2,307 research outputs found

    Surface radiation budget for climate applications

    Get PDF
    The Surface Radiation Budget (SRB) consists of the upwelling and downwelling radiation fluxes at the surface, separately determined for the broadband shortwave (SW) (0 to 5 micron) and longwave (LW) (greater than 5 microns) spectral regions plus certain key parameters that control these fluxes, specifically, SW albedo, LW emissivity, and surface temperature. The uses and requirements for SRB data, critical assessment of current capabilities for producing these data, and directions for future research are presented

    User's guide: Nimbus-7 Earth radiation budget narrow-field-of-view products. Scene radiance tape products, sorting into angular bins products, and maximum likelihood cloud estimation products

    Get PDF
    The archived Earth radiation budget (ERB) products produced from the Nimbus-7 ERB narrow field-of-view scanner are described. The principal products are broadband outgoing longwave radiation (4.5 to 50 microns), reflected solar radiation (0.2 to 4.8 microns), and the net radiation. Daily and monthly averages are presented on a fixed global equal area (500 sq km), grid for the period May 1979 to May 1980. Two independent algorithms are used to estimate the outgoing fluxes from the observed radiances. The algorithms are described and the results compared. The products are divided into three subsets: the Scene Radiance Tapes (SRT) contain the calibrated radiances; the Sorting into Angular Bins (SAB) tape contains the SAB produced shortwave, longwave, and net radiation products; and the Maximum Likelihood Cloud Estimation (MLCE) tapes contain the MLCE products. The tape formats are described in detail

    Modelling water temperature in TOXSWA

    Get PDF
    A reasonably accurate estimate of the water temperature is necessary for a good description of the degradation of plant protection products in water which is used in the surface water model TOXSWA. Based on a consideration of basic physical processes that describe the influence of weather on the energy balance of natural water bodies, we propose to extend TOXSWA with a 1D bulk approach to estimate water temperature. Evaluation of such a system confirmed that it is physically realistic and yet simple, with limited data requirements. It is expected to perform reasonably well in most conditions, and fits well into the present structure of the TOXSWA model. In particular the estimation of degradation rates in shallow and turbid water will benefit from introducing the proposed system

    An investigation of the thermal response to meteorological forcing in a hydrodynamic model of Lake Superior

    Full text link
    Lake Superior, the largest lake in the world by surface area and third largest by volume, features strong spatiotemporal thermal variability due to its immense size and complex bathymetry. The objectives of this study are to document our recent modeling experiences on the simulation of the lake thermal structure and to explore underlying dynamic explanations of the observed modeling success. In this study, we use a three‐dimensional hydrodynamic model (FVCOM—Finite Volume Community Ocean Model) and an assimilative weather forecasting model (WRF—Weather Research and Forecasting Model) to study the annual heating and cooling cycle of Lake Superior. Model experiments are carried out with meteorological forcing based on interpolation of surface weather observations, on WRF and on Climate Forecast System Reanalysis (CFSR) reanalysis data, respectively. Model performance is assessed through comparison with satellite products and in situ measurements. Accurate simulations of the lake thermal structure are achieved through (1) adapting the COARE algorithm in the hydrodynamic model to derive instantaneous estimates of latent/sensible heat fluxes and upward longwave radiation based on prognostic surface water temperature simulated within the model as opposed to precomputing them with an assumed surface water temperature; (2) estimating incoming solar radiation and downward longwave radiation based on meteorological measurements as opposed to meteorological model‐based estimates; (3) using the weather forecasting model to provide high‐resolution dynamically constrained wind fields as opposed to wind fields interpolated from station observations. Analysis reveals that the key to the modeling success is to resolve the lake‐atmosphere interactions and apply appropriate representations of different meteorological forcing fields, based on the nature of their spatiotemporal variability. The close agreement between model simulation and observations also suggests that the 3‐D hydrodynamic model can provide reliable spatiotemporal estimates of heat budgets over Lake Superior and similar systems. Although there have been previous studies which analyzed the impact of the spatiotemporal variability of overwater wind fields on lake circulation, we believe this is the first detailed analysis of the importance of spatiotemporal variability of heat flux components on hydrodynamic simulation of 3‐D thermal structure in a lake.Key Points:Thermal response to meteorological forcing of Lake Superior is examinedKey to the modeling success is to resolve the lake‐air interactionsSpatiotemporal variability of surface meteorological components is importantPeer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/113112/1/jgrc21314.pd

