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Solid state lighting is becoming a popular light source for color vision experiments. One of the advantages of light
emitting diodes (LEDs) is the possibility to shape the target light spectrum according to the experimenter’s needs.
In this paper, we present a method for creating metameric lights with an LED-based spectrally tunable illuminator.
The equipment we use consists of six Gamma Scientific RS-5B lamps, each containing nine different LEDs and a
1 m integrating sphere. We provide a method for describing the (almost) entire set of illuminant metamers.
It will be shown that the main difficulty in describing this set arises as the result of the intensity dependent
peak-wavelength shift, which is manifested by the majority of the LEDs used by the illuminators of this
type. We define the normalized metamer set describing all illuminator spectra that colorimetrically match a
given chromaticity. Finally, we describe a method for choosing the smoothest or least smooth metamer from
the entire set. © 2014 Optical Society of America

OCIS codes: (230.3670) Light-emitting diodes; (330.1715) Color, rendering and metamerism.
http://dx.doi.org/10.1364/JOSAA.31.001577

1. INTRODUCTION
The popularity of LED sources as commercial lighting has
been steadily growing over the last decade, due in large part
to their energy efficiency and longevity. Another advantage of
LED sources is that they are often narrowband, and so it is
easy, by combining multiple sources, to design an illuminator
that has some desired spectral properties. More recently, con-
trollable multi-LED sources have come on the market, which
can generate a diverse range of different light spectra. The
illuminator used in this work comprises eight narrowband
LED sources arranged across the visible spectrum and two
broadband yellow LEDs. However, the algorithms proposed
are applicable to any similar setup.

One of the challenges of using this type of LED illuminator
is that the shape of its spectral power distribution varies with
the drive current. Specifically, as the current increases, the
peak wavelength shifts toward longer wavelengths (some-
times by over 10 nm). This shifting is illustrated in Fig. 1.

Nevertheless, given the model of the LED chromatic shifts
obtained through measurements, the illuminator can be
driven to meet a required target spectral shape (or a close
match) or a colorimetric chromaticity match. In our earlier
work, we described two algorithms capable of performing
these tasks [1].

Here we are expanding this work further and ask the ques-
tion: given a target CIE XYZ (or indeed a target xy chroma-
ticity) [2], can we describe the entire set of spectra that can be
created by this device? Our approach is based on the metamer
sets method proposed by Finlayson andMorovic [3,4]. First let
us assume the ideal case that the illuminator has N intensity
independent LED channels. Then the illuminator spectra
can be expressed as an N -dimensional linear model subject
to certain physical inequality constraints on its weights

(positive and not exceeding the channel maximum output).
Finding a spectrum corresponding to a given XYZ is
equivalent to solving an underdetermined system of linear
equations whose solution is in the N − 3 dimensional space.
The physical inequality constraints yield a convex set in
that space (a metamer set). Any spectrum in this set is a
metamer, i.e., projects to form the same XYZ. However,
we cannot apply this approach for our device without further
modifications as eight out of 10 LED channels in the RS-5B
illuminator manifest intensity dependent peak-wavelength
shifts.

In this paper, we model each of these eight channels using
linear models at several intensity bands. The LEDs that suffer
the most severely from this phenomenon are modeled using a
higher number of intensity bands than those for which the
problem is less significant. Next we calculate the metamer
sets for every LED channel intensity band combination. Thus
for a given target XYZ, we calculate the metamer set for each
set of intensity ranges for all our lights. The final metamer set
(which is generally nonconvex) is the union of the individually
calculated metamer sets. As is discussed later, the number of
combinations we use, and which we determined empirically,
was 1944.

Once we have calculated the metamer set of lights that
project to the same XYZ, it is a simple matter to find illumi-
nants with given secondary properties. Indeed, colored ob-
jects tend to look most faithful to their appearance under
natural illuminants when the metameric light chosen as a sub-
stitute has a smooth spectrum. Using optimization techniques
such as quadratic programming [5], it is a simple matter to
calculate the smoothest metamer or indeed the one that is
least smooth. We might also calculate the light that generates
the desired target XYZ that has least total power.
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The paper is organized as follows. Section 2 gives the back-
ground information related to the calculation of metamer sets.
Section 3 describes the Gamma Scientific RS-5B illuminator
that we experiment with in this work. This is followed in Sec-
tion 4 by the proposition of the metamer set calculation for the
general case of an intensity independent set of light sources.
In Section 5, we expand this method and address the problem
of intensity dependent peak-wavelength shift. Next we expand
the notion of the metamer set by defining the illuminator nor-
malized metamer set that is the set of spectra producing a
certain CIE xy chromaticity. In Section 6, we show how to
calculate this normalized metamer set for intensity dependent
illuminators. And finally, we present the algorithm for choos-
ing the smoothest and the least smooth spectrum from the
illuminator metamer set. We conclude in the final section
of the paper.

