

 In a sense any alerting problem is partially observable, since the sensors needed to 

measure the state are imperfect, but in some cases a regular MDP model may be an 

appropriate approximation.  Systems with unobservable mode variables in the state will 

li kely need a POMDP model. 

4.2.2 Trajectory Utili ty Function 

In MDP theory the long-term priorities of the decision maker, in this case the 

alerting system, are described by a trajectory utilit y function, Uτ( sk, sk+1, … sn ).  This 

function is a mapping of each possible system trajectory into scalar value, where the 

larger the value, the more desirable the trajectory is.  For any two outcomes (trajectories), 

the one with the larger utilit y is preferred.  In sequential decision making, each successive 

action is chosen to maximize the overall utilit y of the trajectory, including the future 

trajectory. 

This definition of the utilit y function is a very general one, and to simpli fy the 

problem an assumption can be made that the utilit y function is stationary:  that it (and the 

preferences it represents) stays constant with time.  A consequence of the assumption is 

that the utilit y function takes the form of a sum of rewards: 

Uτ(sk, sk+1, … sn) = R(sk) + γ R(sk+1) + γ2 R(sk+2) + . . . = Σ γt-k R(st) (4.4) 
t = k 

n 
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Here the R factors are rewards gained at each new state, and γ is a discounting factor 

between 0 and 1 that reduces the reward of future states progressively with projection 

time.  The discounting factor is included because in the case of n = ∞ (an infinite 

horizon) a sum of non-discounted trajectory utiliti es could be infinite, in which case it 

would be impossible to rank trajectories by utilit y as needed.  In some cases a discounted 

reward function may also better represent the priorities of the alerting system. 

 For the case of γ = 1 the rewards are additive with no discounting.  This is 

allowable if the process has a finite time horizon.  A finite horizon can be a reasonable 

assumption where the potential for incidents exists over identifiable time intervals, such 

as the time between when an alerting system begins tracking an intruder vehicle and 

when it has safely passed. 

 The R function, or reward function, can be though of as the most fundamental 

expression of decision preferences, with Uτ being just a function of R.  R is a constant 

function that assigns an immediate reward to every possible state.  To use the Markov 

framework it will be necessary to describe the requirements of the alerting system in this 

form, and this may partially dictate the choice of state variables.  Figure 4.2 ill ustrates the 

reward accumulation process for a 3-state discrete-time system, assuming no reward 

discounting.  Each time an action is taken, causing a transition to the next state, a reward 

is gained.  

 

 

 

 

 

 

Figure 4.2: Reward Accumulation 
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4.3 Expected Utilit y-Based Decisions 

4.3.1 Maximum Expected Utili ty Pr inciple 

 For a system with deterministic dynamics and a known state—where the exact 

trajectory and utilit y can be predicted for a sequence of actions—the preferred action at 

any time is the one that would lead to the highest overall utilit y.  Specifically, for the 

trajectory utilit y function defined in section 4.2, the best action is the first action of the 

sequence that maximizes the utilit y function.  These ideal conditions often fail to hold in 

realistic system models:  current-state uncertainty, imperfect observabilit y, and dynamic 

uncertainty can make an exact utilit y prediction impossible.  Instead, the utilit y of a given 

action sequence becomes a random variable with a distribution of possible values, 

making it impossible to say which next action maximizes utilit y. 

In MDP theory, and decision theory in general, the maximum expected utilit y 

principle is used for decisions under uncertainty.  It states that the preferred action is the 

one producing the greatest expected (mean) outcome utilit y, rather than the best exact 

utilit y: 

ak:      max E[ U(sk+1) ] (4.5) 

Where ak is the preferred kth action and U(sk+1) is the maximum expected utilit y possible 

at the next state, sk+1. 

4.3.2 Expected Utili ty of States 

 With utilit y defined by expression 4.4, the action taken at each step should be the 

one that maximizes the expected utilit y of the entire state trajectory.  By the principle of 

optimality, this also means that the action should maximize the expected utilit y of the 

remaining future trajectory.  Each state, then, can be thought of as having an associated 

maximum expected utilit y4, U(s).  That utilit y is given by the Bellman equation 

                                                 
4 The maximum expected utilit y of a state is sometimes referred to as the “utilit y” of the state for 
convenience. 

ak 
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U(sk) = R(sk) + γ max E[ U(sk+1) ] (4.6) 

This says that the utilit y of the current state sk is the reward that was gained at sk plus the 

discounted maximum expected utilit y of the following state, sk+1.  Since (4.6) also 

determines U(sk+1) from its following states, U(sk) could be calculated by recursively 

applying (4.6) into the future, if not for the computational diff iculties of doing so. 

 Computing the expected utilit y of an action in such a way is a diff icult task.  

Finding the expected utilit y of a given action requires knowing the maximum expected 

utilit y of each possible next state (at worst the entire state space) over all possible actions, 

so in the worst case the number of utilit y calculations (and amount of computing time) 

increases in proportion to nm q(m-1), where n is the number of possible states, q is the 

number of available actions, and m is the number of action stages considered.5  The 

increase in computations with the number of action stages is ill ustrated in figure 4.3 for 

the 3-state system of f igure 4.2, where m reaches 3.  The number of possible state paths 

 

 

 

 

 

 

Figure 4.3: Computing Expected Action Utili ty 

increases according to nm.  A single state path in the figure can correspond to more than 

one sequence of actions, which further expands the number of possible distinct 

cumulative reward scenarios.  At this rate, going beyond a few time steps into the future 

can quickly become too time and memory consuming to be feasible. 

                                                 
5 Using a limited number of steps into the future to compute expected utilit y presumes there is knowledge 
or an acceptable approximation of the utilit y of the future-most states.   
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 The mentioned number of possible utilit y scenarios is for the worst case, while in 

reality simpli fying assumptions are often reasonable.  For example, prior constraints on 

the form of action sequences can reduce the number of possibiliti es.  In addition, state 

transitions from a given initial state are typically limited to a small part of the state space 

by nature of the dynamics. 

 Another way to limit computational complexity is to use approximation methods, 

such as cutting off expected utilit y computations at a manageable number of steps and 

using a heuristic approximation of maximum expected utilit y at that stage. 

 The complexity of computing utiliti es through recursive simulation is significant 

because it can rule out numerical methods, such as Monte Carlo simulation, that are 

possible with other alerting philosophies (Yang & Kuchar, 2002). 

4.4 Policy Solutions 

 In general, any function that maps each state in S into a unique action is called a 

policy and referenced by the π symbol: 

a = π(s) (4.7) 

The decision rule described in the previous section, based on maximizing expected 

utilit y, does this and also ensures a utilit y-optimal action.  An optimal policy is 

distinguished with an asterisk 

a* = π*(s) (4.8) 

The optimal decision rule from section 4.3 would likely be too slow or inaccurate if 

recursively simulated as described, and a better form would be desirable—for example, 

this could be a table where pre-computed values can be quickly looked up at each state, 

or a parameterized function with parameters computed off line. 

 One eff icient policy generation method for the optimal policy is value iteration.  

It follows from the fact that the maximum expected utilit y at each state, U(s), is related 
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to that of its neighboring states by the Bellman equation (4.6).  If there are n states in S, 

then there are n Bellman equations U(⋅⋅) must simultaneously satisfy.  Due to the 

nonlinearity of the Bellman equation there is no guaranteed analytical solution, but 

iterative numerical methods often work.  Starting with an arbitrary function U(⋅⋅), the 

Bellman equation is applied at every state in S to generate an updated utilit y function.  

This is repeated until convergence of the utilit y function is achieved.  Now, since all of 

the next-state utiliti es are all known for any initial state, the policy can be found by 

applying the maximum expected utilit y rule (4.5) with a 1-step look-ahead at each state. 

 Another eff icient iterative method is policy iteration.  Starting with some arbitrary 

policy π, a utilit y function U(⋅⋅) is generated by applying Bellman’s equation at each state 

in a manner similar to value iteration.  Then an updated policy is generated using the 

maximum expected utilit y rule with U(⋅⋅).  These two steps are repeated until the utilit y 

function stops changing. 

 Both of these common policy generation methods are more eff icient than the 

recursive method described previously, with required memory proportional to n and 

computation time increasing with n2
 q c, where n is the size of S, q is the number of 

actions, and c is the number of iterations.  This is relatively manageable compared to the 

exponentially increasing resource requirements for forward simulation utilit y estimation 

for a single state. 

A serious problem remains:  the number of states in S can increase exponentially 

with the number of state variables in the vector s.  At worst, the total number of states is 

the product of the domain sizes of all variables.  Because of this, available computing 

power puts a limit on the number state variables that can be used in the logic.  It may be 

possible to solve a large problem if some part of the domain can be discarded as unlikely 

to be occupied of physically impossible. 

In very large or continuous state spaces it may be necessary to use function 

approximation methods to model U(⋅⋅) to reduce the number of parameters that must be 

computed and stored.  For example, neural nets have been used for this purpose 
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(Tesauro), along with training procedures for determining the necessary value function 

parameters. 

4.5 Partially Observable MDP Alerting 

4.5.1 POMDP Solution Issues 

Solution methods described in previous sections have assumed full observabilit y 

so that s is known exactly.  When the state is only partially observable, so that a belief 

state must be used, then any recursive prediction approach to calculating expected utilit y 

of actions would also involve recursive prediction of future belief states.  Or in other 

words, the decision process requires an awareness of future belief states that could result 

from different actions.  For example, in an alerting problem involving uncertain modes, 

the alerting system may decide to defer an alert in the knowledge that the mode 

uncertainty will be reduced by coming events and observations, allowing greater 

expected safety or a smaller unnecessary alert probabilit y than an immediate alert. 

 The maximum expected utilit y for the partially observable case is no longer 

described by the Bellman equation (4.6), so previously given policy solution methods do 

not clearly apply.  The standard approach to solving POMDP problems is to view the 

belief state as another state variable with its own state space.  The belief state space 

(belief space) is the set of probabilit y distributions possible over the original state space 

S.  Viewed this way, the POMDP can be thought of as an MDP where the belief state 

space replaces S as the state domain.  Then standard MDP solutions apply. 

 A remaining challenge is that the belief state space must be indexed so that 

solution algorithms can step systematically through the space.  Another is that even if an 

index scheme is found, the number of belief states that must be considered may be too 

large for available methods to be practical, depending on the complexity of possible 

belief distribution functions.  Such POMDP solution issues are an active area of research. 

 The belief space can be thought of as a parameterized function over the domain S, 

where varying the parameters allows the function to represent the entire range of belief 
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states.  Then, individual belief states correspond to particular parameter choices or 

coordinates.  This makes enumeration of the belief states straightforward.  The fewer 

parameters there are, and the more limited their ranges, the fewer belief states will li kely 

be needed to adequately cover a continuous belief space.  This hints of the possibilit y of 

approximating a complicated belief space with a reduced-order model, having fewer 

parameters and needing fewer parameter combinations to span the belief space.  Such 

belief compression methods may prove important to design of future alerting systems 

involving uncertain modes or many state variables. 

4.5.2 Belief State Fil tering 

 As described in chapter 2, the combination of probabili stic uncertain dynamics 

and probabili stic observabilit y leads to uncertainty in the current state in the form of a 

probabilit y distribution (belief state).  The belief state takes into account all available 

information, including prior knowledge, the transition and sensor models, observations 

made and past inputs to the system.  This combining of information is achieved at each 

time step using a recursive algorithm: 

bs(k)  =  α  O( s(k) )      T( s(k-1), a(k-1) )  bs(k-1)  (4.9) 

 The formula states that the updated belief state, bs(k), is found by summing the 

transition functions for all possible current s(k-1), weighting at each state by the current 

state likelihood bs(k-1), and then multiplying the resulting function of s(k) times the 

observation function, O( o(k) | s(k) ).  The constant α ensures that the resulting 

distribution function sums to 1 over its domain.  Since the values of a(k-1) and o(k) are 

assumed known, and s(k-1) is eliminated by the summation, the final expression is a 

function of s(k) only.  Note that the previous belief state can be either the result of a 

previous iteration of the formula or a prior belief state, bs(0), that initializes the process.  