    Estimation of mineral dust direct radiative forcing at the European Aerosol Research Lidar NETwork site of Lecce, Italy, during the ChArMEx/ADRIMED summer 2013 campaign: Impact of radiative transfer model spectral resolutions

    Get PDF
    © 2016. American Geophysical UnionA field campaign took place in the western and central Mediterranean basin on June–July 2013 in the framework of the ChArMEx (Chemistry-Aerosol Mediterranean Experiment, http://charmex.lsce.ipsl.fr/)/ADRIMED (Aerosol Direct Radiative Impact on the regional climate in the MEDiterranean region, http://adrimed.sedoo.fr/) project to characterize the aerosol direct radiative forcing (DRF) over the Mediterranean. This work focuses on the aerosol DRF estimations at Lecce (40.33°N; 18.11°E; 30¿m above sea level) during the Saharan dust outbreak that affected southern Italy from 20 to 24 June 2013. The Global Atmospheric Model (GAME) and the Two-Stream (TS) model were used to calculate the instantaneous aerosol DRF in the short-wave (SW) and long-wave (LW) spectral ranges, at the surface and at the top of the atmosphere (TOA). The main differences between the two models were due to the different numerical methods to solve the radiative transfer (RT) equations and to the more detailed spectral resolution of GAME compared to that of TS. 167 and 115 subbands were used by GAME in the 0.3–4 and 4–37¿µm spectral ranges, respectively. Conversely, the TS model used 8 and 11 subbands in the same spectral ranges, respectively. We found on 22 June that the SW-DRFs from the two models were in good agreement, both at the TOA and at the surface. The instantaneous SW-DRFs at the surface and at the TOA varied from -50 to -34¿W¿m-2 and from -6 to +8¿W¿m-2, respectively, while the surface and TOA LW-DRFs ranged between +3.5 and +8.0¿W¿m-2 and between +1.7 and +6.9¿W¿m-2, respectively. In particular, both models provided positive TOA SW-DRFs at solar zenith angles smaller than 25° because of the mixing of the desert dust with anthropogenic pollution during its transport to the study site. In contrast, the TS model overestimated the GAME LW-DRF up to about 5 and 7.5 times at the surface and at the TOA, respectively, when the dust particle contribution was largest. The low spectral resolution of the real (n) and imaginary (k) refractive index values was mainly responsible for the LW-DRF overestimates of the TS model. However, we found that the “optimization” of the n and k values at 8.75 and 11.5¿µm was sufficient in this study to obtain a satisfactory agreement between the LW-DRFs from the two models, both at the TOA and at the surface. The impact of the spectral dependence of the water vapor absorption coefficients on the estimation of the flux without aerosol has also been addressed. Paper results did not reveal any significant impact due to the different numerical methods used by the two models to solve the RT equations.Peer ReviewedPostprint (published version

    Amélioration de la capabilité de modélisation et de mitigation du gel radiatif au milieu agricole