2. BACKGROUND
Color formation can be described as a system of three linear
equations that maps surface reflectances to observer
responses, e.g., CIE XYZ tristimulus values:

χ1 �
Z
ω
R�λ�E�λ�X1�λ�dλ; (1)

χ2 �
Z
ω
R�λ�E�λ�X2�λ�dλ; (2)

χ3 �
Z
ω
R�λ�E�λ�X3�λ�dλ; (3)

X1�λ� � X�λ�; X2�λ� � Y �λ�; X3�λ� � Z�λ�:

Here, R�λ� denotes a surface reflectance, E�λ� the illuminant
spectral power distribution, Xi�λ� the three functions describ-
ing the observer, e.g., the CIE 1931 Standard Observer [2], χi
the observer response, and ω the visible spectrum. These can
be written as one equation using vector notation, where χ̄ is a
3-vector of observer responses:

χ̄ �
Z
ω
R�λ�E�λ�X̄�λ�dλ: (4)

We can replace integration with the Riemann sum [6] by
choosing the number of sampling points within ω:

χi �
X
j

xi;jejrjΔλ;

which can be written in matrix notation as in [7]:

χ̄ � XTD�ē�r̄: (5)

Here the surface reflectance and the illuminant spectrum
are q × 1 vectors and are denoted as r̄ and ē, respectively.
The three observer spectral sensitivities are also q × 1 vectors
and are placed in the q × 3 matrix X. The matrix transpose is
denoted with T , and D�� is an operator transforming a q × 1
vector into a diagonal q × q matrix such that the diagonal
element �i; i� corresponds to the ith vector element.

There is an infinite set of reflectances that can produce the
same XYZ response. These reflectances are called metamers
and can be calculated by inverting the color formation equa-
tions. In [3], Finlayson and Morovic proposed a method for
calculating this metamer set.

Finlayson and Morovic begin by representing a reflectance
spectrum as a sum of k < q basis functions. The reflectance
basis is found using characteristic vector analysis [8].
Although there is not a single correct choice for k, the approx-
imations that use between five to 12 basis functions are usu-
ally considered accurate enough for most applications [9–12].
The linear model representation of reflectance r̄ can be
written as

r̄ � Bσ̄; (6)

where B is the q × kmatrix of basis functions and σ̄ is the k × 1
vector of basis function weights.

The color formation is then simplified by adoption of
Maloney’s lighting matrix ΛT � XTD�ē�B, which allows us
to write

χ̄ � ΛT σ̄: (7)

Then, finding the metamer set amounts to inverting Eq. (7),
which is an underdetermined system of three linear equations
with k unknowns. The solution space of that system is k − 3
dimensional and is found as the sum of two components:

σ̄ � σ̄p � σ̄0; (8)

where σ̄p is the particular solution to

χ̄ � ΛT σ̄p; (9)

and σ̄0 is the solution to the corresponding homogeneous sys-
tem and is also called the metameric black solution [13,14]:

0̄ � ΛT σ̄0: (10)

Many particular solutions might be chosen; for example, we
could choose σ̄ to be in the row space of Λ:

Fig. 1. Spectra of one of the LEDs for 10 intensities, ranging from the
0.1 of the maximum intensity to the maximum.
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σ̄p � Λ�ΛTΛ�−1χ̄: (11)

Substituting σ̄ defined above in Eq. (7) clearly returns the
desired XYZ tristimulus value.

Finlayson and Morovic define the metamer set M�χ̄� as

M�χ̄� � fσ̄jσ̄ � σ̄p � σ̄0∶ΛT σ̄ � χ̄g: (12)

Solving for the metameric black component amounts to find-
ing a k − 3 dimensional basis Λ0, which is orthogonal to
Λ (ΛT

0 Λ � 0̄). There are many ways this can be done.
Let us begin by defining the orthogonal projector matrix of

Λ, which is defined as P�Λ� � Λ�ΛTΛ�−1ΛT [15]. A projector
has the property that if a vector v̄ is in the space spanned by
the columns of Λ then P�Λ�v̄ � v̄. In fact, more generally,
P�Λ�v̄ is the vector in the span of Λ, which is closest to v̄.
It follows then that v̄ − P�Λ�v̄ is that part of v̄, which is
orthogonal to the space spanned by Λ. That is,
P�Λ0� � I − P�Λ�, where I denotes the identity matrix.

Because we are representing reflectances with k degrees of
freedom, it follows that the null space projector P�Λ0� is a k ×
k matrix that must have rank k − 3. Thus, if we find k − 3
vectors from the columns of P�Λ0�, which are linearly inde-
pendent (e.g., by casting out [16]), then we will have found
the complete set of reflectances (the metameric black reflec-
tances) that integrate to 0:

σ̄0 � Ψᾱ; (13)

where ᾱ denotes any �k − 3� × 1 vector of weights scaling
basis Ψ.

Assuming a general linear model of reflectance, we now
have complete characterization of the set of all reflectances
that integrate to form a single XYZ. However, this set will
contain reflectances that are not physically realizable.

In the context of Finlayson and Morovic’s work, physical
realizability incorporates the idea that reflectances—and later
illuminants, too—are naturally bounded. They cannot reflect
less than 0% of the incident light, and they cannot reflect more
than 100%. We write boundedness as

P � fσ̄jBσ̄ ≥ 0̄∧Bσ̄ ≤ 1̄g; (14)

where 1̄ and 0̄ are q × 1 vectors of ones and zeros, respec-
tively.