Thus, this formula does incorporate all of the information available in prior knowledge, 

bs(0), the process model, T(⋅,⋅) and O(⋅), and the history of past actions and observations 

(the evidence), { o(0), a(0), o(1), a(1), …, o(k), a(k) }. 

All s(k-1) 
Σ  
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 The Markov assumption that was made in defining T(⋅,⋅) is important here 

because it allows the recursive formula shown, as opposed to one that explicitl y contains 

the entire evidence history.  Given that the amount of evidence increases with time, such 

an expression would become increasingly unwieldy and impractical to use with time.  For 

a more detailed discussion of the belief f iltering formula and the significance of the 

Markov assumption, see appendix A. 

4.6 Human Modeling Issues 

 As mentioned in section 4.2.2, the reward function R(⋅) over the state space S is 

meant as an approximate representation of the goals or priorities of the alerting system.  

Based on this, the MDP theory generates a policy that is optimal in the utilit y 

maximization sense, and presumably rational.  The human operators that receive alerts 

might also be assumed rational, at least ideally, and to act to maximize their own utilit y 

function.  Such an operator would try to make best use of any signals generated by the 

alerting system and to do so requires a notion of what the alerting signal means.  This is 

only to point out that whatever R(⋅) is used for the alerting system involves at least 

implicit assumptions about operator behavior and preferences.  If the reward function 

conflicts in some way with an operator’s understanding of the alerts, or sense of what is 

justified, the result is improper alerts (section 2.2).  This means that when using the MDP 

design method, which maps alerting preferences directly into the logic, the potential for 

improper alerts should be considered at the reward function definition stage. 

 A related issue is the fact that operators learn from observations of the alerting 

system’s behavior, which can cause their understanding of and reactions to alerts to 

change over time.  For this reason it may still be necessary to perform the sort of global 

trajectory analysis that is commonly used in current methods.  For example, Monte Carlo 

analysis of the alerting logic can provide a more complete picture of the human responses 

implied by the reward function and operator model that were used, including rates at 

which evasion commands are modified or reversed, and the overall rates of alerts and 

incidents.  This will help in judging whether the situation model seems consistent with 

realistic operator behavior.  A high alert or incident rate in simulations where an operator 
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is assumed to conform to alerts could indicate an inherently unacceptable situation where 

no alerting system would help.  In the end, the alerting system design process may take 

an iterative form where reward and utilit y functions are arrived at through adjustment of 

initial estimates. 

4.7 Chapter Summary 

 The alerting problem is restated in terms of the basic elements of a Markov 

decision process.  This includes the state space {  s, S },  the observation space {  o, O }, 

the action space {  a, A }, the transition function T(s, τa), and the observation function 

O(s) (for partially observable problems, such as with uncertain modes). 

 The method also requires defining alerting system performance requirements 

(outcome preferences) in terms of a trajectory utilit y function Uτ(τ), which associates a 

utilit y value with every possible trajectory τ.  The utilit y function is so defined that for 

any two outcome trajectories, the relative utiliti es describe the degree of alerting system 

preference between the two.  The trajectory utilit y function corresponds to a reward 

function R(s) that gives the reward (utilit y contribution) of the situation reaching a 

particular state.  The utilit y of a trajectory is the cumulative reward from the sequence of 

states passed through. 

 Decisions are made by the maximum expected utilit y principle.  Ideally, the 

decision that would result in the maximum utilit y is preferred, but state uncertainty (due 

to the stochastic transition and sensor functions) makes exact utilit y impossible to 

compute.  Expected utilit y is considered the next best decision metric. 

 Expected utilit y can be diff icult or impossible to estimate quickly through forward 

simulation of trajectories.  Because alerting decisions must occur in real time, a more 

eff icient means of estimating expected utiliti es is needed.  This is achieved through 

policy generation, in which a function relating each state, or belief state, to an expected 

utilit y and optimal action is pre-computed using Bellman’s equation.  The policy is stored 

in a table or other form that allows real-time retrieval of function values. 
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 Alerting processes involving uncertain mode variables have more complicated 

policy solutions, because the policy is then a function of a belief state rather than a 

regular state (making it a POMDP problem).  One common solution method involves 

representing the belief state as a parameterized function, so that the range of possible 

belief states corresponds to a range of parameter values.  Then the problem can be 

approached in the same way as a regular MDP. 

 The reward function of an alerting system represents the alerting system’s 

preferences, which in turn should be related to and in agreement with the preferences of 

operators who receive alerts.  Otherwise, the alerting system will produce improper alerts 

that harm long-term performance. 
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5. Applying the MDP Method to an Aircraft 

Passing Scenario 

 

5.1 Introduction 

 In this chapter the benefit of MDP methods is shown for a simpli fied aircraft 

colli sion avoidance problem.  Figure 5.1 shows the scenario of interest.  Two aircraft 

approach one another at similar altitudes so that there is some nominal probabilit y of a 

colli sion.  A colli sion will be defined as the crossing of one aircraft through a protected 

region about the other, as shown.  One aircraft, called the evader, has the option of using 

a climb evasion maneuver if needed to avoid a colli sion with the other aircraft, or 

intruder.  Each aircraft moves randomly in altitude over time, and this translates into a 

randomly changing vertical separation between the two.  This randomness makes 

 
 
 
 
 
 

 

Figure 5.1: Aircr aft Encounter Scenar io 

exact forecasting of a colli sion impossible, so it is not clear if or when an evasion 

maneuver is needed.  This is a basic example compared to many realistic alerting 

situations (e.g., where additional avoidance options or 3-dimensional position might be 

involved), but the simpli fications cause no loss of generality in the methods described, 

and could be relaxed. 
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 Figure 5.2 shows a model of the 2-aircraft system.  The aircraft are constrained to 

a plane, with the evader fixed at the origin of the relative position axes, x and y.  The 

relative horizontal speed is assumed constant, while the relative vertical speed can vary in 

 

 

 

 

 

 

Figure 5.2: Markov Encounter Model – Nominal Dynamics 

either direction over time.  Prior to any alert, the relative motion is described by a process 

of the form 

x(k+1) = x(k) + vclosing ∆t 

y(k+1) = y(k) + vw(k) ∆t 

(5.1) 

with the following definitions 

  x(k+1)  Horizontal relative position at the next time step 

y(k+1)  Vertical relative position at the next time step 

x(k)   Current horizontal relative position 

y(k)   Current vertical relative position 

∆t   Constant time increment 

vclosing  Constant horizontal closing rate 
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y 
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x(k) x(k+1) 

Gaussian uncertainty 
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vw(k)  Gaussian white sequence climb rate disturbance input 

The first equation describes the constant horizontal closing rate as a discrete-time 

process.  The second says that the future vertical position of the intruder is a discrete-time 

Markov random process depending only on relative altitude.  Vertical position is 

predictable only within a normal distribution whose mean is the current position.  The 

variance of predicted vertical position increases linearly with the number of steps into the 

future (Brown & Hwang). 

 While the previous equations describe the nominal dynamics that apply before 

any evasion maneuver occurs, the following one describes the vertical position during a 

climb escape maneuver (figure 5.3): 

y(k+1) = y(k) + ( vw(k) + vclimb ) ∆t (5.2) 

The difference is the addition of a constant bias, vclimb, the average climb rate.  The 

horizontal motion is identical for the nominal and evasion cases. 

 

 

 

 

 

 

 

Figure 5.3: Markov Encounter Model – Climb Dynamics 

A climb by the evader causes a relative descent by the intruder, as figure 5.3 shows. 
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Since the evader is fixed at the origin, a colli sion happens if the intruder crosses 

through a region about the origin.  Because vertical motion is slow relative to horizontal, 

the colli sion region is simpli fied for convenience from an area around the evader to 

passing within 100 vertical feet at the y-axis, as shown in the figures with a hatched bar. 

To simpli fy the discussion, this model has only two physical state variables:  the 

relative vertical and horizontal positions.  A more realistic description of aircraft 

dynamics could use additional state variables, such as the absolute speeds and positions 

of each aircraft, but the same design principles would apply.  The next chapter will 

consider one possible improvement, namely the inclusion of a dynamic mode variable to 

distinguish between normal and failure situations. 

 Parameters were chosen to simulate an aircraft encounter with a horizontal 

closing speed of vclosing = 440 knots (743 ft/sec).  An input noise standard deviation of vw 

= 1,858 ft/min (31 ft/sec) was assumed with a 0.32 sec time increment ∆t.  This is 

equivalent to a vertical drift standard deviation of 100 ft after a 24,000 ft (approximately 

4 nautical mile) horizontal interval.  The simpli fied model produces random trajectories 

that tend to remain near the initial relative altitude, with possible moderate climbing or 

descending.  A mean evasion climb rate vclimb of 1,500 ft/min (25 ft/sec) is assumed. 
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 Figure 5.4 shows an example trajectory resulting from these dynamic assumptions 

over a 32 second interval.  For the first (right) half the nominal dynamics are used, and 

for the second half the climb dynamics are used.  The colli sion region is also included as 

a shaded bar about the evader. 
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Figure 5.4: Example Trajectory:  Nominal and Climb Dynamics 

5.2 Basic Reward Function for Alerting 

 The MDP framework requires that all of the goals or preferences of the alerting 

system be represented in terms of the relative utiliti es of events that can happen.  Then 

the decision process becomes a matter of acting to maximize expected utilit y at each step. 

 In SOC (system operating characteristic) analysis the quality of alerting decisions 

is measured in terms of whether alerts happen, whether they are needed, and whether the 

resulting trajectories are safe.  There are desirable and undesirable final outcomes, and as 

discussed in section 2.2, it is typically impossible to guarantee that only desirable ones 

happen.  A trade-off must be made between them.  SOC plots are one tool for analyzing 

the trade-off , stating it in terms of the probabiliti es or rates of positive and negative 

outcomes. 

Making a trade-off between different outcomes requires knowing the relative 

desirabilit y of the outcomes.  In a utilit y approach such preferences are expressed by 
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assigning numeric values to the outcomes.  Outcomes with larger numbers have greater 

desirabilit y, and the larger the difference between two possibiliti es, the greater the 

preference of one over the other.  In figure 5.5 possible alerting outcomes are divided into 

a set of mutually exclusive events.  These are all of the possible combinations of the three 

above-mentioned categories from SOC theory, six in all (the two shaded event blocks are 

excluded because they are impossible.)  Recall that an alert is considered successful i f no 

incident happens, and necessary if an incident would have happened without the alert. 

 

 

 

 

 

 

Figure 5.5: Utili ties of Alerting Outcomes 

 In a Markov decision process approach to the alerting problem this information 

about outcome preferences must be expressed as a trajectory utilit y function, which will 

be assumed to take the form 

Uτ = ∑ Rt (5.3) 

where the total utilit y for the future trajectory is a sum of the rewards gained at each state. 

This is the additive rewards utilit y function (eq. 4.4) described in section 4.2, where the 

discounting factor is set to 1.  This is reasonable here assuming rewards are well bounded 

and that the alerting process ends at some point in time so that the trajectory utilit y is 

finite.  A convenient end point for the aircraft passing situation is when the intruder 

passes the y axis:  after this point the intruder no longer poses a danger, so the alerting 

system can stop monitoring it. 
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A utilit y ranking of the outcomes could be defined as follows 

Uincident ≡ ULA = UII  = UMD 

USA ≡ UCD = UUA 

Uincident < USA < UCR 

(5.4) 

This says that all colli sion outcomes have equal utilit y, all successful alert outcomes have 

equal utilit y, and correct rejections are preferred over all other outcomes.  In some ways 

this ranking may seem oversimpli fied; a correct detection seems intuitively better than an 

unnecessary alert, and an induced colli sion might be considered worse than a missed 

detection or late alert.  On the other hand, once an alert occurs it is impossible to know 

whether it was necessary or not in order to make such utilit y distinctions, because the 

alert precludes observing the nominal trajectory.  So whether there is any practical 

difference between the different kinds of incident is debatable.  Examples in this thesis 

will assume the (5.4) outcome utilit y scheme, but it should be noted that the generality of 

utilit y does allow for other schemes if needed. 

