1,396 research outputs found

    Multiple light source detection.

    Get PDF
    Published versio

    Cavlectometry: Towards Holistic Reconstruction of Large Mirror Objects

    Full text link
    We introduce a method based on the deflectometry principle for the reconstruction of specular objects exhibiting significant size and geometric complexity. A key feature of our approach is the deployment of an Automatic Virtual Environment (CAVE) as pattern generator. To unfold the full power of this extraordinary experimental setup, an optical encoding scheme is developed which accounts for the distinctive topology of the CAVE. Furthermore, we devise an algorithm for detecting the object of interest in raw deflectometric images. The segmented foreground is used for single-view reconstruction, the background for estimation of the camera pose, necessary for calibrating the sensor system. Experiments suggest a significant gain of coverage in single measurements compared to previous methods. To facilitate research on specular surface reconstruction, we will make our data set publicly available

    Terrain analysis using radar shape-from-shading

    Get PDF
    This paper develops a maximum a posteriori (MAP) probability estimation framework for shape-from-shading (SFS) from synthetic aperture radar (SAR) images. The aim is to use this method to reconstruct surface topography from a single radar image of relatively complex terrain. Our MAP framework makes explicit how the recovery of local surface orientation depends on the whereabouts of terrain edge features and the available radar reflectance information. To apply the resulting process to real world radar data, we require probabilistic models for the appearance of terrain features and the relationship between the orientation of surface normals and the radar reflectance. We show that the SAR data can be modeled using a Rayleigh-Bessel distribution and use this distribution to develop a maximum likelihood algorithm for detecting and labeling terrain edge features. Moreover, we show how robust statistics can be used to estimate the characteristic parameters of this distribution. We also develop an empirical model for the SAR reflectance function. Using the reflectance model, we perform Lambertian correction so that a conventional SFS algorithm can be applied to the radar data. The initial surface normal direction is constrained to point in the direction of the nearest ridge or ravine feature. Each surface normal must fall within a conical envelope whose axis is in the direction of the radar illuminant. The extent of the envelope depends on the corrected radar reflectance and the variance of the radar signal statistics. We explore various ways of smoothing the field of surface normals using robust statistics. Finally, we show how to reconstruct the terrain surface from the smoothed field of surface normal vectors. The proposed algorithm is applied to various SAR data sets containing relatively complex terrain structure

    Color image-based shape reconstruction of multi-color objects under general illumination conditions

    Get PDF
    Humans have the ability to infer the surface reflectance properties and three-dimensional shape of objects from two-dimensional photographs under simple and complex illumination fields. Unfortunately, the reported algorithms in the area of shape reconstruction require a number of simplifying assumptions that result in poor performance in uncontrolled imaging environments. Of all these simplifications, the assumptions of non-constant surface reflectance, globally consistent illumination, and multiple surface views are the most likely to be contradicted in typical environments. In this dissertation, three automatic algorithms for the recovery of surface shape given non-constant reflectance using a single-color image acquired are presented. In addition, a novel method for the identification and removal of shadows from simple scenes is discussed.In existing shape reconstruction algorithms for surfaces of constant reflectance, constraints based on the assumed smoothness of the objects are not explicitly used. Through Explicit incorporation of surface smoothness properties, the algorithms presented in this work are able to overcome the limitations of the previously reported algorithms and accurately estimate shape in the presence of varying reflectance. The three techniques developed for recovering the shape of multi-color surfaces differ in the method through which they exploit the surface smoothness property. They are summarized below:• Surface Recovery using Pre-Segmentation - this algorithm pre-segments the image into distinct color regions and employs smoothness constraints at the color-change boundaries to constrain and recover surface shape. This technique is computationally efficient and works well for images with distinct color regions, but does not perform well in the presence of high-frequency color textures that are difficult to segment.iv• Surface Recovery via Normal Propagation - this approach utilizes local gradient information to propagate a smooth surface solution from points of known orientation. While solution propagation eliminates the need for color-based image segmentation, the quality of the recovered surface can be degraded by high degrees of image noise due to reliance on local information.• Surface Recovery by Global Variational Optimization - this algorithm utilizes a normal gradient smoothness constraint in a non-linear optimization strategy, to iteratively solve for the globally optimal object surface. Because of its global nature, this approach is much less sensitive to noise than the normal propagation is, but requires significantly more computational resources.Results acquired through application of the above algorithms to various synthetic and real image data sets are presented for qualitative evaluation. A quantitative analysis of the algorithms is also discussed for quadratic shapes. The robustness of the three approaches to factors such as segmentation error and random image noise is also explored
    • …
    corecore