Next Finlayson and Morovic define the constrained
solution as the intersection [17]

M�χ̄�∩P: (15)

In order to impose the constraint P onM�χ̄�, we substitute
Eqs. (8) and (13) into the reflectance positivity constraint
from Eq. (14) and obtain

B�σ̄p �Ψᾱ� ≥ 0̄; (16)

which can be expressed as an inequality of ᾱ:

BΨᾱ ≥ −Bσ̄p: (17)

Analogously, we form the second set of inequalities
describing the upper bound on the reflectance values:

BΨᾱ ≤ 1̄ − Bσ̄p: (18)

While these bounding constraints are easy to write down,
they make calculating the metamer set much harder. Without
boundedness, calculating the metamer set can be achieved us-
ing the relatively simple tools of linear algebra. Each inequal-
ity (there are 2q of these) in effect forces the metamers
(vectors in k dimensional space) to one side of a half-space.
Our 2q constraints define 2q half spaces, and their intersection
is not a simple linear space. Rather, it will form a bounded
convex region that may be delimited by many more than 2q
vertices [18]. However, using tools such as Qhull [19] and
the duality transform of Shamos and Preparata [20], the final
metamer set is readily computed.

3. GAMMA SCIENTIFIC RS-5B
ILLUMINATOR
The illuminator system we work with has been manufactured
by Gamma Scientific [21] and consists of a 1 m integrating
sphere and six RS-5B spectrally programmable light sources
(see Figs. 2 and 3). The system includes real-time optical feed-
back, which allows for linear brightness control. The RS-5B
optical heads (each head contains all LED types) can be con-
trolled either manually through their back panels or using the
RS-5B Control Panel desktop software. This software uses a
simple command protocol built on top of RS-232 ports to com-
municate with all six units. The RS-5B Control Panel is inte-
grated with the SynthiColor software, which further enhances
its utility by providing interactive spectral and colorimetric
programming.

Each of the six optical heads located on the perimeter of
the integrating sphere contains 10 LED channels. Eight of
these LED channels are different narrowband sources, and
the remaining two are the identical yellow phosphor broad-
band LED channels. The latter were incorporated into the
RS-5B due to the difficulties in obtaining the narrowband
LEDs operating in this part of the spectrum. The spectra of
the LEDs at their maximum intensity can be seen in Fig. 4.
Note that there are only nine spectra in this figure, as we plot-
ted only one spectrum of the two identical yellow phosphor
channels and doubled it.

The characterization of the spectral shape and luminosity-
drive current relationships of the LED channels, and the radio-
metric calibration of the LED channel outputs was performed
by Gamma Scientific using standards calibrated by the
National Institute of Standards and Technology (NIST). The

Fig. 2. RS-5B optical heads mounted onto the 1 m integrating sphere.
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luminance measured through the standard aperture for all
LED channels set to max was 745 cd∕m2.

The LED sources exhibit an intensity (drive current) depen-
dent peak-wavelength shift [22]. All but one (yellow phosphor)
LEDs manifest this behavior. As Figs. 1 and 5 illustrate for one
LED channel (channel 5), as the intensity increases, the peak
wavelength shifts toward the shorter wavelengths. We found
that, even though the spectrum shifts, the variation of all spec-
tra may be captured by a 2D linear model, discovered using
principal component analysis. Figure 6 illustrates the outputs
of this model for channel 5, plotting in a 2D space the coor-
dinates of each spectrum shown in Fig. 1. That the resulting
line is curved is indicative of a changing spectral shape along
with a changing intensity.

In Fig. 7, we show the u’v’ chromaticity diagram where we
marked the locations of the individual LEDs at 10 different
intensities by red crosses. We can see that the markers can
be divided into nine clusters corresponding to the nine
LED types. It is also apparent that the largest chromatic shifts
occur for the green lights followed by the blue lights. The
shifts in the red end of the spectrum are the smallest and,
interestingly, are due to the different LED material in the op-
posite direction (as the intensity decreases they tend toward
the shorter wavelengths). It is also clear that there is no chro-
matic shift for the one special LED, the yellow phosphor. In the next two sections, we will present the metamer set

algorithms for the two types of LED illuminators: first, for
those that allow for linear scaling of their channels and,
second, for those that exhibit the above “spectral shifting”
phenomenon.

4. ILLUMINATOR METAMER SET: A BASIC
ALGORITHM
In this section, we discuss how to calculate the metamer set
for an illuminator comprising the set of distinct sources. Here
we will assume linear scaling of the light sources. First we
rearrange the color formation equation:

χ̄ � XTD�r̄�ē: (19)

The spectrum of illuminant ē is created as the sum of L lin-
early independent light source spectra. Analogously to the
earlier reflectance spectrum decomposition, this is also a
linear model representation. Unlike the reflectance linear
model, however, where the choice of basis functions is arbi-
trary within a certain range, the number of illuminant basis

Fig. 3. RS-5B illuminating the viewing cabinet through the
34 × 68 cm aperture.