In its favor, this utilit y scheme conforms to with existing SOC philosophy in that 

there are two main error types—incidents (unsuccessful alerts) and unnecessary alerts—

that should both be avoided if possible to maximize utilit y.  Otherwise some optimal 

trade-off between the two is needed.  This agreement with SOC philosophy allows a 

direct performance comparison between MDP-based and SOC-based logics in the next 

chapter. 

Specific utilit y values for the three outcome categories are chosen to best reflect 

the degree of preference between them.  For example, the utilit y of a successful alert is 

probably much nearer to that of a correct rejection outcome than a colli sion.  Assuming 

Uincident is fixed, the nearer USA becomes to UCR, the less the alerting system would 

expect to gain from deferring alerts, and the earlier alerts would tend to occur.  This is 

true regardless of the utilit y of a colli sion, as long as it is less than the other two.  Thus, 

relative utilit y can be of more significance than absolute utilit y when assigning utiliti es. 
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 Recalli ng that the trajectory utilit y is a sum of the rewards for each state passed 

through, one possible reward function is shown in figure 5.6.  If the intruder arrives at a 

point within the colli sion zone about the evader, then an incident happens and the 

incident utilit y, Uincident, applies.  Setting the end-state reward value equal to the total 

trajectory utilit y constrains the previous terms of the reward function in that their values 

must sum to zero.  For colli sion cases, the most obvious solution is to let all previous 

state rewards be zero.  However, there still two kinds of non-colli sion outcome to 

consider. 

 

 

 

 

 

 

Figure 5.6: End-State Reward Definitions 

 While there is no ambiguity about the appropriate colli sion outcome utilit y—it 

applies regardless of the previous trajectory taken—the non-colli sion utilit y depends on 

whether or not an alert occurred before the end.  An alert happens the first time the climb 

action is selected.  If there was no alert and the trajectory ended in the safe range then 

UCR is the appropriate outcome utilit y.  If an alert did occur, then the USA utilit y applies 

instead.  This conditionality on the alert status suggests that lumping the trajectory utilit y 

into a single end-state reward as in colli sion would require a third state variable in 

addition to x and y.  This will be designated AS (alert status), and is a discrete two-state 

variable indicating a state either Before or After an alert. 
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 Figure 5.7 ill ustrates the 3-variable state space and end rewards.  It can be thought 

of as two position planes, one for each alert status, with different end-position rewards. 

 

 

 

 

 

 

 

Figure 5.7: State Space with Alert Status Var iable 

The system trajectory originates in the front plane at the right edge, and moves leftward 

according to the nominal dynamics as long as no alert occurs.  If no alert ever occurs, the 

trajectory will encounter either the incident or the correct rejection end-state utilit y.  If an 

alert does occur, the state transitions from the Before to the After alert status plane, and 

remains there for the remainder of the scenario.  In that case, non-colli sion end positions 

have the successful alert rather than the correct rejection reward.  For any trajectory, this 

arrangement assigns the correct outcome utilit y as defined by the (5.4) expressions.  

Thus, no additional rewards or penalties are needed from trajectory states before the end 

state, and this results in a reward function of the form 

Uτ = R(xf, yf, ASf) (5.5) 

5.3 Alerting Policy and Threshold 

 As mentioned in chapter 4, the most desirable solution to the alerting problem is a 

policy function that determines the next action from the current state with a minimum of 
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computation.  This section describes the policy generation process for the example 

alerting problem, based on the reward function defined in the previous section. 

 This problem is convenient in having a well -defined process end condition—

reaching the y position axis.  It also has dynamics that guarantee an orderly traversal of 

the state space, with no chance of occupying a single state twice (the horizontal position 

always moves forward, and in the same direction.)  This allows generating a policy in a 

direct and fast way that avoids the iterative methods often necessary with MDP problems.  

An inconvenience of this system is that it has a variable with a continuous domain (y) 

whereas the MDP method assumes discrete states.  This is dealt with by using a discrete 

approximation of y. 

 The approach is to generate a function that gives an expected utilit y for each 

possible action at each state.  Then, by the maximum expected utilit y principle, the 

preferred action is the one with the highest expected utilit y.  In this case the utilit y 

function has a 4-variable domain, including three state variables in figure 5.7 and the 

action. 

First note that for any end state, the expected utilit y is the exact utilit y given by 

the reward function defined previously (5.5).  Next, note that the state one step prior to 

that one is in the set of states where xp = xf – ∆x, where xf is the location of the end state 

and ∆x is the increment between horizontal positions.  Knowing the probabili stic system 

dynamics T and the end-state expected utiliti es U(xf, yf, ASf), the expected utilit y of the 

prior state, sp = { xp, yp, ASp }, for a particular action a is given by  

           Ua(xp, yp, ASp) =   E( U(xf, yf, ASf) | xp, yp, ASp, a ) 

=   ∑ U(xf, yf, ASf) T(xf, yf, ASf | xp, yp, ASp, a)    

=   ∑ U(sf) T(sf | sp, a)    

(5.6) 

 

All sf 

All sf 
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Figure 5.8 ill ustrates the variables and functions involved.  From the definition of 

the expected value, Ua(xp, yp, ASp) is the summation of the end-state utilit y function  

 

 

 

 

 

 

 

Figure 5.8: Utili ty and Probabili ty Distr ibution of Last Step 

U(xf, yf, ASf), weighted by the final-state distribution (transition function) 

T(xf, yf, ASf | xp, yp, ASp, a), over all possible end states, sf.  In the figure, the black line 

at each xf state represents the probabilit y of transitioning to that state, and the hatched 

bars represent the expected utilit y of the state.  The two quantities are multiplied at each 

state and then summed to give the expected utilit y at sp.  In this case xf and ASf are 

determined exactly by the previous state and a, so the transition function is really a 

distribution over yf.  The above formula (5.6) gives the utilit y for a single action, so the 

calculation must be repeated for each action.  The overall utilit y of the prior state is 

defined as the maximum value for the possible actions 

U(xp, yp, ASp) = max[ Ua(xp, yp, ASp) ] (5.7) 

and the maximizing action is the policy output for that state.  Notice that what is referred 

to as the “utilit y” of a state is really the maximum expected utilit y for that state, but the 

simpler term is sometimes used for convenience. 
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 Using the above formulas (5.7), the utilit y can be determined for every state in the 

xp subset.  The resulting utilit y function then becomes the basis for finding utiliti es for 

the next layer back, x = xp – ∆x, by a similar procedure as with (5.6 and 6.7).  This is 

repeated for every step backward until a complete utilit y function and action policy is 

obtained for the entire state space. 

 Figure 5.9 shows the pre-alert utilit y function for each action, resulting from 

applying the described method to the example system with the defined reward function 

(5.5) and outcome utiliti es of UCR = 1.1, USA = 1 and Uincident = 0.  Each plot is of the 

utilit y of taking the indicated action at all positions in the plane.  The utilit y functions are 
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Figure 5.9: Constant-Utili ty Contours Before Alert 

represented by constant-utilit y contours.  In each plot, the utilit y function minimum is 

Uincident and occurs at the x-y origin, and increases outward from there.  In the deferral or 

nominal action case (top) the maximum utilit y is UCR and occurs in the broad, level area 
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outside the outermost contour.  In the other case the maximum is USA and is also in the 

outermost area. 

 Figure 5.10 shows the complete utilit y function, covering both before and after-

alert states.  The before-alert plots to the left are the ones from figure 5.9.  After the alert, 

the nominal and climb actions are still both available, but unlike before the alert there is 

no possibilit y of gaining a UCR reward at the end.  Maximizing utilit y now means 

maximizing safety, since safe alert outcomes are still worth more than colli sions.  The 

after-alert utilit y functions for the nominal and climb actions are very similar.  The reason 

is that regardless of which action is taken at a given state, both actions are known to be 

available at the next step, and since the position increment is small , not much safety is 

lost due to lost time in a single step. 
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Figure 5.10: Constant-Utili ty Contours Before and After Alert 
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 The utilit y functions for the climb action before and after the alert are identical, 

because the distribution of the next state is the same for both. 

If the state begins at s = { x = 24,000 ft, y = 0 ft, AS = Before } and moves 

leftward on a colli sion course, and assuming alerts are suppressed (so no AS transition 

occurs), a distinct utilit y trace results for each possible action.  These are as shown 

superimposed in the figure 5.11 plot of utilit y vs. horizontal distance.  Far from the 

colli sion there is a slight utilit y benefit for the nominal action over the climb, hardly 

visible on the plot.  This relative benefit becomes progressively smaller with distance 

until the nominal and climb actions have the same utilit y where arrow indicates, at 11,000 

ft separation.  Beyond this point the nominal action has a lower utilit y, and both utiliti es 

keep decreasing as long as the colli sion path is followed, due to the decreasing 

probabilit y of avoiding the colli sion. 
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Figure 5.11: Utili ty vs. Distance for Head-On Colli sion Trajectory 

Following the maximum expected utilit y principle, an evasion maneuver would 

have occurred at the crossover point.  The location of the crossover depends on the 

relative values of the basic outcome utiliti es:  UCR, USA and Uincident.  If UCR becomes 

greater relative to USA while holding USA - Uincident constant, then the crossover point will 

be delayed longer, because it is more worth risking a colli sion to avoid alerting. 

The reason the expected utilit y benefit of the deferral action is so small i nitially is 

that with the defined system dynamics and initial position, the probabilit y of avoiding a 

colli sion through normal random drift is small .  If the initial vertical position were further 
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from zero, or the variance of the random process were increased, the utilit y of the 

nominal action would be nearer to its maximum of 1.1. 

Since the alert threshold is where the two before-alert action options have equal 

utilit y, the position-plane threshold is the zero-value contour of their difference, defined 

by 

Unominal(x, y, Before) - Uclimb(x, y, Before) = 0. (5.8) 

The two functions Unominal and Uclimb are the ones from figure 5.9.  Figure 5.12 

shows the threshold contour, along with the colli sion trajectory that produced figure 5.11.  

This is the threshold policy. 
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Figure 5.12: Alerting Threshold (Equal-Action-Utili ty Contour) 

The intruder begins at the right edge of the plane and moves at constant speed.  

According to the assumed dynamics, the vertical position should change randomly, but an 

idealized trajectory is used to more clearly show the utilit y trend in figure 5.11.  As long 

as the intruder is outside the threshold contour, the deferral action is preferred.  At the 

threshold, the climb action should be chosen, causing the alert status AS to switch to the 

After value. 
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5.4 After-Alert Guidance 

 During the deferral phase of an encounter, the assumption is that humans in the 

situation are in control and the alerting system is only passively monitoring.  The first use 

of the climb action marks the initial alert displayed to the operators.  At this point the 

situation enters the AS = After state as mentioned.  In this state the alerting system still 

considers both the nominal and climb options, by assumption, but they have different 

meaning in that the alerting system is now actively guiding the situation.  The nominal 

action is then not a deferral of action, but a command to take a non-climb action.  But 

there is no general requirement that post-alert guidance commands correspond one-to-one 

to pre-alert options as in this example. 

 In the same way as the Before alert mode, guidance (After) mode action switching 

occurs along a zero-utilit y-difference contour in the position plane.  Now this contour is 

formed using the two right-side utilit y functions from figure 5.10.  The contour is shown 

in figure 5.13, along with the original alerting threshold, which no longer applies.  Also 

drawn is the idealized head-on colli sion scenario, but where alerts are no longer 

suppressed. 
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Figure 5.13: Guidance Switching Threshold 

When the trajectory reaches the alerting threshold at x = 11,000 ft, a climb action 

is chosen, the alert status switches to After, and the threshold contour is replaced with the 
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guidance switching contour.  Just after the alert, the position is in a region where the 

climb action has the highest utilit y, and a continuous climb occurs until the new contour 

is reached.  At the lower contour edge and beyond, the climb and nominal utiliti es are 

equal, at least within the precision of the computed utilit y functions.  The nominal action 

was chosen as the default for such a condition, so the final trajectory segment past 

x = 2500 ft is a sequence of nominal actions.  In contrast, at the upper contour edge (the 

straight line extending from the origin) the switch is criti cal, because above this the 

nominal action becomes relatively safe (the utilit y is higher) compared to the climb. 