    Get PDF
    Le gel radiatif est une des conditions météorologiques sévère affect la production agricole dans de nombreuses région du monde. Les objectives de cette étude inclut deux innovations scientifiques liées aux dégâts causés par le gel radiatif : (1) l'amélioration de la capacité de prédiction du gel local (température nocturne minimale à une résolution de 30 mètres) grâce à un modèle d’échange énergétique entre la végétation et l’atmosphère, et (2) une nouvelle méthode de diminution des risques et de protection des cultures agricoles pendant les périodes de gel. La première innovation a été réalisée en suivant plusieurs objectifs spécifiques visant à améliorer les capacités d'un modèle de répartition spatiale météorologique (Micro-Met) via quatre sous-modèles : (i) estimation journalière du gradient thermique adiabatique de l'air, (ii) modification de l’équation de rayonnement des grandes longueurs d'onde en l’absence de nuage dans l’atmosphère, (iii) quantification des effets de l’écoulement de l’air froid sur la température de l’air, et (iv) quantifier l’effet de haies brise–vent sur la vitesse du vent. La deuxième innovation a été réalisée en mettant en œuvre et en testant une nouvelle méthode active basée sur le cycle thermodynamique. Le site d'étude se localise dans la région de Vallée de Coaticook de l’Estrie (Québec) subit les conséquences désastreuses du gel. Le premier sous-modèle utilise une combinaison de profils de température provenant du satellite AIRS et de stations météorologiques afin d’estimer quotidiennement et régionalement le gradient thermique de l’air. L'utilisation de valeurs journalières, au lieu de valeurs fixes, permet d’estimer plus précisément les conditions atmosphériques. Les résultats ont démontré l’utilité de l’utilisation de la température de l'air obtenue par AIRS (850 hPa et 700 hPa) pour l’estimation du gradient thermique. Le second sous-modèle utilise les données associées aux conditions synoptiques du gel radiatif pour obtenir une équation du rayonnement descendant localement ajustée. Alors que l’erreur aux moindres carrés (RMSE) de Micro-Met était de 176.95 Wm-2 avec une erreur absolue (MAE) moyenne de 176.40 Wm-2, la nouvelle équation génère une RMSE de 4.90 Wm-2 et une MAE de 4.00 Wm-2. Le troisième sous-modèle contient trois parties :la détection des vallées fermées, l’estimation de la rapidité de drainage de l’air, et l’intégration de la perte de chaleur sensible ainsi que le refroidissement radiatif en vallée durant la nuit. La comparaison entre les simulations Micro-Met et les mesures de la température de l’air montrent une MAE de 1.11 (°C) et une RMSE de 1.66 (°C). La comparaison avec le modèle amélioré indique un gain avec une MAE de 0.68 (°C) et une RMSE de 1.08 (°C). Le quatrième sous-modèle était construit sur des résultats expérimentaux de vitesse du vent générés en laboratoire par des simulations. Trois équations ont été proposées pour estimer la vitesse du vent. Les résultats indiquent un coefficient de corrélation (R2) de 71% pour une vitesse de vent en dessous de 6 ms-1. La version améliorée de Micro-Net fournit une nouvelle plateforme pour des modèles d’énergie végétation-atmosphère et permet de prévoir la température minimale nocturne. Les résultats des tests de prédiction de cette température minimum concordent avec les mesures in-situ. Ces mesures ont été prises dans 5 secteurs topographiques différents afin d’améliorer les modèles de prédiction et engendrent des erreurs pour des vallées fermées (RMSE = 1.34, MAE = 1.03), pour différentes pentes (RMAE = 0.93, MAE = 0.73), crêtes (RMSE = 1.02, MAE = 0.88), plaines (RMSE = 0.44, MAE = 0.40), et aux orées des forêts (RMSE = 0.58, MAE = 0.53). En plus des objectifs spécifiques précédents, cette étude a proposé une nouvelle méthode d'atténuation du gel basée sur la thermodynamique du transport de la vapeur d'eau d'une source humide à un puits sec. Nous avons ajouté au Selective Inverse System (SIS) déjà utilisé dans le milieu, un contenant d'eau chaude à sa base pour diffuser la vapeur d'eau dans l'air ambiant. Cette opération a augmenté l’humidité de l'air ambiant et augmenté l'entropie humide. Cet essai a été réalisé dans un verger. La méthode d'atténuation la plus courante se concentre sur la température de l'air. La méthode proposée repose plutôt sur les principes physiques de l'entropie humide, qui combinait à la fois la température et l'humidité de l'air et le contenu thermique représenté. Dans l'ensemble, pour ce projet de recherche, un modèle couplé a été conçu pour prévision la température minimale nocturne de l'air dans des terrains agricoles vallonnés. En particulier, en améliorant la précision des prévisions, nous avons élaboré et ajouté des sous-modèles pour estimer les baisses de température dues à la stagnation du drainage de l'air froid et à l'effet des brise-vent