3,752 research outputs found

    Simulation of site-specific irrigation control strategies with sparse input data

    Get PDF
    Crop and irrigation water use efficiencies may be improved by managing irrigation application timing and volumes using physical and agronomic principles. However, the crop water requirement may be spatially variable due to different soil properties and genetic variations in the crop across the field. Adaptive control strategies can be used to locally control water applications in response to in-field temporal and spatial variability with the aim of maximising both crop development and water use efficiency. A simulation framework ‘VARIwise’ has been created to aid the development, evaluation and management of spatially and temporally varied adaptive irrigation control strategies (McCarthy et al., 2010). VARIwise enables alternative control strategies to be simulated with different crop and environmental conditions and at a range of spatial resolutions. An iterative learning controller and model predictive controller have been implemented in VARIwise to improve the irrigation of cotton. The iterative learning control strategy involves using the soil moisture response to the previous irrigation volume to adjust the applied irrigation volume applied at the next irrigation event. For field implementation this controller has low data requirements as only soil moisture data is required after each irrigation event. In contrast, a model predictive controller has high data requirements as measured soil and plant data are required at a high spatial resolution in a field implementation. Model predictive control involves using a calibrated model to determine the irrigation application and/or timing which results in the highest predicted yield or water use efficiency. The implementation of these strategies is described and a case study is presented to demonstrate the operation of the strategies with various levels of data availability. It is concluded that in situations of sparse data, the iterative learning controller performs significantly better than a model predictive controller

    Air pollution and livestock production

    Get PDF
    The air in a livestock farming environment contains high concentrations of dust particles and gaseous pollutants. The total inhalable dust can enter the nose and mouth during normal breathing and the thoracic dust can reach into the lungs. However, it is the respirable dust particles that can penetrate further into the gas-exchange region, making it the most hazardous dust component. Prolonged exposure to high concentrations of dust particles can lead to respiratory health issues for both livestock and farming staff. Ammonia, an example of a gaseous pollutant, is derived from the decomposition of nitrous compounds. Increased exposure to ammonia may also have an effect on the health of humans and livestock. There are a number of technologies available to ensure exposure to these pollutants is minimised. Through proactive means, (the optimal design and management of livestock buildings) air quality can be improved to reduce the likelihood of risks associated with sub-optimal air quality. Once air problems have taken hold, other reduction methods need to be applied utilising a more reactive approach. A key requirement for the control of concentration and exposure of airborne pollutants to an acceptable level is to be able to conduct real-time measurements of these pollutants. This paper provides a review of airborne pollution including methods to both measure and control the concentration of pollutants in livestock buildings

    Stormwater detention and infiltration devices treating road runoff

    Get PDF

    Development of a GPGPU accelerated tool to simulate advection-reaction-diffusion phenomena in 2D