 Figure 5.14 shows an example of command switching at the upper contour.  In 

this case a crossing of the alert threshold occurs, but rather than climbing as directed the 

vehicle continues on a level path.  The suggested action continues to be a climb until the 

contour crossing at the 9,000 ft point.  Figure 5.15 shows the action utilit y traces 
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Figure 5.14: Alert Guidance Reversal Case 

corresponding to the trajectories in figure 5.13 and 5.14.  The vertical dotted lines mark 

the action switch points.  In the normal evasion example, the utilit y at the alert point is 

nearly 1 (figure 5.15a), which reflects that there is littl e chance of a colli sion (in which 

case Uτ = Uincident = 0) to reduce expected utilit y below the USA level (Uτ = USA = 1).  

All through the evasion maneuver, expected safety and utilit y of both actions remains 

near 1.  For the figure 5.14 trajectory, where the climb fails to occur when it should, the 

initial utilit y of the nominal action (5.15b) is larger than in (5.15a) due to the 150 ft 
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vertical offset of the initial position.  Nearer to the evader the deferral utilit y drops due to 

the decreasing safety of the climb evasion option.  After the alert, the utilit y of both 

actions declines until the 9000 ft point, where the nominal action is once again safer and 

a command switch occurs.  After this, the nominal action continues to be the safer of the 

two until the end. 
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Figure 5.15: Utili ties for Guidance Switching Trajector ies 

 Discussing this example has involved statements conflating equating with utilit y 

during the after-alert phase.  While valid here, it is a special case.  In general, safety and 

utilit y have a more complicated relationship.  For example, in Before alert states, a 

nominal action utilit y of 1 could result from averaging more than one combination of 

prior incident (Uτ = 0) and correct rejection (Uτ = 1.1) and successful alert (Uτ = 1) 

probabiliti es.  After the alert the only two utilit y outcomes are 0 and 1, so colli sion 

probabilit y and utilit y are equivalent. 
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5.5 Cumulative Rewards:  Excessive Guidance Switching 

 The reward function defined in section 5.2 works as hoped for the idealized 

trajectories considered up to now, using only an end-state reward.  A more thorough 

analysis with realistic sample trajectories reveals a problem that figure 5.16 ill ustrates.  

The original policy results in a guidance switching contour that is fixed for the duration 

of the encounter.  This means that under some conditions, it may be possible for to the 

state to cross the threshold in one direction and quickly return, causing rapid switching.  

This is the case in figure 5.16, where randomness in the vertical position path causes the 

position to waver at the threshold, resulting in 5 switches over several seconds. 
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Figure 5.16: Excessive Guidance Switching 

 Human operators can be expected to follow guidance, but only within limits.  Due 

to unavoidable response delays, rapid command switching may be impossible to follow 

accurately.  In addition such commands can seem irrational or confusing, and cause an 

unpredictable response. 

 One way to deal with this is to build operator limitations like response time into 

the transition function, adding state variables if needed.  An example is adding a timer 

state variable for keeping track of response delays.  Another way is to define the reward 

function with operator preferences in mind, so that alerting system preferences are in 

agreement with operator preferences.  For example, the operator’s reluctance to switch 
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actions during an evasion maneuver can be modeled as a penalty (negative reward) for 

any step where a switch happens.  In this example a combination of both was used to 

against the excessive switching problem. 

 The main idea was to apply a penalty for any change of action happening after the 

initial alert.  At each decision point this requires comparing the action options to the 

previous action.  To recall the previous action, a new variable, 

aprev ∈ { Nominal, Climb }, must be added to the state.  The compete state is then s = { x, 

y, AS, aprev }.  Because the policy must assign an action for every possible combination 

of values of the state variables, this is potentially a function over Nx x Ny x NAS x Naprev 

states, where each factor is the number of values of the corresponding variable.  In this 

case the set of states can be reduced by noting that any combination where AS = Before 

and aprev = Climb at the same time is impossible.  This reduces the domain size by one 

fourth. 

 The new reward function for the current state and candidate action option is 

                                   Rs(s, a) + Rf(sf) if s = sf  (5.9) 

                                   Rs(s, a) otherwise  

where Rf(sf) is the original end-state reward function (5.5), which is independent of a and 

aprev, and Rs(s, a) is an additional switching “ reward” term defined as 

-ρ  if a ≠ aprev and AS = After 

0 otherwise 

where ρ is the magnitude of the penalty for an action change.  The action utilit y functions 

are generated in a similar manner as before, solving backward from the end states, except 

at each state a penalty is subtracted from the expected next-state utilit y if aprev differs 

from the assumed next action. 

 

R(s, a) = 

Rs(s, a) = 
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 The resulting alerting policy is shown in figure 5.17, for an assumed penalty of 

0.01 per switch, and otherwise the same parameter values as before.  The alert threshold 

is not visibly changed by the new penalty.  There is significant change, however, to the 

after-alert switching thresholds.  Whereas the old policy allowed back-and-forth 

switching of guidance actions along a single contour, the new policy has two contours, 

one for each action, that are physically separated except along a shared boundary at the 

top of the alert contour.  The separation of the two contours makes rapid back-and-forth 

switching less likely to happen in the course of evasions similar to the one drawn.  In 

particular, the example scenario in figure 5.16 would most likely have ended with a 

continuous climb evasion if this policy were used. 
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Figure 5.17: Action Switching Contours with Switching Penalty 
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5.6 SOC Performance Analysis 

The mentioned shared switching boundary is reachable by trajectories such as 

trajectory (a) in figure 5.18.  This feature remains despite the penalty on switching 

because, near the colli sion zone, the penalty is overwhelmed by a safety-related rapid loss 

of expected utilit y as the incident approaches.  In addition to this problem, another issue 

is the possibilit y of a trajectory li ke (b), which follows the upper edge of the alert 

threshold, and ends in a colli sion without ever triggering an alert.  Preventing scenarios 

like these could require further changes to the reward function or system dynamics, or 

adding more control options such as a descend action. 
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Figure 5.18: Problem Trajector ies 

Whether changes are needed also depends on the likelihood of the failure.  If the 

prior probabilit y of a failure scenario is low enough, the policy may be considered 

acceptable as it is.  To aid making design choices like this one, or to assess the overall 

benefit of an alerting system, global performance metrics such as prior incident 

probabilit y (as mentioned) and unnecessary alert rates remain useful alongside utilit y 

decision metrics. 
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 The SOC plot in figure 5.19, for example, helps understand the performance of 

the example policy, and the effect of adding a switching penalty.  Random trajectories 

were generated beginning at a y position uniformly distributed between –1000 and 

1000 ft, and with the alerting logic generating alerts and guidance.  This was continued 

until 10,000 alerts occurred (many trajectories did not result in alerts).  Two versions of 

the logic were simulated in this way:  the original logic and the one with penalties on 

switching.  Only trajectories in which an alert (or missed detection, which is treated as an 

alert) occurred were used in generating the SOC plot, which describes the conditional 

probabiliti es of successful and unnecessary alerts, given that an alert happened.  As 

shown, the resulting safety is 0.991 for both, accurate within about 0.002 with 95% 

certainty.  Their difference is within 0.0026 with 95% certainty.  The unnecessary alert 

rates are 0.41 for the original and 0.40 for the version with penalties (within about 0.01 

with 95% uncertainty) and their difference is 0.01 within 0.014.  While the original logic 

produces an average of 1.4 action switches after the initial alert, the version with a 

switching penalty produces 0.04, or an approximate reduction by a factor of 35.  This is 

unsurprising, as the original logic guarantees at least one switch during any successful 

alert scenario, as figure 5.13 makes clear, and any penalty would likely prevent that 

switch. 
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Figure 5.19: Global Performance:  With and Without Switching Penalty 
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5.7 Chapter Summary 

 This chapter used a simple aircraft colli sion avoidance process to ill ustrate the use 

of Markov decision process modeling to generate an alerting logic from requirements.  

This involved 

• Identifying the Markov state of the process. 

• Describing alerting system outcome preferences in the form of a reward function, 

including defining new state variables if necessary. 

• Generating an eff icient policy based on the state and reward function. 

Also included was a discussion of the need to tailor the alerting threshold and 

guidance to operator preferences and abilit y, and demonstration of one method of 

reducing undesirable guidance switching through state and reward function 

modifications.  Finally, the importance of using global performance analysis (such as 

Monte Carlo trajectory simulation) along with reward function design was discussed. 
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6. Aircraft Encounter with Uncertain Modes 

 

6.1 Introduction 

 The 2-aircraft system from chapter 5 was convenient in that all of the necessary 

state variables, including position, alert status, and knowledge of the previous alerting 

system actions, were exactly known at all times.  This made the alerting problem 

amenable to basic MDP methods, including a straightforward policy solution.  Many 

systems of interest lack this property, making it necessary to estimate variables that are 

unmeasurable or poorly measurable.  A special case of this is where a system can operate 

in multiple modes, changing mode randomly and infrequently.  A particular Markov state 

and transition model might describe its behavior well most of the time, but badly on rare 

occasions, such as when a failure occurs in the system.  A discrete, but unmeasurable 

mode variable might then be defined as an index between the regular dynamics and an 

alternate model that better describes the other types of behavior. 

 In much of airspace, normal operations keep aircraft well separated through 

standard procedures or air traff ic control oversight.  Colli sions, when they occur, tend to 

happen after a breakdown of these mechanisms.  This is an instance where an 

unobservable mode variable could improve a Markov model over what is possible with a 

fully observable encounter model li ke the one from chapter 5. 

6.2 Modified Aircraft Encounter System  

 Figure 6.1 sketches a multiple mode encounter similar to one considered by 

Kuchar (Kuchar, 1995).  The evader nominally flies level and at a constant speed.  The 

intruder aircraft descends from above and is supposed to level off at an altitude a safe 

distance D above the evader, as the relative trajectory shows.  There is a chance, 
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however, that it will i nstead continue descending at the initial rate, passing near or 

colli ding with the evader.  The probabiliti es of these two events are 0.75 and 0.25 

respectively. 

 

 

 

 

 

 

Figure 6.1: Aircr aft Encounter with Level-off Mode  

 As with the chapter 5 system the horizontal speeds of the aircraft are assumed 

constant and equal, with a total closing rate vclosing of 440 knots.  Horizontal position and 

time are discrete with increments of ∆x and ∆t.  The ∆x increment is 400 ft, for a ∆t of 

0.54 sec.  The initial descent rate vdescent of the intruder is 2500 ft/min and the level-off 

separation D is 1000 ft.  Prior to any alert and before leveling off , the nominal descent is 

described by the function 

y(k+1) = y(k) - vdescent ∆t (6.1) 

For the level-off mode and before any alert, the deceleration and level flying phase is 

described by the function 

y(k+1) = D + ∆ylevel(k) e-β ∆x (6.2) 

where ∆ylevel(k) is 

∆ylevel(k) = y(k) – D (6.3) 

Nominal level-off altitude 

Intruder 

Evader 

Level-off trajectory 

Descent trajectory 
D 

vclosing 

vdescent 
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which is the deviation of the intruder from the level-off separation.  The coeff icient β is 

0.0003 1/ft, which results in a maximum vertical deceleration of 0.29g from the initial 

2500 ft/min descent rate or an average of about 0.08g over 17 s until a 1 ft/sec vertical 

rate is reached, assuming there is a smooth transition from the descend to the level-off 

function.  For the descend mode, the intruder instead maintains the vertical speed vdescent 

all the way to (nominally) a direct colli sion with the evader, so function (6.1) applies 

through the entire encounter. 

 After an alert the evader receives a climb command, and is assumed to accelerate 

instantaneously to vclimb, a 1500 ft/min climb rate.  This is to approximate a constant 

0.25g pull -up, which is a relatively aggressive maneuver spanning a shorter time 

compared to the level-off maneuver of the intruder. 

Prior to any alert, the evader is assumed to fly level at an altitude a distance D 

from the intruder’s level-off altitude.  Once the evader begins a climb, its relative position 

is no longer a valid reference point for predicting the level-off trajectory of the intruder.  