forestiers sur la vitesse du vent. Pour réduire l'effet de gel, une nouvelle méthode de mitigation active respectueuse de l'environnement a été présentée. Cette étude a le potentiel d’aider les agriculteurs à réduire les dommages causés par le gel. De plus, elle peut être utile pour les services agricoles en termes de prise de décision, réduisant ainsi les dommages économiques.Abstract: The main objective of this study was related to radiation frost damage: (1) improving the forecasting capability of local frost, which was adapted to forecast nocturnal minimum temperature at a 30-meter resolution, using a vegetation atmosphere energy exchange framework, and (2) proposing a new mitigation approach to protect agricultural crops during frost periods. The first advance was achieved through several specific objectives to enhance the capabilities of a meteorological spatial distribution model (Micro-Met) on four sub-models: (i) estimating local air temperature lapse rate on a daily basis (ii) modifying downward longwave equation under clear sky condition, (iii) quantifying the effects of cold air drainage on air temperature, and (iv) quantifying the forest shelter effect on wind speed. The second advance advancement was accomplished by implementing and testing a new active method based on steam cycle thermodynamic. The first sub-model used AIRS (Atmosphere infrared sounder) air temperature profile and surface station data to estimate air temperature lapse rate on the daily and regional scale. The use of daily basis lapse rate, instead of the fixed value, allowed to present more accurate atmospheric condition. The results showed the potential of the AIRS air temperature profiles (850 hPa and 700 hPa) to estimate the temperature lapse rate. The second sub-model used observational data associated with synoptic conditions of radiation frost to present a locally adjusted downward longwave equation. The reported root means square error (RMSE) and mean absolute error (MAE) for the current version of Micro-Met were 176.95 (Wm-2) and 176.40 (Wm-2) respectively, while the results of the new equation led to an RMSE and MAE of 4.90 (Wm-2) and 4.00 (Wm-2) respectively. The third sub–model constituted three components: detected closed valley, estimated cold air drainage velocity, and integrated sensible heat loss and radiative cooling during the night on detected valleys. Comparison between the current Micro-Met simulation and the measured air temperature shows MAE of 1.11°C and RMSE of 1.66°C, while the comparison with the enhanced Micro-Met simulation indicated an improvement with MAE of 0.68 °C and RMSE of 1.08 °C. The fourth sub-model was based on experimental results of wind velocity produced in a laboratory with wind-tunnel models. Three separate equations were formulated for wind velocity estimation over the windward, through the shelterbelt, and leeward areas. The results indicated a coefficient of determination (R2) of 71% under the wind's velocity lower than 6ms-1. The Enhanced Micro-Met version provided a new platform to power vegetation-atmosphere energy model to forecast minimum nocturnal temperature. The performance test for forecasting minimum air temperatures indicated agreement with in-situ measurements. Measurements were taken on five topographic sectors in order to assess the improved modeled prediction and led to error assessment on closed valleys (RMSE=1.34, MAE = 1.03), different parts of slopes (RMAE = 0.93, MAE = 0.73), ridges (RMSE = 1.02, MAE = 0.88), flat areas (RMSE = 0.44, MAE = 0.40), and areas close to the forest (RMSE = 0.58, MAE = 0.53). In addition to previous specific objectives, this study proposed a new frost mitigation method based on the thermodynamics of water vapor transport from a moist source to dry sink. A vessel of warm water equipped with a Selective Inverted Sink (SIS) system was used to transport water vapor into the air, which ended up decreasing the air dryness and increasing moist entropy. This test was carried out in an orchard. The most common mitigation method focuses on air temperature. Instead, the proposed method was based on the physical principles of moist entropy, which combined both air temperature and humidity and depicted heat content. Overall, for this research project, a coupled model was designed to predict nocturnal minimum air temperature over hilly agricultural terrain. In particular, through improving prediction accuracy, we developed and added sub-models to estimate drops in temperature due to pooling and stagnation of cold air drainage and the effect of forest shelterbelt on wind velocity. To reduce frost effect, a new environmentally friendly active method was presented. This study served to help farmers reduce frost damages. Moreover, it can be useful for agricultural services in terms of decision-making, thereby, reducing economic damages

