893 research outputs found

    Robust Legged Robot State Estimation Using Factor Graph Optimization

    Full text link
    Legged robots, specifically quadrupeds, are becoming increasingly attractive for industrial applications such as inspection. However, to leave the laboratory and to become useful to an end user requires reliability in harsh conditions. From the perspective of state estimation, it is essential to be able to accurately estimate the robot's state despite challenges such as uneven or slippery terrain, textureless and reflective scenes, as well as dynamic camera occlusions. We are motivated to reduce the dependency on foot contact classifications, which fail when slipping, and to reduce position drift during dynamic motions such as trotting. To this end, we present a factor graph optimization method for state estimation which tightly fuses and smooths inertial navigation, leg odometry and visual odometry. The effectiveness of the approach is demonstrated using the ANYmal quadruped robot navigating in a realistic outdoor industrial environment. This experiment included trotting, walking, crossing obstacles and ascending a staircase. The proposed approach decreased the relative position error by up to 55% and absolute position error by 76% compared to kinematic-inertial odometry.Comment: 8 pages, 12 figures. Accepted to RA-L + IROS 2019, July 201

    GUARDIANS final report

    Get PDF
    Emergencies in industrial warehouses are a major concern for firefghters. The large dimensions together with the development of dense smoke that drastically reduces visibility, represent major challenges. The Guardians robot swarm is designed to assist fire fighters in searching a large warehouse. In this report we discuss the technology developed for a swarm of robots searching and assisting fire fighters. We explain the swarming algorithms which provide the functionality by which the robots react to and follow humans while no communication is required. Next we discuss the wireless communication system, which is a so-called mobile ad-hoc network. The communication network provides also one of the means to locate the robots and humans. Thus the robot swarm is able to locate itself and provide guidance information to the humans. Together with the re ghters we explored how the robot swarm should feed information back to the human fire fighter. We have designed and experimented with interfaces for presenting swarm based information to human beings

    Synchronous wearable wireless body sensor network composed of autonomous textile nodes

    Get PDF
    A novel, fully-autonomous, wearable, wireless sensor network is presented, where each flexible textile node performs cooperative synchronous acquisition and distributed event detection. Computationally efficient situational-awareness algorithms are implemented on the low-power microcontroller present on each flexible node. The detected events are wirelessly transmitted to a base station, directly, as well as forwarded by other on-body nodes. For each node, a dual-polarized textile patch antenna serves as a platform for the flexible electronic circuitry. Therefore, the system is particularly suitable for comfortable and unobtrusive integration into garments. In the meantime, polarization diversity can be exploited to improve the reliability and energy-efficiency of the wireless transmission. Extensive experiments in realistic conditions have demonstrated that this new autonomous, body-centric, textile-antenna, wireless sensor network is able to correctly detect different operating conditions of a firefighter during an intervention. By relying on four network nodes integrated into the protective garment, this functionality is implemented locally, on the body, and in real time. In addition, the received sensor data are reliably transferred to a central access point at the command post, for more detailed and more comprehensive real-time visualization. This information provides coordinators and commanders with situational awareness of the entire rescue operation. A statistical analysis of measured on-body node-to-node, as well as off-body person-to-person channels is included, confirming the reliability of the communication system

    Impromptu Deployment of Wireless Relay Networks: Experiences Along a Forest Trail

    Full text link
    We are motivated by the problem of impromptu or as- you-go deployment of wireless sensor networks. As an application example, a person, starting from a sink node, walks along a forest trail, makes link quality measurements (with the previously placed nodes) at equally spaced locations, and deploys relays at some of these locations, so as to connect a sensor placed at some a priori unknown point on the trail with the sink node. In this paper, we report our experimental experiences with some as-you-go deployment algorithms. Two algorithms are based on Markov decision process (MDP) formulations; these require a radio propagation model. We also study purely measurement based strategies: one heuristic that is motivated by our MDP formulations, one asymptotically optimal learning algorithm, and one inspired by a popular heuristic. We extract a statistical model of the propagation along a forest trail from raw measurement data, implement the algorithms experimentally in the forest, and compare them. The results provide useful insights regarding the choice of the deployment algorithm and its parameters, and also demonstrate the necessity of a proper theoretical formulation.Comment: 7 pages, accepted in IEEE MASS 201