To resolve this issue it will be assumed in advance that alerts will not happen before the 

separation D has been reached.  Under this assumption the intruder will either have 

leveled off already, or be in descend mode where no reference altitude is required, when 

an alert happens.  The system dynamics following an alert are then approximately 

y(k+1) = y(k) - vclimb ∆t (6.4) 

if the intruder is in level-off mode, and 

y(k+1) = y(k) – (vdescent + vclimb) ∆t (6.5) 

if the intruder is in descend mode.  If an alert does occur before D is crossed, it will be 

assumed that the intruder has nearly finished leveling off if in level-off mode, and 

equation (6.4) will be applied.  It should be kept in mind that errors may be large in this 

range. 
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 Equations (6.1) through (6.5) describe the nominal dynamics of the system.  

Small disturbances in the vertical separation due to sensor error and other factors (wind, 

piloting error etc.) are modeled using a Gaussian white sequence input, vw, as in chapter 5 

y(k+1) = y(k) – (vdescent  + vw) ∆t (6.6) 

y(k+1) = D + ∆ylevel(k) e-β ∆x + vw ∆t (6.7) 

y(k+1) = y(k) – (vclimb + vw) ∆t (6.8) 

y(k+1) = y(k) – (vdescent + vclimb + vw) ∆t (6.9) 

This input describes the total deviation from the nominal path due to all noise and 

disturbances.  Since y is relative position, vw includes the uncertainties for both aircraft.  

With the level-off dynamics (6.7), the disturbance will cause y to drift randomly, but the 

exponential term will t end to counteract this and keep it near the level-off altitude in the 

long run.  When any of the other (constant vertical rate) functions are in effect, vw will 

induce random walk behavior, where the variance of vertical position uncertainty grows 

linearly with distance into the future (Brown & Hwang).  A vw value of 1560 ft/min (26 

ft/s) is assumed for all dynamic equations.  This leads to a 30 ft steady-state standard 

deviation for vertical position in the level-off mode, and in descend mode or during a 

climb a 108 ft standard deviation after 24,000 horizontal feet. 

Figure 6.2 shows the nominal level-off and descend-mode (or “blunder”) 

trajectories for the figure 6.1 scenario, along with randomly generated sample trajectories 

for the specified parameter values and without alerts.  Again, the evader is fixed at the 

origin so the relative position of the intruder is what varies with time.  Vertical separation 

is defined as the intruder altitude minus the evader altitude, so that the scenario begins 

with a positive vertical separation.  Horizontal separation is defined similarly. 
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Figure 6.2: Typical Relative Trajector ies 

6.3 Policy with Belief State 

Unlike the variables x, y, AS, and aprev from the previous chapter, the encounter 

mode, which will be referred to as m, cannot be exactly determined at each time step.  

Knowledge of m is available in the form of a distribution over its two values.  The 

combination of m and its distribution is a belief state, as defined in section 2.3.1.  The 

domain of the belief state is the set of all possible distributions, of which there are an 

infinite number in this case.  Using a discrete approximation, figure 6.3 ill ustrates the 

domain of the m belief state as an orderly progression through the distribution space. 
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Figure 6.3: Discrete Mode Belief State Domain 

In the diagram, m0 is the level-off mode and m1 is the descend mode.  

Represented this way, there is littl e practical difference between the belief state of m and 

regular states.  Both kinds represent the current, complete knowledge or beliefs about 

variables in the Markov state, so both are needed to make the most accurate prediction of 

the future state and events.  Both kinds of state are observable in a sense, either by direct 

measurement or, for the belief state, by Bayes updating based on the previous belief state 

and input to the system. 

 The usual approach to MDP problems involving belief states (POMDPs) is to 

enumerate the belief state domain, if necessary using approximations such as the discrete 

set in figure 6.3 in place of the full domain, and to include an index for the belief state as 

a dimension of the state space (Russel & Norvig).  Adding the belief state index to the 

variables previously defined results in the total state 

s = { x, y, AS, aprev, BS }  (6.10) 

where BS is the belief state index 

BS ∈ { b1, b2, b3, b4, b5 } (6.11) 

The state s has a domain at most the size of the product of the sizes of all 

component variables 

Ns = Nx x Ny x NAS x Naprev x NBS (6.12) 

which increases linearly with the number of possible belief states, NBS. 

b1 

m0  m1 m0  m1 m0  m1 m0  m1 m0  m1 
m 

Probabilit y 
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 For ease of f inding a policy, the fewer states there are, the better.  As in the last 

example, some states in the above space are clearly not reachable by definition of the 

corresponding Markov dynamics and possible initial states:  any state where AS = Before 

and aprev ≠ a0 (defer) can be eliminated by replacing the two variables with a single 

combination state variable, CS, whose domain is only the possible combinations of those 

variables. 

s = { x, y, CS, BS }  (6.13) 

Other than the addition of the belief state index, BS, this is similar to the state of the 

previous example system.  The constrained way the state space is traversed, with each x 

value occurring only once and in fixed order, is also similar.  An identical reward 

function can be used, and for simplicity an action switching cost of zero (see eq. 5.9) will 

be assumed.  The policy can be computed using the same procedure as before, starting at 

the end-state layer and working backward through state space to generate utilit y functions 

for the nominal and climb actions.   

 Figure 6.4 shows the alerting threshold in the x-y plane.  Because there is an 

additional dimension in the state space, several threshold contours are drawn, 

representing the different discrete belief states.  In other words, a contour crossing will 

only result in an alert if the belief state at that time is in the belief state range for the 

contour.  In actual use the alerting system will not be forced to choose one of the five 

discrete belief states in order to use the policy.  Instead, a belief state can be maintained 

in the full , continuous domain and used with interpolation to estimate the action utiliti es 

from the discrete policy.  The same method is also employed with the vertical position y, 

since the system dynamics are not discrete in that dimension. 

To show the boundaries more clearly, figure 6.5 draws the alert space for each 

belief state separately. 
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Figure 6.4: Threshold Contours for a Range of Belief States 

With the chosen parameters, an alert could apparently occur even before the level-

off separation is passed if the descend mode is completely certain (mode belief state      

bm = [ 0  1 ]).  On the other extreme, where there is zero probabilit y of the descend mode 

(bm = [ 1  0 ]) the intruder would actually have to be at the same altitude or below the 

evader for an alert to be desirable.  In the co-altitude configuration the evader has a clear 

climb path and can easily escape at the last moment with littl e chance of an induced 

colli sion, regardless of the mode.  When the intruder approaches from above in descend 

mode, the possibilit y of an induced colli sion reduces the utilit y of the climb action 

relative to deferring.  In between the two belief state extremes (e.g. bm = [ 0.5  0.5 ]) there 

is greater uncertainty about the path of the intruder, so the alerting system tends to be 

defer alerts longer, knowing that an unnecessary alert and command reversal or an 

induced colli sion would likely result. 
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Figure 6.5: Threshold Contours Separated 

 Because the alerting threshold depends on the current mode belief state, 

continuous belief updating is necessary as described in chapter 4 and appendix A.  This 

means using measurements of observable state variables (position), the most recent belief 
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state, and the assumed dynamics for each mode to determine the most reasonable current 

mode distribution. 

6.4 Level-off Scenario 

 Figure 6.6 shows an idealized (with no disturbance input) level-off scenario, 

where the intruder begins at a 2500 ft/min descent speed and decelerates smoothly to stop 
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Figure 6.6: Level-Off Scenar io 

at a target altitude 1000 ft above the evader.  In the process the outer alerting contour is 

crossed, but no alert occurs.  The reason for this is made clear in the plot underneath, 

which shows a trace of the different action utiliti es and the mode belief state (the 

descend-mode probabilit y) over the course of the scenario.  Initially there is a 0.25 
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probabilit y that the intruder will fail to level off , posing a significant danger to the 

evader.  As the intruder decelerates, which is more likely in the level-off mode than in the 

descend mode, the probabilit y that the intruder is in the descend mode decreases to 0.03 

by the 17,500 ft horizontal separation point.  For this belief state to trigger an alert, the 

intruder would have to be at or below the altitude of the evader, since the entire alert 

space range for the belief state range [ 0.75  0.25 ] to [ 1  0 ] is below this altitude.  The 

contour crossed, corresponding to a descend-mode probabilit y of 1, is not within this 

range, so no alert occurs. 

The alerting threshold was defined as where the alert (climb) action utilit y is 

equal to the deferral (nominal) action utilit y.  Outside of the threshold the deferral has a 

higher utilit y.  In the figure 6.6 utilit y trace the deferral utilit y is higher than the alert 

utilit y at all times, so no alert is ever needed.  As the descend-mode probabilit y 

approaches zero, the deferral action utilit y increases toward its maximum possible value 

of 1.1, because in the level-off mode there is virtually no chance of a lower-utilit y 

trajectory (a colli sion or alert). 
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6.5 Descend Scenario 

Figure 6.7 shows an idealized descend-mode scenario with the same initial 

conditions as the level-off scenario.  Without any alert, the trajectory will end with a 

colli sion.  Following the alerting policy, an alert occurs at about 760 ft vertical 

separation.  The resulting climb action is continued until the end of the scenario.  
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Figure 6.7: Descend-Mode Scenar io 

The initial descend-mode probabilit y is again 0.25, but in this case the probabilit y 

increases as evidence is gathered, and by the 15,000 ft horizontal position it has already 

reached 1 in the plot (visually, though in reality it never quite reaches 1).  The [ 0  1 ] 
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contour is encountered about 2,000 ft later.  Since the belief state is just under 1 when the 

[ 0  1 ] contour is crossed, the alert is triggered just inside that contour. 

 Before the alert there is still some chance of a safe, non-alert outcome for which 

the utilit y would be high (UCR = 1.1), and this keeps the deferral-action expected utilit y 

greater than 1 for the first part of the trajectory.  After the alert (marked with a vertical 

line) such an outcome is no longer possible and the greatest outcome utilit y possible is 1.  

An expected utilit y of 1 for an after-alert action means that there is no possibilit y of a 

colli sion occurring.  Otherwise the low utilit y of a colli sion outcome (Uincident =  0) would 

reduce the expected action utilit y.  In this scenario both the nominal and climb actions 

have nearly the same utilit y, near 1, after the alert and for the remainder of the encounter.  

The climb maneuver is aggressive enough that, if at any time during the evasion a 

nominal action is taken, the climb can be resumed at the next step with only a small l oss 

of safety.  Thus, the nominal action has only slightly less utilit y and safety than the climb. 
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6.6 Action Switching After the Alert 

 The same policy that determines the alerting threshold is responsible for choosing 

alerting system actions after the alert occurs.  In the simple descend-mode example in 

figure 6.7, the optimal alerting input after the alert is to maintain the climb command 

until the end, because doing otherwise would reduce evasion safety. 

 Whereas previous scenarios were idealized examples of particular modes, figure 

6.8 is a scenario where the intruder behaves in a way that is improbable for either mode.   
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Figure 6.8: Abnormal Level-Off Scenar io 

It begins with a constant-speed descent at 2500 ft/min, and levels off about 300 ft lower 

than usual, 11,500 horizontal ft from the evader. 
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 Because the descend-mode probabilit y has converged nearly to 1 by the time the 

level-off occurs, and because the intruder’s behavior is unlikely in either mode, no 

significant further change occurs in the belief state for the remainder of the scenario.  

Eventually, the logic sees that the climb maneuver is li kely to cause a colli sion, assuming 

it is in the descend mode, and reverts back to the safer nominal action.  Thus, the alerting 

system is able to maximize safety after an alert by dynamically choosing guidance, a 

clear benefit in individual scenarios such as the above.  The final switch at 2,000 ft 

horizontal separation is the result the computed safety difference between the actions 

dropping to zero at that point, with climb being the default action. 

 Figure 6.9 shows the overall performance benefit of using reversible evasion 

maneuvers with this particular system and set of initial conditions, based on the assumed 

probabili stic dynamics.  Average performance data was generated using Monte Carlo 

trajectory simulation, with the system always beginning at the same position and mode 

belief state.  In one set post-alert command switching was allowed when needed, and in 
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Figure 6.9: Average Performance With and Without Reversible Maneuvers 

another the same threshold policy was used, but with the evader constrained to a fixed-

climb escape maneuver.  In each case trajectories were generated until 10,000 alerts 

occurred.  The resulting average colli sion rate, P(SA | Alert), is 0.9993 for both, or 

identical within the precision of this simulation.  The true unnecessary alert rate is known 
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to be the same for both since the same policy determines the threshold.  While providing 

no apparent safety benefit, the logic with switching caused on average 0.73 switches after 

the alert. 