Fig. 4. Spectra of nine LEDs in RS-5B illuminator at their maximum
intensity.

Fig. 5. Spectra from Fig. 1 after normalization.

Fig. 6. First versus second principal component of the 10 LED
spectra from Fig. 1 for channel 5. The 10 plotted points correspond
to the 10 LED spectra of increasing intensities (from left to right).
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functions is predetermined by the number of the physical light
sources. The linear model representation of the illuminant
spectrum ē can be written as

ē � Cσ̄; (20)

where C is the q × L matrix of basis functions (spectra of
distinct physical sources) and σ̄ is the L × 1 vector of basis
function weights.

The adoption of the ΛT � XTD�r̄�C matrix allows us to
write the color formation in the identical form to Eq. (7):

χ̄ � ΛT σ̄: (21)

Then finding the illuminator metamer set proceeds analo-
gously to the Finlayson and Morovic method, as it amounts
to inverting Eq. (21). This is an underdetermined system of
three linear equations with L unknowns. The solution space
of that system is L − 3 dimensional and is found as the
sum of two components given by Eq. (8). Furthermore, the
illuminator metamer set M�χ̄� is given by the Eq. (12). And,
finally, the particular solution σ̄p and the metameric black sol-
ution σ̄0 can be found analogously, according to the Eqs. (11)
and (13).

There is a difference in applying the physical realizability
constraints. The illuminator basis functions C are already
physical spectra at their maximum intensity. Therefore the
weights of this linear model cannot be less than zero or
greater than one for any basis function. We write down these
constraints in the form of linear inequalities and denote the
space of physically realizable solutions as

PI � fσ̄jσ̄ ≥ 0̄∧ σ̄ ≤ 1̄g; (22)

where 1̄ and 0̄ are L × 1 vectors of ones and zeros,
respectively.

The constrained solution is defined as the intersection

M�χ̄�∩PI : (23)

The imposition of the constraint PI onM�χ̄� proceeds sim-
ilarly to the constraint P from Section 2. We substitute Eqs. (8)

and (13) into the illuminant weight positivity constraint from
Eq. (22) and obtain

σ̄p �Ψᾱ ≥ 0̄; (24)

which we can express as an inequality of ᾱ:

Ψᾱ ≥ −σ̄p: (25)

Analogously, we form the second set of inequalities
describing the upper bound on the weights of the illuminant
linear model:

Ψᾱ ≤ 1̄ − σ̄p: (26)

The positivity and upper bound illuminant weight con-
straints provide two constraints per individual light source
providing 2L inequalities. Similarly to the reflectance metamer
set solution, these inequalities constrain the solution in the
space of ᾱ scaling of the metameric black basisΨ. The numeri-
cal solution can be obtained using the same mathematical
tools that were described in Section 2.

5. ILLUMINATOR METAMER SET: A
COMPLEX ALGORITHM
The algorithm for calculating the illuminator metamer set
described in the previous section applies to the number of il-
luminator setups that use either LEDs or other light sources.
The only requirement is that the intensity adjustment of each
component light source is linear and preserves the shape
of the spectrum. As shown in Section 3, the RS-5B and in gen-
eral the LED illuminators that use the drive current for adjust-
ing the intensity of the LEDs do not fall into this category.
Therefore the chromatic shift phenomenon must be taken into
account in order to calculate the metamer sets for such
illuminators.

Let l denote the LED channel index l � 1; 2;…; L. We pro-
pose to model the LED shifting property using interpolation of
the spectra measured for Kl predefined intensities (weights)
w̄l. Note, different channels can be modeled by using a differ-
ent number of interpolation points; hence, index l inKl and w̄l.
Also let q × 1 vector γ̄l;k denote the measured spectrum of the
l-th channel at intensity wl;k, where k ∈ f1;…; Klg.

Then the lth channel at a certain intensityw can bemodeled
as a convex combination of the spectrum measured at some
lower than w intensity wl;k−1 and higher than w intensity wl;k:

γ̄l�w� �
�
γ̄l;k�1 − a� � γ̄l;k−1a; if k ∈ f2;…; Klg
γ̄l;ka; if k � 1

; (27)

where 0 ≤ a ≤ 1 and wl;k−1 ≤ w ≤ wl;k.
In Eq. (27), the range of intensities for which we can model

the channel spectrum is determined by the w̄l�k − 1� and w̄l�k�
boundary intensities. To denote this intensity band, we will
use the index k as k − 1 is implicit and hence not needed. Thus,
for the above equation, we can say thatw is in the kth intensity
band of the lth channel. Then let k̄ denote the L vector of in-
dices that determine the intensity bands for all L channels.

Fig. 7. Outline of the u’v’ chromaticity diagram: (blue) location of
LED lights for different intensities; (red x) RS-5B gamut.
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Next we define Γ�k̄� as

Γ�k̄� �

2
666664

γ̄T1;k̄�1�−1 − γ̄T1;k̄�1�
γ̄T2;k̄�2�−1 − γ̄T2;k̄�2�

..