    Get PDF
    Computational models are powerful tools to the study of environmental systems, playing a fundamental role in several fields of research (hydrological sciences, biomathematics, atmospheric sciences, geosciences, among others). Most of these models require high computational capacity, especially when one considers high spatial resolution and the application to large areas. In this context, the exponential increase in computational power brought by General Purpose Graphics Processing Units (GPGPU) has drawn the attention of scientists and engineers to the development of low cost and high performance parallel implementations of environmental models. In this research, we apply GPGPU computing for the development of a model that describes the physical processes of advection, reaction and diffusion. This presentation is held in the form of three self-contained articles. In the first one, we present a GPGPU implementation for the solution of the 2D groundwater flow equation in unconfined aquifers for heterogenous and anisotropic media. We implement a finite difference solution scheme based on the Crank- Nicolson method and show that the GPGPU accelerated solution implemented using CUDA C/C++ (Compute Unified Device Architecture) greatly outperforms the corresponding serial solution implemented in C/C++. The results show that accelerated GPGPU implementation is capable of delivering up to 56 times acceleration in the solution process using an ordinary office computer. In the second article, we study the application of a diffusive-logistic growth (DLG) model to the problem of forest growth and regeneration. The study focuses on vegetation belonging to preservation areas, such as riparian buffer zones. The study was developed in two stages: (i) a methodology based on Artificial Neural Network Ensembles (ANNE) was applied to evaluate the width of riparian buffer required to filter 90% of the residual nitrogen; (ii) the DLG model was calibrated and validated to generate a prognostic of forest regeneration in riparian protection bands considering the minimum widths indicated by the ANNE. The solution was implemented in GPGPU and it was applied to simulate the forest regeneration process for forty years on the riparian protection bands along the Ligeiro river, in Brazil. The results from calibration and validation showed that the DLG model provides fairly accurate results for the modelling of forest regeneration. In the third manuscript, we present a GPGPU implementation of the solution of the advection-reaction-diffusion equation in 2D. The implementation is designed to be general and flexible to allow the modeling of a wide range of processes, including those with heterogeneity and anisotropy. We show that simulations performed in GPGPU allow the use of mesh grids containing more than 20 million points, corresponding to an area of 18,000 km? in a standard Landsat image resolution.Os modelos computacionais s?o ferramentas poderosas para o estudo de sistemas ambientais, desempenhando um papel fundamental em v?rios campos de pesquisa (ci?ncias hidrol?gicas, biomatem?tica, ci?ncias atmosf?ricas, geoci?ncias, entre outros). A maioria desses modelos requer alta capacidade computacional, especialmente quando se considera uma alta resolu??o espacial e a aplica??o em grandes ?reas. Neste contexto, o aumento exponencial do poder computacional trazido pelas Unidades de Processamento de Gr?ficos de Prop?sito Geral (GPGPU) chamou a aten??o de cientistas e engenheiros para o desenvolvimento de implementa??es paralelas de baixo custo e alto desempenho para modelos ambientais. Neste trabalho, aplicamos computa??o em GPGPU para o desenvolvimento de um modelo que descreve os processos f?sicos de advec??o, rea??o e difus?o. Esta disserta??o ? apresentada sob a forma de tr?s artigos. No primeiro, apresentamos uma implementa??o em GPGPU para a solu??o da equa??o de fluxo de ?guas subterr?neas 2D em aqu?feros n?o confinados para meios heterog?neos e anisotr?picos. Foi implementado um esquema de solu??o de diferen?as finitas com base no m?todo Crank- Nicolson e mostramos que a solu??o acelerada GPGPU implementada usando CUDA C / C ++ supera a solu??o serial correspondente implementada em C / C ++. Os resultados mostram que a implementa??o acelerada por GPGPU ? capaz de fornecer acelera??o de at? 56 vezes no processo da solu??o usando um computador de escrit?rio comum. No segundo artigo estudamos a aplica??o de um modelo de crescimento log?stico difusivo (DLG) ao problema de crescimento e regenera??o florestal. O estudo foi desenvolvido em duas etapas: (i) Aplicou-se uma metodologia baseada em Comites de Rede Neural Artificial (ANNE) para avaliar a largura da faixa de prote??o rip?ria necess?ria para filtrar 90% do nitrog?nio residual; (ii) O modelo DLG foi calibrado e validado para gerar um progn?stico de regenera??o florestal em faixas de prote??o rip?rias considerando as larguras m?nimas indicadas pela ANNE. A solu??o foi implementada em GPGPU e aplicada para simular o processo de regenera??o florestal para um per?odo de quarenta anos na faixa de prote??o rip?ria ao longo do rio Ligeiro, no Brasil. Os resultados da calibra??o e valida??o mostraram que o modelo DLG fornece resultados bastante precisos para a modelagem de regenera??o florestal. No terceiro artigo, apresenta-se uma implementa??o em GPGPU para solu??o da equa??o advec??o-rea??o-difus?o em 2D. A implementa??o ? projetada para ser geral e flex?vel para permitir a modelagem de uma ampla gama de processos, incluindo caracter?sticas como heterogeneidade e anisotropia do meio. Neste trabalho mostra-se que as simula??es realizadas em GPGPU permitem o uso de malhas contendo mais de 20 milh?es de pontos (vari?veis), correspondendo a uma ?rea de 18.000 km? em resolu??o de 30m padr?o das imagens Landsat

    Determining Effective Parameters on CO Concentration in Tehran Air by Sensitivity Analysis based on Neural Network Prediction