6.7 Value of Anticipating Decision Opportunities 

 The MDP-based alerting method is distinct from other probabili stic alerting 

methods in that its decision metrics take into account the possibilit y of choosing between 

different actions at future times, so alerts are more informed and performance should be 

better.  The purpose of this section is to demonstrate the performance differences with 

specific alerting scenarios. 

 An alternate policy was generated where utiliti es were defined in terms of the 

probabili stic (SOC) quantities P(UA) and P(SA), the probabiliti es of an unnecessary alert 

and of a successful alert for an alert generated at that moment.  Assuming no alert has yet 

occurred, these were defined as the probabilit y of no incident for each alert option, where 

the options are either a sustained deferral or a sustained climb respectively.  In other 

words, the assumption is that each option is a complete action sequence covering all 

future time.  This assumption is borrowed from recent research probabili stic alerting 

systems research (Carpenter & Kuchar; Yang & Kuchar, 1997).  P(UA) is undefined after 

the alert, but an analogous metric for the post-alert case could be called P(SN) (Safe 

Nominal trajectory), defined as the probabilit y of no incident if only nominal actions 

follow.  The two relevant metrics after the alert would be P(SA) and P(SN).  The reward 

function was defined similarly to the regular policy:  safe non-alert end states give utilit y 

1.1, safe alert outcomes give 1, and colli sions give 0. 

 The resulting alerting threshold is shown in figure 6.10 along with a level-off 

mode trajectory.  Because the assumption is a that a nominal action will be irreversible if 

chosen, that action appears to be a hazardous and low-utilit y option at the intruder’s 

initial position, which is on a nominal colli sion course with the evader for the descend 

mode.  Even with a descend-mode probabilit y of only 0.25, the overall probabilit y of a 

colli sion lowers the expected utilit y to nearly 0.8.  The climb option is relatively safe, and 
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even though it ensures a maximum outcome utilit y no greater than 1, it has a higher 

expected utilit y at the outset. 
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Figure 6.10: SOC-Metr ic-Based Alert Policy and Level-Off Scenar io 

The result is that an alert happens immediately.  The mode belief updating process 

continues after the alert, and when the intruder levels off at 19,500 ft separation, 

P(descend mode) converges to near zero within 2,000 ft with the evasion in progress.  At 

this point the climb trajectory is seen to be less safe than the nominal trajectory, so the 

nominal action is chosen.  So, the logic is able to safely guide the aircraft after the alert, 

but has committed an unnecessary alert that would have been avoided by the regular logic 

in this scenario (figure 6.6). 
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 In the descend-mode case (figure 6.11) the alert is triggered at the same time.  No 

switching occurs after the alert, because once mode uncertainty is eliminated the climb 

path is clearly the safest option.  The policy has successfully avoided a colli sion.  The 

regular policy also avoids the colli sion (figure 6.7), but defers the alert until after the 

mode becomes more certain.  The SOC-based policy’s maneuver avoids the colli sion by a 

larger margin, so in one sense gave the more desirable response, but at the cost of a 

higher unnecessary alert probabilit y. 
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Figure 6.11: SOC-Metr ic-Based Alert Policy with Descend-Mode Scenar io 

 Because individual scenarios can favor either policy, it is informative to compare 

average performance over many scenarios representative of the intended operating 

environment.  Figure 6.12 compares the average performance of the two policies, where 

trajectories were simulated with each to generate 10,000 alert cases, based on the 
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encounter dynamic model defined in section 6.1, and all beginning at the same initial 

position and belief state.  The metrics used are the average successful alert rate and the 

average unnecessary alert rate. 
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Figure 6.12: Average SOC Performance Compar ison for Standard Policy vs.     

SOC-Based Threshold 

As the example scenarios suggest, for a correct rejection utilit y of UCR = 1.1, the 

SOC-based policy has a safety advantage.  The SOC policy avoided any colli sions, 

compared to 7 colli sions in 10,000 alerts for the regular policy.  At the same time, the 

SOC policy suffers from a relatively high rate of unnecessary alerts.  In a simulation of 

10,000 level-off trajectories, the regular policy caused no alerts, while the SOC-based 

policy caused an alert every time. 

 Figure 6.13 shows the SOC logic as a region in the SOC space.  The alert space is 

the shaded area bounded by a diagonal li ne through the origin.  The slope of the line is 

equal to the parameter UCR.  At each point in time, the policy generates SOC coordinates, 

and if these lie outside of the shaded region, the alert is deferred (or the nominal action is 

taken, if an alert has already happened).  From this representation the location of the 

operating point in figure 6.12 is seen to depend on the SOC threshold slope, which at 1.1 

is only slightly steeper than the diagonal. 
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Figure 6.13: SOC-Space Threshold 

  If UCR is increased, the slope increases, which should result in deferred alerts and 

a reduced unnecessary alert rate, given that scenario trajectories originate near the top, 

right corner of the SOC plot.  UCR was varied over a range of 1.1 to 3 and the resulting 

range of average performance is shown as a curve in figure 6.12.  Along with the 

expected reduction in the unnecessary alert rate, there is a gradual decrease in average 

safety.  When the operating point reaches a point directly below the regular policy’s SOC 

position, the overall unnecessary alert rates are the same, and the SOC policy has a 

P(SA | Alert) of 0.98 compared to the regular policy’s 0.999, or 20 times the colli sion 

probabilit y, given an alert.  From a 10,000 level-off trajectory simulation, the level-off 

mode unnecessary alert rate at that point is roughly 4 in 1,000 for the SOC policy, 

compared to none for the regular policy.  The total alert rate (level-off and descend cases) 

is similar for both at 23 per 100.  The significance of these differences depends on the 

particular alerting application, but there is a clear difference between the two policy 

types, with the MDP-based policy allowing a higher overall safety and fewer total and 

level-off alerts with the assumed dynamics. 
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 As discussed in section 2.3, there is a more general philosophy that the alerting 

region in SOC space should take whatever shape necessary to optimize performance.  For 

example, figure 6.14 shows two additional possibiliti es, each aimed at directly controlli ng 

an aspect of performance.  The minimum safety threshold ensures that alerting safety is at 

or above a specified limit , T.  The maximum unnecessary alert probabilit y threshold 

defers alerts until the unnecessary alert probabilit y, a measure of the need for the alert, is 

acceptably small . 

P(Unnecessary Alert | s is at Threshold)

P
( S

uc
ce

ss
fu

l A
le

rt
 | 

s 
is

 a
t T

hr
es

ho
ld

)

0
0

1

1

T

P(Unnecessary Alert | s is at Threshold)

P
( S

uc
ce

ss
fu

l A
le

rt
 | 

s 
is

 a
t T

hr
es

ho
ld

)

0
0

1

1

T

Minimum Safety Threshold Maximum Unnecessary Alert Probability

 

Figure 6.14: Other SOC-Space Thresholds 

 Figure 6.15 shows corresponding SOC curves for the figure 6.14 logics, generated 

by varying the tradeoff parameter T over a range.  Again, these logics are unable to reach 

the same trade-off of safety for unnecessary alerts that the MDP-based logic does. 

 The MDP logic compares favorably with the SOC-based logic because of its more 

complete use of information available in the belief state and in recognizing future 

decision opportunities.  It is also a result of the reward function chosen for this example, 

which was constructed with SOC design goals in mind.  In general, it should be noted, 

these may not be the real goals of every alerting system.  For example, in systems with 

normal and failure modes (e.g.  Parallel landing approaches (Winder & Kuchar, 1999)) an 

alert might be considered proper if it occurs during a failure, even if it is an unnecessary 
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alert.  The utilit y basis of the MDP method is general enough to accommodate such 

differences. 
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Figure 6.15: Performance of Other SOC-Based Thresholds 

6.8 Belief State Modeling Simpli fication 

 The MDP-based alerting method assumes that uncertain state variables like modes 

require maintaining and using a belief state.  As described in chapter 2, keeping the belief 

state current involves a continual filtering process done in real time.  The belief state is 

then used as an input, along with other state variables, to a pre-computed policy that 

identifies the best action to take.  Like other continuous state variables it is often 

necessary to simpli fy its domain for describing the policy, such as in the example in this 

chapter where a continuous range of mode distributions was replaced with a small , 

discrete set.  The smaller the domain, the easier it is to compute a policy using the belief 

state as a variable.  However, oversimpli fying the belief state domain could unacceptably 

impact performance.  This section will discuss the relationship of the degree of belief 

state simpli fication to the performance of the alerting system. 

 The simplest way to reduce the complexity of belief state variables is to assume 

the system is in one or the other mode, and do no belief updating.  For example, one 

option is to assume level-off dynamics always hold.  In figure 6.16, this limits the alert 

space to some region within the belief state rage between P(descend) = 0 and 0.25.  

While never alerting during level-off scenarios, during descend mode scenarios this logic 
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Figure 6.16: Belief State Simpli fication – Assume No Descend Mode 

can allow colli sions without providing any alert (missed detections), or issue alerts too 

late (late alerts). 

 The other extreme case is to assume that the descend mode always holds     

(figure 6.17).  Now the reverse problem happens:  safety during descend-mode scenario 

is ensured, while unnecessary alerts happen during many level-off cases, since the 

threshold contour extends beyond the nominal level-off separation. 
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Figure 6.17: Belief State Simpli fication – Assume No Level-off Mode 

 Eliminating one mode or the other as discussed has a significant negative effect 

on the performance of the logic, either increasing unnecessary alerts or reducing safety.  

A third possible belief state simpli fication is a 2-value domain including both of the 

extreme belief cases already considered separately.  Recall that the discrete belief state 

model used in the original policy was a 5-value progression of belief states separated by 

probabilit y increments of 0.25.  Utilit y function matrices were created over this set, one 

for each action.  Then, to generate action utiliti es for a given belief state, linear 

interpolation was done between discrete elements of the utilit y matrices.  The suggestion 

is to reduce the discrete domain to the smallest set that accounts for both of the extreme 

belief states, and then assume there is a linear relationship between the belief state and 

the action utilit y. 

 A policy was found for this belief state model and examined in a similar way to 

previous examples.  Because at each extreme belief state there is no possibilit y of a belief 

updating cycle changing the belief state, the simpli fied policy can be found by removing 
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the middle three belief cases from the existing policy.  This is because once the belief 

state reaches one extreme or other, no future evidence gathered can change the belief 

state, making the policy at each extreme belief state independent of that at any other 

belief state. 

 Figure 6.18 compares the utilit y traces resulting from each policy version and the 

idealized descend-mode scenario.  Visually they are nearly the same. They both result in  
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Figure 6.18: Utili ty Trace Compar ison:  2 vs. 5-Belief-State Simpli fication 

deferring the alert until the mode uncertainty is nearly eliminated, and they both result in 

an alert at the same moment.  The policies also react similarly to a level-off scenario, 

each avoiding an unnecessary alert. 

 Compared using the Monte Carlo scenario simulation described in section 6.6 

with 10,000 alert scenarios, they both had P(SA | Alert) values of 0.9993, and the 
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sampling error of their difference is 0.001 or less with 95% certainty.  The unnecessary 

alert fractions are 0.314 for the regular logic and 0.322 for the 2-belief state version, 

different by 0.008.  The standard deviation of the sample difference is 0.007, so there is 

not a clear difference in the unnecessary alert probabilit y between the two logics.  Based 

on 30,000 trajectory level-off simulations, the logics had level-off-mode unnecessary 

alert rates of 25 (the original) and 19 (2-belief state) per 100,000 level-offs.  For the given 

sample size (30,000), there is no clear difference in level-off alert performance between 

the two logics. 