.

γ̄TL;k̄�L�−1 − γ̄TL;k̄�L�

3
777775

(28)

and Δ�k̄� as

Δ�k̄� �

2
666664

γ̄T1;k̄�1�
γ̄T2;k̄�2�

..

.

γ̄TL;k̄�L�

3
777775
: (29)

Note that Γ�k̄� and Δ�k̄� assume that all elements of k̄ are
greater than 1. If any l-th element of k̄ equals 1, then its cor-
responding l-th row in matrix Γ�k̄�will be γ̄Tl;1; in matrix Δ�k̄�, it
will be 0̄T .

Now we can write the interpolation model of the illumina-
tor spectrum ē for a set of intensity bands defined by k̄ as

ē � Γ�k̄�ā� Δ�k̄�: (30)

Vector ā determines the convex combination for each LED
channel, and thus all its L elements must not be less than 0 and
greater than 1.

We are substituting ē into Eq. (19), which yields

χ̄ − XTD�r̄�Δ�k̄� � XTD�r̄�Γ�k̄�ā: (31)

Let χ̄ 0 � χ̄ − XTD�r̄�Δ�k̄� and Λ0T � XTD�r̄�Γ�k̄�. Then the
above equation takes the familiar form of Eq. (21):

χ̄ 0 � Λ0T ā: (32)

Note that substitution of ē into Eq. (19) means moving from
the interpolation of the LED spectra at given intensity ranges
into the interpolation of the tristimulus values of the LEDs at
these intensity ranges. This also teaches that the tristimulus
values of the LED spectra at those chosen intensities need
to be calculated only once.

Finding the metamer set for the set of intensity bands de-
fined by k̄ proceeds analogously to the previous section:

M�χ̄; k̄� � fājā � āp � ā0∶Λ0T ā � χ̄ 0g: (33)

The physical realizability constraints, which can be consid-
ered here as intensity band constraints, are expressed as a set
of inequalities on ā:

P 0
I � fājā ≥ 0̄∧ ā ≤ 1̄g: (34)

The constrained solution C�χ̄; k̄� is defined as the
intersection

C�χ̄; k̄� � M�χ̄; k̄�∩P 0
I ; (35)

which can be expressed as the two sets of inequalities corre-
sponding to Eqs. (25) and (26):

Ψ0ᾱ0 ≥ −āp; (36)

Ψ0ᾱ0 ≤ 1̄ − āp; (37)

where L × L − 3 matrix Ψ0 is the L − 3 dimensional basis
orthogonal to Λ0.

The solution set expressed using ᾱ0 scalings of Ψ0 can be
formulated in terms of ā and then as intensity scalings w̄ of
individual LED channels using the equation below:

wl �
�
wl;k�1 − al� �wl;k−1al; if k ∈ f2;…; Klg
wl;kal; if k � 1

: (38)

So far we showed how to calculate the metamer set for one
set of L intensity bands [Eq. (35)]. Clearly the final metamer
set is the union of the metamer sets calculated for all intensity
band permutations:

F �χ̄� � ⋃
N

i�1

C�χ̄; k̄i�: (39)

The number of permutations N and hence the number of
metamer sets that need to be calculated equals to ΠL

l�1Kl.
Hence for an L channel illuminator with each channel divided
into K intensity bands, one needs to calculate KL meta-
mer sets.

The above calculations show the number of metamer sets
that need to be calculated can be large, and this implies a sig-
nificant computational overload. However, in Section 8 we
will show that a relatively coarse interpolation of the intensity
bands suffices, for our purposes, to achieve metamer sets with
low error. Moreover, for many combinations of the intensity
bands, the metamer sets are empty, and this reduces the
amount of calculations even further.

6. ILLUMINATOR NORMALIZED
METAMER SET
It is clear that for an illuminator that allows for linear channel
scaling, i.e., fulfilling the assumption of the basic algorithm,
the shape of the spectrum does not change when the channel
weights are scaled by some factor β. Thus, as long as after
multiplication by this factor the channel weights remain be-
tween 0 and 1, the chromaticity of the illuminant remains
the same. This is obviously not the case for the RS-5B illumi-
nator discussed here. It is this observation that leads us to ask
the following question: what is the set of all illuminator spec-
tra that produce some chromaticity xy? We will call this set
the illuminator normalized metamer set. Below, we will show
that this set can be calculated using the same interpolation
approach that we used in the complex algorithm.