    Measuring and modeling near-surface reflected and emitted radiation fluxes at the FIFE site

    Get PDF
    Information is presented pertaining to the measurement and estimation of reflected and emitted components of the radiation balance. Information is included about reflectance and transmittance of solar radiation from and through the leaves of some grass and forb prairie species, bidirectional reflectance from a prairie canopy is discussed and measured and estimated fluxes are described of incoming and outgoing longwave and shortwave radiation. Results of the study showed only very small differences in reflectances and transmittances for the adaxial and abaxial surfaces of grass species in the visible and infrared wavebands, but some differences in the infrared wavebands were noted for the forbs. Reflectance from the prairie canopy changed as a function of solar and view zenith angles in the solar principal plane with definite asymmetry about nadir. The surface temperature of prairie canopies was found to vary by as much as 5 C depending on view zenith and azimuth position and on the solar azimuth. Aerodynamic temperature calculated from measured sensible heat fluxes ranged from 0 to 3 C higher than nadir-viewed temperatures. Models were developed to estimate incoming and reflected shortwave radiation from data collected with a Barnes Modular Multiband Radiometer. Several algorithms for estimating incoming longwave radiation were evaluated and compared to actual measures of that parameter. Net radiation was calculated using the estimated components of the shortwave radiation streams, determined from the algorithms developed, and from the longwave radiation streams provided by the Brunt, modified Deacon, and the Stefan-Boltzmann models. Estimates of net radiation were compared to measured values and found to be within the measurement error of the net radiometers used in the study

    Theoretical Foundations of Remote Sensing for Glacier Assessment and Mapping

    Get PDF
    The international scientific community is actively engaged in assessing ice sheet and alpine glacier fluctuations at a variety of scales. The availability of stereoscopic, multitemporal, and multispectral satellite imagery from the optical wavelength regions of the electromagnetic spectrum has greatly increased our ability to assess glaciological conditions and map the cryosphere. There are, however, important issues and limitations associated with accurate satellite information extraction and mapping, as well as new opportunities for assessment and mapping that are all rooted in understanding the fundamentals of the radiation transfer cascade. We address the primary radiation transfer components, relate them to glacier dynamics and mapping, and summarize the analytical approaches that permit transformation of spectral variation into thematic and quantitative parameters. We also discuss the integration of satellite-derived information into numerical modeling approaches to facilitate understandings of glacier dynamics and causal mechanisms

    Master of Science

    Get PDF
    thesisThe components of the radiation and surface energy budget have been modeled over the complex terrain of Arizona's Meteor Crater using terrain parameters derivable from a DEM as well as radiation and surface conditions observed at a central location within the terrain. The incoming shortwave radiation was modeled using direct observations taken within the crater at the central observation station and projected onto the variable terrain. When terrain shading made this approach unfeasible, knowledge of the solar radiation distribution was applied. The other radiation components were modeled using physical theory, direct observations, and relevant measured variables. The modeled radiation components are summed to form the modeled net radiation. The sensible heat flux is then modeled assuming a similarity between the ratio of net radiation on an unobstructed inclined surface to that on an unobstructed horizontal surface and the ratio of sensible heat flux on an unobstructed inclined surface to that on an unobstructed horizontal surface. Latent and ground heat fluxes are modeled by the extension of their direct measurements to all points within the domain. All radiation and energy balance components are adjusted for terrain shading, when appropriate. The resulting model was compared against observations taken during the METCRAX field campaign during October 2006. The radiation component found to have the most influence on the values of the net radiation is the incoming shortwave radiation. Accurately representing this component is the first step in a reliable model of the net radiation and therefore the sensible heat flux. The model produced errors within measurement accuracy for incoming short and longwave radiation and outgoing shortwave radiation. The errors produced by the models of the energy budget components are also small enough for the model to be considered useful to the research community. All of the modeled components vary temporally and the majority of the components vary spatially, reflecting the dependency of the energy budget on terrain features

    Optically thin clouds over Ny-Ålesund: Dependence on meteorological parameters and effect on the surface radiation budget

    Get PDF
    Diese Arbeit befasst sich mit den Eigenschaften (optisch) dünner Wolken über Ny-Ålesund, Spitzbergen, und ihrer Strahlungswirkung am Boden. Dafür werden Daten des atmosphärischen Observatoriums der AWIPEV Station verwendet
    corecore