 A possible explanation for the similarity is, besides any coincidental li nearity in 

the actual utilit y functions, that the structure of the system and utilit y definitions cause 

alerts to be put off in every case until mode uncertainty is nearly gone.  This means that 

at the alerting threshold, the belief state is always P(descend-mode) ≈ 1, which is a belief 

state where action utiliti es were computed precisely for both policies.  The utiliti es at the 

threshold are then expected to be similar, even with an approximation of the utilit y 

function.  To avoid unnecessary alerts in the interval up to this point, it is only necessary 

that both policies have nominal action utilit y greater than the climb action utilit y, so some 

error due to utilit y function approximation is tolerable. 

6.9 Chapter Summary 

 In this chapter the use of uncertain modes in an alerting system was investigated, 

using the example of a 2-aircraft encounter where, depending on an uncertain mode 

variable, the aircraft may or may not be in danger of colli ding.  A Markov state was 

defined for the 2-aircraft system, including a belief state for the mode.  This state, a 

corresponding dynamic model and a reward function describing alerting priorities were 

used to generate the alerting logic, or “policy.”  Operation of the policy, both as an 

alerting threshold and as a post-alert guidance logic, was shown with example scenarios. 

 The value of taking future decisions into account, as the policy inherently does, 

was shown using example scenarios and with global performance averages generated by 
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Monte Carlo trajectory simulation.  This involved defining alternative policies where 

fixed maneuvers were the assumed choices. 

 The importance of the mode belief state and belief updating process to effective 

alerting was shown.  This was accomplished by looking at the effect of disabling the 

mode-update process in example scenarios, and comparing global performance metrics 

from Monte Carlo simulation.  In addition it was shown that for acceptable alerting 

performance a policy may require only limited information about the belief state, 

depending on the situation.  A simpli fied belief state domain was compared to a more 

complete belief state model in discussing this. 
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7. Summary and Contributions 

 

7.1 Summary 

 In this thesis a framework for designing hazard avoidance alerting systems was 

presented, based on a Markov decision process model of alerting, and motivated by 

identified weaknesses with existing methods.  Two alerting “ logics” were created using 

the framework and were compared in terms of standard performance measures to logics 

created with more typical methods, demonstrating a benefit. 

The use of MDP methods was motivated by a lack of certain features in existing 

methods for direct derivation of alerting logics from performance requirements.  One of 

these is the abilit y to reason about future decision opportunities that might influence the 

current decision.  In particular, such knowledge is important for placement of the alerting 

threshold, because it is what allows deferral of alerts:  knowing whether safe options will 

be available in the future affects the current decision.  Another desired feature is the 

abilit y to model and account for uncertain dynamic modes in the observed situation.  

Modes describe distinct types of behavior a system could exhibit at a given time, and 

uncertainty in the mode complicates the state predictions needed for decision making.  

Mode uncertainty also motivates being aware of future decision opportunities, because 

actions have predictable effects on mode uncertainty.  In particular, alerts may be 

deferred partly in expectation of decreasing mode uncertainty. 

The MDP-based methodology requires a Markov state and probabili stic dynamic 

model of the operator-plant system, a probabili stic observation model, and creation of a 

reward function that describes the alerting system’s (designer’s) goals in terms of 

cumulative rewards that can be gained along future system trajectories.  Uncertain mode 

variables are modeled probabili stically, and the resulting distribution, or belief state, can 
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be updated at each step to reflect changes in the uncertainty due to new evidence.  With 

these components, MDP theory provides means to derive an eff icient alerting policy that 

allows computations for alerting decisions to be done in real time.  The policy determines 

both the threshold for alerts and the later sequence of cues that guide an operator during 

resolution of the hazard.  

The policy is a function of the current system state that produces the best action 

from an available set.  The state can be a set of variables or a distribution over 

variables—a belief state—including mode variables.  In the belief state case the solution 

can be less straightforward, but methods exist. 

The policy inherently takes into account future decisions through application of 

Bellman’s equation, which itself is an effect of the principle of optimality.  Under an 

assumption of utilit y-based preferences, this principle says that the utilit y of an action at a 

given state depends only on the utilit y of reaching the next state, assuming the next-state 

utilit y is optimal (maximized).  Thus, choosing the next action requires no assumption of 

any particular trajectory being followed later. 

The MDP-based methodology was used to derive alerting logics for two kinds of 

aircraft encounter, one a head-on colli sion scenario with random altitude variations, and 

the other an uncertain 2-mode scenario with a safe (level-off) and an unsafe (continued 

descent) mode.  These case studies demonstrated how alerting system goals can be 

expressed as a reward function, computation of an alerting policy, and use of the policy 

as an alerting and guidance threshold.  The second case study also showed the modeling 

of an uncertain mode, effects of the mode on policy computation, and the behavior of the 

resulting logic.  In the second case study the MDP-based alerting logic was tested against 

alternate logics designed according to current practice using standard performance 

metrics, and the performance benefits of MDP design were made apparent.  The 

importance of using global average performance metrics, including traditional metrics 

li ke unnecessary alert and incident rates, alongside reward function requirements was 

also explained. 
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A claim is made that the reward function basis of the alerting process must agree 

with or complement the alerting preferences of the human operators.  This is to minimize 

the rate of improper alerts, defined as alerts that the operators find incorrect, and which 

include nuisance alerts.  However, at this time there is no clear description of this 

relationship to guide design of the reward function.  In the case studies a simple reward 

function was chosen that makes a trade-off between safety and unnecessary alerts at the 

threshold.  Trading off safety for unnecessary alerts is an established practice in alerting 

design.  The resulting performance compares well with SOC-based alerting, where a 

threshold is defined in the space of P(SA) and P(UA).  In terms of the global SOC 

performance metrics, the MDP-based logic achieves superior safety to compared SOC-

based logics for a given unnecessary alert rate.  In addition the MDP-based logic is better 

able to avoid alerts during level-off  mode scenarios while maintaining a given level a 

safety. 

 The case study systems were made purposely simple for clarity.  This leaves a 

question of whether MDP methods will also apply to more complex alerting systems 

requiring more state variables.  In principle they do, but because the number of states can 

increase exponentially with the number of state variables, it is easily possible to run into 

computing speed and memory limits (Bellman called this problem the “curse of 

dimensionality.” )  As a consequence, more complex alerting systems may require policy 

or utilit y function approximations that reduce the number of variables and states.  The 

tabular utilit y function representation and policy derivation methods that were convenient 

in the case studies may be too ineff icient for use general. 

7.2 Contributions 

A new methodology was described for designing hazard avoidance alerting 

systems, based on Markov decision process theory.  It has a number of advantages: 

1. It provides a means of generating an eff icient alerting logic directly from 

requirements, reducing the need for design iterations to meet goals. 
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a. It was demonstrated with aviation alerting case studies having the core 

elements of more complex alerting problems. 

b. The use of a utilit y model of performance requirements was described and 

demonstrated. 

2. It makes complete use of available information, including 

a. Information about mode uncertainty. 

b. Information about future states and decision opportunities; in particular, 

whether deferring an alert leaves suff icient flexibilit y for future action, and 

whether future observations will reduce mode uncertainty. 

3. It unifies the design of the alerting threshold and guidance, including when flexible 

escape guidance is needed.  This allows knowledge about future guidance to directly 

affect the threshold.  Earlier efforts have focused on optimal definition of the alerting 

threshold or have assumed fixed escape maneuvers. 
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Definitions 

 
Action A decision option available to the alerting system 

Action logic Component of the alerting system that chooses the 
alerting action based on the current belief state and 
previous action 

Action space Set of possible alerting system actions 

AILS NASA Airborne Information for Lateral Spacing 
colli sion avoidance logic for parallel approach 
colli sion avoidance 

Alerting system Automation that monitors a human-operated system 
and issues alerts and guidance to avoid unexpected 
hazards 

Belief compression Refers to methods of approximating a range of 
belief states with a simpler function having fewer 
parameters 

Belief space The set of all possible belief states 

Belief state A probabilit y distribution over the situation space 
that describes alerting system uncertainty about the 
state 

Bellman equation Fundamental equation of MDP theory that describes 
the relationship of the maximum expected utilit y at 
each state to that of neighboring states, reachable by 
a single action 

CD Correct detection 

Correct detection A state trajectory in which an alert occurs, 
preventing an incident that would have happened 
otherwise 

Correct rejection A state trajectory in which no alert occurs and no 
incident occurs 

CR Correct rejection 

Deferral action Also nominal action.  The alerting system action 
prior to any alert occurring, when it is passively 
monitoring 
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Escape maneuver A maneuver due to repeatedly using a given 
maneuver policy after an alert has occurred 

Evader Aircraft that is assumed to receive and respond to 
alerts to avoid the intruder 

Evidence Information gathered by the alerting system in the 
form of observations of the situation and recalled 
past actions 

Expected utilit y function Function mapping each state into an expected utilit y 

Filtering The process of updating the a belief state, given a 
stream of observations 

Finite horizon A class of Markov decision processes in which 
there is assumed to be a finite time remaining 
before the process ends 

Fully observable The exact situation state is available through a 
single observation 

GPWS Ground Proximity Warning System.  Alerting 
system for preventing “controlled flight into terrain” 
accidents 

Hazard space The set of all situation states where it is possible for 
an incident to occur 

IA Improper alert 

II  Induced incident 

Improper alert An alerting system action that an operator believes 
is incorrect 

Incident An undesirable event that an alerting system is 
designed to prevent from happening 

Induced incident An incident that occurs after an alert happens, that 
would not have occurred without the alert 

Infinite horizon A class of Markov decision processes in which 
there is assumed to be no end point 

Intruder Aircraft that may endanger the evader and is 
assumed not controllable by the alerting system 
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Knowledge The total information available to the alerting 
system about the situation through observations and 
prior knowledge.  The belief state 

LA Late alert 

Late alert An alert that is necessary but happens too late to 
prevent an incident 

Maneuver Sequential use of a single maneuver policy over 
some interval 

Maneuver policy A function that maps a state or belief state into a 
specific alerting system action 

Markov property The property of a state whereby knowing the state 
allows a correct state prediction (exact or 
probabili stic prediction) 

Maximum expected utilit y function Function mapping each state into the largest 
expected utilit y possible for a set of possible actions 

Maximum expected utilit y principle Decision criterion stating that the preferred decision 
is the one that gives the maximum expected 
outcome utilit y 

MD Missed detection 

MDP Markov decision process 

Missed detection A case where an incident happens without any prior 
alert 

Mode A discrete state variable that represents distinct 
dynamic behaviors a system can exhibit 

NA Nuisance alert 

Nominal action A deferral action by the alerting system 

Nominal maneuver Assuming no alert has occurred, the maneuver due 
to repeating the deferral action indefinitely 

Nuisance alert An improper alert where an operator considers the 
alert unjustified 

Observation A situation state measurement at a given time 

Observation space The set of possible observations for a particular 
state space and sensor function 
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Operator A human operating within a larger situation, who 
can receive alerts from an alerting system 

Partially observable Refers to a situation where an observation does not 
provide the exact and entire state 

Plant A system controlled by operators within a situation 

Policy A function that maps any state (or belief state) into 
a particular action 

Policy iteration A method of f inding a policy for an MDP that 
involves alternately computing the utilit y function 
implied by a candidate policy, and calculating a 
new candidate policy from the utilit y function 

POMDP Partially observable Markov decision process 

Precision Runway Monitor Alerting system for preventing colli sions during 
closely spaced parallel approaches 

Principle of optimality In a sequential decision process, maximizing the 
utilit y of the system trajectory (past and future) 
implies maximizing the utilit y of the future 
trajectory. 

Prior belief state A belief state that is assumed given at the start of a 
Markov decision process 

PRM Precision runway monitor 

Reward function A function defined over state space that specifies 
the reward gained by the alerting system when the 
state is occupied 

SA Successful alert 

SN Safe nominal trajectory 

Sensor function A function that maps the situation state into an 
observation 

Situation A system composed of human operators and a plant 
that they control 

Situation space The set of possible situation states 

Situation state The Markov state describing a situation 

SOC System operating characteristic 
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State A state vector 

State vector A set of variables that together describe the 
condition of a system at a given time 

Stationary Refers to a function that remains unchanged with 
passing time 

Successful alert An alert that is not followed by an incident 

System Operating Characteristic A pair of performance metrics, either the probabilit y 
of a safe alert and the probabilit y of an unnecessary 
alert, given that an alert happens, or the frequency 
of a safe alert and of an unnecessary alert given that 
an alert happens. 