Recall Eq. (19). In the current scenario, we modify this
equation by the addition of the free parameter β. Thus we
are looking for such spectra ē, which induce the color
response βχ̄ for β > 0:

βχ̄ � XTD�r̄�ē: (40)

We substitute Eq. (30) into Eq. (40):

βχ̄ − XTD�r̄�Δ�k̄� � XTD�r̄�Γ�k̄�ā: (41)
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We move the free parameters β and ā onto the left side of
the equation:

XTD�r̄�Γ�k̄�ā − βχ̄ � −XTD�r̄�Δ�k̄�: (42)

Next we put the free parameters into a single vector:

�
XTD�r̄�Γ�k̄�; −χ̄

�� ā
β

�
� −XTD�r̄�Δ�k̄�: (43)

We will denote the first matrix in the above equation as Λ00T ,
the second as ā00, and the right side of the equation as χ̄ 00. Then
the equation takes the familiar form of Eq. (21):

Λ00T ā00 � χ̄ 00: (44)

Finding the normalized metamer set for the set of intensity
bands defined by k̄ proceeds analogously to the previous
section:

MN �χ̄; k̄� � fā00jā00 � ā00p � ā000∶Λ00T ā00 � χ̄ 00g: (45)

Note that the solution space of Eq. (44) is L − 2 dimensional
as opposed to the earlier L − 3 dimensional solution of
Eq. (32).

The physical realizability constraints are the same as
in Eq. (34).

The constrained solution CN �χ̄; k̄� is defined as the intersec-
tion ofMN �χ̄; k̄� and P0

I . Again, it can be expressed as the two
sets of inequalities. These inequalities enforce the constraints
on the first L elements of the solution L� 1 element vector ā00,
i.e., L-vector ā:

Ψ00ᾱ00 ≥ −āp; (46)

Ψ00ᾱ00 ≤ 1̄ − āp: (47)

Matrix Ψ00 is formed from the first L rows of the L� 1 ×
L − 2 matrix being the L − 2 dimensional basis orthogonal
to Λ00 and āp contains first L elements of L� 1 − vector ā00p.

The solution set expressed using ᾱ00 scalings of Ψ00 can be
formulated in terms of ā and then as intensity scalings w̄ of
individual LED channels as in Eq. (27). The final normalized
metamer set is the union of the normalized metamer sets
calculated for all intensity band permutations:

FN �χ̄� � ⋃
N

i�1

CN �χ̄; k̄i�: (48)

7. METAMER SET SMOOTHEST SPECTRUM
It is often required to select an element of the metamer set that
meets certain characteristics of which spectrum smoothness
is an important example. Here we propose an algorithm for
selecting the smoothest or the least smooth member of the
metamer set. The algorithm is based on the numerical method
of estimating the smoothest reflectance proposed by Li and
Luo [23].

The measure of smoothness of the spectrum E�λ� can be
expressed as

Z
ω

�
dE
dλ

�
2
dλ ≈ ‖Gē‖2∕Δλ; (49)

where G is an q − 1 × q matrix and is given by

G �

2
6664
−1 1 0 � � � 0

0 −1 1 ..
.

..

. . .
. . .

.
0

0 � � � 0 −1 1

3
7775; (50)

and ē is a vector sampling spectral function E�λ� every Δλ.
Since Δλ is a constant, it can be removed from the optimi-

zation. Then finding the smoothest ē amounts to performing
the following minimization:

min
ē
‖Gē‖2: �51�

Let us place the p spectra at the vertices of the metamer set
convex hull in the columns of matrix M. We know that any
convex combination of the metamer set vertex spectra produ-
ces an element of the metamer set. Then, in the above mini-
mization, we can substitute ē for the matrixM column convex
combination Mā and rewrite the optimization as

minimize
ā

‖GMā‖2

subject to 0̄ ≤ ā ≤ 1̄∧
Pp

i�1 ai � 1:
�52�

This type of optimization problem is called quadratic pro-
gramming and can be solved using standard methods [24].

For the metamer set obtained from the basic algorithm,
selecting the smoothest spectrum amounts to applying this op-
timization directly. However, for the metamer set defined as
the union of the metamer subsets obtained with the complex
algorithm, first we need to apply the optimization for each of
the metamer subsets obtaining the smoothest metamer candi-
dates and finally choose the smoothest spectrum from among
these candidates.

8. RESULTS
In previous sections, we developed the theory to solve for the
illuminator metamer set. Here we provide the reader with
some examples of this theory. The illuminator for which
we will create the metamer sets will be the aforementioned
Gamma Scientific RS-5B.

Initially we calculate the illuminator metamer sets with the
basic algorithm for two illuminants: D65 and A. The illumina-
tor has nine distinct channels, which are measured at their
maximum intensity (see also Fig. 4) and placed in matrix
C. Given the CIE XYZ spectral sensitivities X, a uniform per-
fect white reflectence r̄, and the above defined C, we have
defined the lighting matrix Λ. Following the steps of the basic
algorithm to solve for the metamer set, we first find the par-
ticular solution σ̄p and metameric black basisΨ. The former is
plotted in Fig. 8 for the D65 and Ametamers. The latter are the
same for both illuminants and are plotted in Fig. 9. There are
six metameric black basis vectors as L � 9, and hence the sol-
ution space is L − 3 � 6 dimensional. Note that both particular
solutions (particularly visible for illuminant A) and the
metameric black basis functions have negative weights
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(or above 1) for some LED channels and hence are not
physically realisable.

Then the metamer set M�χ̄� contains elements, which are
the sum of the particular solution σp and a linear combination
of the metameric black basis Ψᾱ, such that ᾱ is constrained to
produce a physically realizable illuminant. In Fig. 10 we plot
those spectra metameric to the illuminant A (at 246 cd∕m2),
which correspond to the vertices of the metamer set convex
hull. Analogical plots for illuminant D65 can be seen in Fig. 11.