    Get PDF
    One of the most toxic pollutant gases produced by fossil fuels is carbon monoxide. Hence, the accurate and regular estimation and control of CO in the cities such as Tehran is inevitable. In this research, for the first time, CO concentration in ambient air was predicted based on 12 important urban and meteorological parameters by neural network. Also, the sensitivity analysis of the factors that effect on the concentration of carbon monoxide in Tehran was investigated based on the pollutant concentration predictive model. In this research, the daily statistical data of Tehran metropolis over the course of five consecutive years from 12 factors affecting the amount of carbon monoxide in Tehran, such as population, density, precipitation, temperature, urban traffic, wind speed, gasoil consumption, moisture, air flow, effective vision and air pressure was used. Based on this database, the artificial neural network with the best possible algorithm had been trained to predict this contaminant and root mean square error of model was equal to 2.54. Then, sensitivity analysis was done to find the most effective factor on the concentration of carbon monoxide, urban density and air pressure. In order to control this hazardous contaminant in urban management, these parameters should be taken into account. Based on the result, by preventing the construction of high towers in Tehran, wind speed average will increase and increasing in wind speed (25%) caused to reducing in carbon monoxide concentration (about 12%). Also, prevention of urban density (25%) will cause to prevention of increasing CO concentration (about 10%)

    Arkansas Bulletin of Water Research - Issue 2018

    Get PDF
    The Arkansas Bulletin of Water Research is a publication of the Arkansas Water Resources Center (AWRC). This bulletin is produced in an effort to share water research relevant to Arkansas water stakeholders in an easily searchable and aesthetically engaging way. This is the second publication of the bulletin and will be published annually. The submission of a paper to this bulletin is appropriate for topics at all related to water resources, by anyone conducting water research or investigations. This includes but is not limited to university researchers, consulting firms, watershed groups, and other agencies. Prospective authors should read the “Introduction to the Arkanasas Bulletin of Water Research” contained within this publication and should refer to the AWRC website for additional infromation. https://arkansas-water-center.uark.edu

    Modelling water discharge and nitrogen loads from drained agricultural land at field and watershed scale

    Get PDF
    This thesis examines water discharge and NO₃-N loads from drained agricultural land in southern Sweden by modelling at field and watershed scale. In the first stage of the work, the ability of DRAINMOD to simulate outflow in subsurface drains and that of DRAINMOD-N II to simulate NO₃-N loads in these drains was evaluated in field experiments. In addition, the ROSETTA pedotransfer model was used to estimate soil hydraulic properties required by DRAINMOD. In the second stage, DRAINMOD was integrated with Arc Hydro in a GIS framework (Arc Hydro-DRAINMOD) to simulate the hydrological response of an artificially drained watershed. DRAINMOD-N II and a temperature-dependent NO₃-N removal equation were also included in Arc Hydro-DRAINMOD to predict NO₃-N loading. Arc Hydro-DRAINMOD used a distributed modelling approach to aggregate the results of field-scale simulations, where the Arc Hydro data model described the drainage patterns in the watershed and connected the model simulations from fields through the stream network to the watershed outlet. GLUE methodology was applied to estimate uncertainties in the framework inputs. At field scale, monthly values of drain outflows simulated by DRAINMOD and NO₃-N loads simulated by DRAINMOD-N II showed good agreement with observed values. Good agreement was also found between observed and DRAINMOD-simulated drainage rates when ROSETTA-estimated Ks values were used as inputs in DRAINMOD. At watershed scale, temporal trend and magnitude of monthly measured discharge and NO₃-N loads were well predicted by Arc Hydro-DRAINMOD, which included uncertainty estimation using GLUE methodology. Sensitivity analysis showed that NO₃-N loads from the stream baseflow and N removal in the stream network processes had the most sensitive parameters. These results demonstrate the potential of DRAINMOD/DRAINMOD-N II and Arc Hydro-DRAINMOD for simulating hydrological and N processes in drained agricultural land at field and watershed scale. These models can contribute to improve water use efficiency in watersheds and to evaluate best management practices for preventing surface water and groundwater pollution

    Bucharest) ♦ 61♦ Nr

    Get PDF
    Levels of nitrates in groundwater i
    corecore