TCAS Traff ic Alert and Colli sion Avoidance System.  An 
alerting system for preventing mid-air colli sions 
between aircraft 

Trajectory utilit y function A function mapping a state trajectory into a utilit y 
value 

Transition function The function describing the future state or state 
distribution for a given initial state and control 
(action) input 

UA Unnecessary alert 

Unnecessary alert An alert that is not followed by an incident, but 
where no incident would have occurred without the 
alert 

Unsuccessful alert An alert followed by an incident 

Utilit y A scalar value describing the degree of desirabilit y 
or goodness of something 

Utilit y function See trajectory utilit y function.  Also, short for a 
maximum expected utilit y function 

Value iteration A method of solving Markov decision problems, 
where the correct maximum expected utilit y 
function is arrived at through iterative application of 
the Bellman equation to a candidate utilit y function 
over the entire state domain, each time using the 
most recent utilit y function 
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Appendix A:  Overview of Belief State Filtering 

 
Consider a discrete-time alerting process described by the following components: 

1. A situation state, s 

2. An alert signal, a 

3. An observation signal o determined by a sensor function, O( o(k) | s(k) ) 

4. A state transition function, T( s(k+1) | s(k), a(k) ) 

5. Prior knowledge about s in the form of a probabilit y distribution, bs(0)( s(0) ) 

The functions O(⋅) and T(⋅) are in the form of probabilit y distributions over the 

spaces of o and s, respectively. 

 At each point in time, an observation ( o(k) ) is made and an action ( a(k) ) is 

taken by the alerting system.  After k time steps, beginning with k = 0, the entire history 

of these values is: 

{ o(0), a(0), o(1), a(1), … , o(k-1), a(k-1), o(k) }  

 or more compactly, 

{ e(0), e(1), … , e(k-1), o(k) }  

where e(i) is the “evidence” from time step i: 

e(i)  =  { o(i), a(i) }.  

 This history is the complete set of observable evidence concerning the situation.  

By definition, the belief state at k is the probabilit y distribution of s(k), conditioned on 

all of this evidence: 

bs(k)( s(k) )  =  p( s(k) | e(0), e(1), … , e(k-1), o(k) ) 



 

134 

Applying the definition of conditional probabilit y, this becomes: 

=  α  p( o(k) | s(k), e(0), e(1), … , e(k-1) )  p( s(k) | e(0), e(1), … , e(k-1) ) 

where α is a normalization constant that makes the distribution sum to 1.  The rightmost 

factor is the conditional probabilit y distribution of the current state on all past observable 

evidence.  The middle factor is the conditional distribution of the current observation on 

the current state and all previous observations and actions.  Since the observation depends 

on the current state and nothing else (by definition of the sensor function), the expression 

simpli fies to: 

=  α  p( o(k) | s(k) )  p( s(k) | e(0), e(k1), … , e(k-1) ) 

To evaluate the last factor, it can be expanded to show the implicit conditioning of s(k) 

on the previous state, s(k-1): 

p( s(k) | e(0), e(1), … , e(k-1) )  = 

Σ p( s(k) | s(k-1), e(0), e(1), … , e(k-1) )  p( s(k-1) | e(0), e(1), … , e(k-1) ) 

The summation is of s(k-1) over the space S.  Due to the Markov property assumed for s, 

this simpli fies to: 

=  Σ p( s(k) | s(k-1), a(k-1) )  p( s(k-1) | e(0), e(1), … , e(k-1) ) 

So the belief state is: 

bs(k)( s(k) )  =   

α  p( o(k) | s(k) )  Σ p( s(k) | s(k-1), a(k-1) )  p( s(k-1) | e(0), e(1), … , e(k-1) ) 

Note that p( o(k) | s(k) ) is just the sensor function, and p( s(k) | s(k-1), a(k-1) ) is the 

transition function.  The distribution p( s(k-1) | e(0), e(1), … , e(k-1) ) is the belief state 

for the previous time step, bs(k-1)( s(k-1) ), assuming that it reduces to p( s(k-1) | e(0), 
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e(1), … , o(k-1) ) due to causality (the action a(k-1) is chosen after the belief state for  

s(k-1) is determined, so it should not influence that belief state). 

To summarize in more explicit notation, the belief state is: 

bs(k)( s(k) )  =  α  O( o(k) | s(k) )  Σ T( s(k) | s(k-1), a(k-1) )  bs(k-1)( s(k-1) ) 

Thus, for the assumed observation and transition functions, there is a recursive 

calculation for the belief state.  Once the belief state is calculated for one time step, that 

belief state along with the next action and observation will allow a calculation of the 

same effort for the next belief state.  At initiation of the process, when there is no 

previously computed belief state, a prior belief state, bs(0)( s(0) ), must be assumed. 
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Appendix B:  

Common Philosophies of Alerting Logic Design 

 
 Three common philosophies of alerting logic design have been identified to 

classify existing or proposed hazard alerting systems.  Following is a more detailed and 

general description of each philosophy.  Parallel approach colli sion prevention serves as 

an example. 

B.1 Trajectory Conformance Monitoring 

 This type of logic uses non-conformance of a system to established procedures as 

a basis for alerting.  For example, figure B.1 shows a system state with respect to a 

normal operating region in state space.  If the state exits outside the normal operating 

region an alert is issued.  The system exists to prevent occurrences of a hazard, but no 

explicit prediction of a hazard event is required for triggering an alert.  As shown, the 

normal region is defined so as to be mutually exclusive of the hazard, even though the 

hazard is not explicitl y modeled in the final algorithm.  In PRM, for example, as long as 

both aircraft remain outside the NTZ, the hazard cannot occur.  An aircraft entering the 

NTZ will t rigger an alert whether or not it actually threatens another aircraft. 

 

                                                                                               

 

 

Figure B.1: Trajectory Conformance Alerting 

A deviation (“blunder”) from the normal procedure is a necessary precursor to a hazard 

event, so it can be argued that an observed deviation from normal is suff icient reason for 

an alert and corrective action, provided such a policy does not result in a high rate of 

Normal states defined by procedure 

System state Hazard (unmodeled) 
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alerts occurring without a blunder.  Frequent unnecessary alerts during normal system 

operation would come to be perceived as incorrect by operators, and might in time cause 

operators to ignore or delay responding to alerts. 

 In addition to establishing that the non-blunder alert rate is acceptably low, it 

should be shown that when a blunder does occur there will be an evasive maneuver 

having an adequate likelihood of success.  Such an analysis typically involves a reference 

dynamic model of the system, and iterative adjustment of the threshold.  Because of the 

dependence of the threshold on the operational procedure, it may be necessary to adjust 

the procedure itself to achieve performance goals.  For example, it was concluded that 

PRM could be used with parallel runways spaced no less than 3400 feet apart because 

below this spacing the likelihood of safe resolution of a blunder was too low in 

simulation studies. 

B.2 Nominal Trajectory Hazard Prediction (Unnecessary Alert 

Prevention) 

This alerting strategy involves continuous checking for a particular hazard 

through explicit prediction of the non-alert, or nominal, system trajectory (figure B.2).  

For an alert to occur, the hazard event must be predicted.  Under this philosophy, the 

logic avoids alerts that are not clearly justified with respect to the hazard.  The hazard is  

 

 

 

 

Figure B.2: Nominal Trajectory Prediction Alerting 

described in terms of a set of state variables composing a state space.  The trajectory 

model, which might be probabili stic, worst case, or a single predicted trajectory, is 

System state 

Predicted nominal (non-alert) trajectory 

Hazard 

Maximum prediction time 
criterion 
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propagated forward in this state space from the current, measured location.  In the figure 

B.2 example, the trajectory model is a worst case model, and is predicting that a hazard 

may be encountered in the future. 

Due to uncertainty in prediction and the consequent possibilit y of unnecessary 

alerts, it is insuff icient to define the alerting rule as “alert when a hazard is predicted.”  

Typically an additional metric or metrics are required for threshold definition.  Possible 

metrics include the degree of certainty in occurrence of a predicted event (for a 

probabili stic trajectory model), or the predicted time-to-colli sion (for worst case or 

single-trajectory models).  The values of threshold parameters must be chosen to satisfy 

both safety and unnecessary alert goals.  In the ill ustrated example, colli sion prediction 

time is the metric and a particular value of this must be selected to define the threshold.  

Using a reference model of the behavior of the entire human-controlled system (able to 

describe its dynamics both before and after an alert occurs, and covering all possible 

initial conditions in state space), optimal threshold parameters are determined, typically 

through repeated Monte Carlo simulation and adjustment (Yang & Kuchar, 2000). 

 Whether a hazard is imminent for the nominal trajectory is not a direct indication 

of whether an evasion maneuver will be safe.  In this type of logic, the justification of 

alerts is inherently stressed over the safety of the alerting decision. 

In the course of analysis, the complexity of the logic may increase to cover 

special cases that were not initially foreseen.  This is li kely when few state variables are 

available for measurement or the actual system dynamics are not well understood.  An 

example is the development of TCAS logic for midair colli sion prevention.  This logic 

began with a simple range rate and time-to-colli sion prediction model (with adjustable 

parameters for the threshold prediction time and miss distance) characterized by large 

trajectory errors, and was eventually augmented with conditional statements and new 

parameters in order to handle problem scenarios (Drumm, 1996).  For example, a 

situation where two aircraft unknowingly fly parallel at the same speed may be 

unacceptable, yet trigger no alerts when using a time-to-colli sion criterion only.  To cover 

such problem scenarios additional checks were added to the logic. 
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 Other examples of logics that use explicit incident prediction as the basis of 

thresholds are GPWS and AILS. 

B.3 Existence of Safe Escape Options (Safety Monitoring) 

 In general there may be specific completion conditions that must be met in order 

for a potential incident to be considered resolved, and it is possible to make deferral of 

alerts conditional on the predicted attainment of such conditions.  For example, the MIT 

logic issues alerts based on knowledge that a colli sion will probably not occur within a 

certain period of time following the alert. 

 This type of logic is superficially similar to the nominal trajectory hazard 

checking method described in section B.2 in that it involves a trajectory model.  As 

ill ustrated in figure B.3, a hazard event is once again defined in terms of measurable state 

variables.  A trajectory model is used to propagate the system state, but this time under 

  

 

 

 

 

Figure B.3: Ensur ing that Safe Options Exist 

the assumption that an alert has occurred or will occur at a particular time, resulting in 

escape maneuvers.  In general there may be multiple maneuver options (represented by 

evolving state envelopes—each resembling a horn—in figure B.3), corresponding to 

different warning inputs that can be issued to operators.  Completion conditions are 

defined in terms of the evasion trajectory and state variables.  As shown, completion 

conditions may require that the system reach a specific region in state space.  In addition, 

it may be required that the system reach the completion state set within a particular time 

Predicted post-alert trajectories for different maneuvers 

State variable criteria for 
   a completed escape 

Hazard System state 
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interval.  Finally, if the hazard is some catastrophe, then the completion state set cannot 

intersect with the set of hazard states and be considered as part of a desirable alerting 

outcome. 

If a probabili stic trajectory model is to be used, then alerting decisions will be 

based on the probabilit y of reaching the completion state set within the required time 

interval.  Therefore an additional component of completion is a threshold probabilit y, 

such that above this an alerting decision is considered safe. 

 If the trajectory model is worst case or a single trajectory, safety requires that all 

trajectories for an alerting option reach the completion set within a given time interval.  

Safety is marginal i f any one of the trajectories reaches a boundary value of the 

completion state set or allowed time interval. 

According to this philosophy an alert may be deferred as long as an available 

alerting option is safe.  An alert can no longer be deferred when safety becomes marginal.  

In other words, an alert is considered justified when there may be no safe option 

remaining at the next alerting opportunity. 

In this method safety is fixed at the threshold, resulting in a loss of direct control 

over unnecessary alerts.  This is because whether a post-alert maneuver is safe is not a 

direct indication of whether the nominal system trajectory is safe (i.e. whether an alert 

will be an unnecessary alert).  For example, it may be possible for an evasion option to 

become marginally unsafe, triggering an alert, even when no hazard would be 

encountered on the nominal trajectory. 
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