Earlier, we noted that a basic algorithm based on a simple
linear combination of the LED channels does not provide an
accurate model of the RS-5B illuminator output. It is then
appropriate to quantify the error of this algorithm. The maxi-
mum output luminance of the system occurs when all chan-
nels are set to maximum and equal 745 cd∕m2. Obviously, in
this situation, i.e., at 745 cd∕m2, the basic model is errorless
and produces only one illuminant chromaticity. In order to be
able to produce a range of chromatic lights as well as allow for
sizeable metamer sets, the luminance requirements need to be
lowered. In Figs. 10 and 11, we illustrate the two metamer sets
for illuminants A and D65 at 246 cd∕m2. We calculated the
colorimetric errors for all the spectra at vertices of these
two metamer sets as well as for the corresponding two meta-
mer sets at 123 and 492 cd∕m2. The errors were calculated

using the full interpolation model of all LED channels. This
model utilizes LED spectra measured at 11 different inten-
sities: 0.1 to 1 with a 0.1 step and an additional measurement
at 0.01 of maximum intensity. In Fig. 12, we plot the locations
of the D65 and A illuminants in the CIE chromaticity diagram
and the extent of the errors at the vertices of the four out of six
aforementioned metamer sets. The error convex hulls of the
two metamer sets at 492 cd∕m2 are not shown, as they are so
small that they would not be visible at this figure. It is clear
that the errors are significant and increase as the luminance of
the metamer sets decrease. This has been expected as the
basic model is based on the measurements of the channels
at maximum intensity, and the lower the intensity of the chan-
nels the more significant the peak wavelength shift induced
colorimetric errors.

These errors are also expressed as mean ΔE errors in the
CIELAB color space [25] and are shown in Table 1. Here, apart
from the mean errors at vertices of the metamer sets, we also
show the mean errors at 50 random convex combinations of
these vertices. Accordingly with the earlier graphic illustra-
tion, the errors become significant as the luminance of the
metamer sets decrease.

The same table also contains the corresponding errors for
the complex algorithm, which were obtained as follows. First
we need to establish the interpolation bands for different LED
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Fig. 8. Illuminant A and D65 metamer particular solutions (at
246 cd∕m2).
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Fig. 9. Metameric black (orthogonal to Λ) basis spectra.
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Fig. 10. Illuminant A metamers (at 246 cd∕m2).
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Fig. 11. Illuminant D65 metamers (at 246 cd∕m2).
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channels. In Section 5, we mentioned that these can be differ-
ent for different channels. We cannot use as many bands as we
used for verification of the results since having 11 interpola-
tion bands for each of the nine channels would result in 119

metamer sets, which would take too long to calculate and
later process. Therefore it is important to lower this number
while attempting to maintain a high degree of accuracy. In our
case, we decided to divide the first five LED channels (starting
from the shortest wavelength, see Fig. 4) into three interpo-
lation bands split at intensities: 0.2, 0.5, and 1. The sixth chan-
nel is the broadband yellow phosphor, which does not exhibit
the intensity dependent peak-wavelength shift and hence is
represented as in the basic algorithm, i.e., only at maximum
intensity. The remaining three channels at the long wave-
length end of the spectrum are modeled using two interpola-
tion bands, each split at intensities 0.3 and 1. The reason for
using a smaller number of interpolation bands here is the
different technology of the LEDs, which, as shown in Fig. 7,
results in significantly smaller peak wavelength shifts for
these three channels. Hence the number of interpolation band
permutations is N � 3523 � 1; 944. Table 1 teaches that a rel-
atively coarse interpolation of the channel intensities results
in the metamer sets demonstrating the level of accuracy that
should be adequate for most applications.

Figure 13 contains the spectra at the vertices of the meta-
mer set calculated for one of the 1944 interpolation bands. All
spectra are contained between this particular band’s upper
and lower envelopes. The envelopes are the sums of measured
spectra at the lower end of all bands (lower envelope) and the

upper end of the bands (upper envelope). The analogous,
although for a different set of interpolation bands, result
for the D65 metamer set can be seen in Fig. 14. Both metamer
sets were calculated for the same luminance, 246 cd∕m2.

As to the error of the complex algorithm (see two bottom
rows in Table 1), we can see a significant improvement over
the basic algorithm. The errors do not depend on the lumi-
nance of the metamer set, and, in the majority of cases, the
mean CIELAB errors are below 1ΔE.

An alternative look at the errors induced by the basic and
complex algorithms would be to look at the metamer mis-
match volumes [26,27] resulting from these two algorithms.
In our scenario, metamer mismatch volumes arise when the
perfect white reflectance illuminated by the lights from the
metamer set is replaced by any nonuniform reflectance. Then
the illuminant spectra coming from a metamer set cease to
induce a unique sensor response. Figure 15 contains the illus-
tration of the 2Dmetamer mismatch volumes for the basic and
complex algorithms after the metamer sets were projected to
reflectance no. 4 (green patch) from the Macbeth Color-
Checker Chart. We can see that the erroneous metamer sets
obtained using the basic algorithm result in a significantly
different metamer mismatch volume than the union of the
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Fig. 12. Illuminant D65 and A CIE 1931 chromaticities, x; solid and
dashed lines represent the convex hulls of metamers at vertices of the
metamer sets for 246 and 123 cd∕m2, respectively.

Table 1. Mean ΔE Errors Calculated for All Vertices

of the Metamer Sets (v) and for Random Convex

Combinations of These Vertices (cc) for Basic and

Complex Algorithms at Three Luminance Levels

123 cd∕m2 246 cd∕m2 492 cd∕m2

Illuminant Model v cc v cc v cc

A Basic 7.8 10.1 5.0 8.0 1.7 1.7
D65 Basic 8.3 12.2 3.8 8.5 1.7 4.6
A Complex 0.6 1.5 0.4 0.8 0.1 0.2
D65 Complex 0.5 0.8 0.5 0.7 0.4 0.6

400 450 500 550 600 650 700
0

0.2

0.4

0.6

0.8

1

1.2

Fig. 13. Illuminant A metamers (at 246 cd∕m2) calculated for one of
the interpolation bands. The thick red and blue lines denote the lower
and upper envelopes of this particular interpolation band.
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Fig. 14. Illuminant D65 metamers (at 246 cd∕m2) calculated for one
of the interpolation bands.
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relatively precise metamer sets calculated for all interpolation
band permutations using the complex algorithm.

In Fig. 16, we can see the spectra at the vertices of the
illuminant A normalized metamer set calculated for one of
the interpolation bands with the algorithm presented in Sec-
tion 6. The same result for the illuminant D65 can be see in
Fig. 17. There is a clear difference between these two sets
of spectra and those in Figs. 13 and 14. We can see that, as
expected, the spectra in the normalized sets vary in terms
of intensity. For obvious reasons, the normalized metamer
sets are much larger than the metamer sets calculated for
some fixed luminance. In these sets of experiments, for the
illuminant A the metamer sets were nonempty in 221 (normal-
ized) and 121 (fixed at 246 cd∕m2) of 1944 interpolation
bands. The same figures for D65 were 1143 and 664.

Finally, we calculated the smoothest and the least-smooth
spectra metameric to the illuminants D65 and A at 246 cd∕m2

(see Fig. 18). Each spectrum in this figure was obtained by
performing a sequence of optimizations as described in
Section 7 for each of the subsets of the metamer set resulting

from the complex algorithm and choosing the one candidate
spectrum that meets the objective.

9. CONCLUSIONS
In this paper, we present methods for describing the metamer
sets of illuminators comprising several light sources. Unlike
the earlier work of Finlayson and Morovic, which aimed at
inverting the color formation equation with respect to the re-
flectance spectrum, here we are using a similar approach and
invert the color formation equation with respect to the illumi-
nant spectrum. While the algorithms were developed and
tested with a view to be used with a specific LED-based illu-
minator, they can be used for any light source that combines a
number of channels and thus can be described by some linear
model. The basic algorithm can be used for calculating the
metamer sets of light sources that do not exhibit the intensity
dependent channel spectra deformations. Many light sources
fall into this category, e.g., the pulse-width modulation [28]
based LED illuminators. As to the other light sources that
exhibit the aforementioned spectra deformations (such as
the one described in this work), a more complicated complex
algorithm needs to be used. We have shown that a relatively
coarse interpolation of the LED channels used in the complex
algorithm provides an accurate description of the illuminator
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Fig. 15. Illuminant A and D65 (both at 246 cd∕m2) 2D metamer mis-
match volumes for the fourth (dark green) patch from the Macbeth
CC. Thick black lines denote the two volumes calculated with the
basic model, and the color lines denote the subvolumes calculated
with the complex model.
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Fig. 16. Illuminant A normalized metamers calculated for one of the
interpolation bands.
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Fig. 17. Illuminant D65 normalized metamers calculated for one of
the interpolation bands.
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Fig. 18. Smoothest and least smooth illuminant A and D65 metamers
at 246 cd∕m2 [according to the model (solid lines) and measured
(dashed lines)].
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metamer set. Moreover, for this type of illuminator, we have
defined the normalized metamer set describing all spectra
physically realizable by the device that produce a given chro-
maticity response. Despite the coarse interpolation, the num-
ber of metamer sets that need to be calculated for the
nonlinear LED illuminators may be significant, particularly
if the number of such LED channels in the illuminator is
higher than in the equipment considered in this paper. Fur-
ther, in practice, although it appears that the number of meta-
mer sets is large, most of them are empty (and so overall
computational cost is reduced). Finally, we note that in prac-
tice, the choice of the LED channel intensity bands will de-
pend on the number of LED channels, as well as their
nonlinear properties, and will require some experimentation.
We also presented an algorithm that selects the smoothest or
the least smooth metamer from within the metamer sets
obtained by either the basic or the complex metamer set
algorithms.
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