    Doctor of Philosophy

    Get PDF
    dissertationWith increasing wildfire activity throughout the western United States comes an increased need for wildland firefighters to protect civilians, structures, and public resources. In order to mitigate threats to their safety, firefighters employ the use of safety zones (SZ: areas where firefighters are free from harm) and escape routes (ER: pathways for accessing SZ). Currently, SZ and ER are designated by firefighters based on ground-level information, the interpretation of which can be error-prone. This research aims to provide robust methods to assist in the ER and SZ evaluation processes, using remote sensing and geospatial modeling. In particular, I investigate the degree to which lidar can be used to characterize the landscape conditions that directly affect SZ and ER quality. I present a new metric and lidar-based algorithm for evaluating SZ based on zone geometry, surrounding vegetation height, and number of firefighters present. The resulting map contains a depiction of potential SZ throughout Tahoe National Forest, each of which has a value that indicates its wind- and slope-dependent suitability. I then inquire into the effects of three landscape conditions on travel rates for the purpose of developing a geospatial ER optimization model. I compare experimentally-derived travel rates to lidar-derived estimates of slope, vegetation density, and ground surface roughness, finding that vegetation density had the strongest negative effect. Relative travel impedances are then mapped throughout Levan Wildlife Management Area and combined with a route-finding algorithm, enabling the identification of maximally-efficient escape routes between any two known locations. Lastly, I explore a number of variables that can affect the accurate characterization of understory vegetation density, finding lidar pulse density, overstory vegetation density, and canopy height all had significant effects. In addition, I compare two widely-used metrics for understory density estimation, overall relative point density and normalized relative point density, finding that the latter possessed far superior predictive power. This research provides novel insight into the potential use of lidar in wildland firefighter safety planning. There are a number of constraints to widespread implementation, some of which are temporary, such as the current lack of nationwide lidar data, and some of which require continued study, such as refining our ability to characterize understory vegetation conditions. However, this research is an important step forward in a direction that has potential to greatly improve the safety of those who put themselves at risk to ensure the safety of life and property

    Simulation and optimization for an experimental environment to wildfire resource management and planning: firefight project modelling and architecture

    Get PDF
    Firefighting resource management is crucial to contain and extinguish wildfires. Resource optimization in wildfire containment can help to reduce the dangers and risks to both human (firemen and area inhabitants) and natural environment. The use of simulation to predict wildfire evolution combined with optimization techniques can lead to an optimal resource deployment and management to minimize natural and human risks. This article proposes a simulation and optimization architecture; a well-defined data format to represent firefighting resources and an experimental platform to simulate wildfire spread, wildfire containment, resource dispatching and management and resource optimization. The simulation and optimization environment will be tested in the Catalonia region (Spain) in collaboration with Catalan Firefight Department.Peer ReviewedPostprint (author’s final draft

    Source Localization via Near Field Signal Processing

    Get PDF
    This thesis is in support of the Precision Personnel Locator (PPL) project being conducted by Worcester Polytechnic Institute (WPI). The overall goal of the PPL project is to locate firemen and other emergency personnel in buildings using Radio Frequency (RF) techniques. The aspiration is to prevent a tragedy similar to the Worcester Cold Storage fire of 1999. The Mantenna homing wand is a spinoff of the PPL system which uses the Near Field properties of Very Low Frequency (VLF band) waves. The Mantenna has been used to successfully demonstrate the ability to locate targets inside harsh RF environments and other radio opaque environments where normal radiation field based systems have degraded performance, such as commercial, industrial, and apartment buildings. This thesis builds upon the Mantenna rescue device by construction of a transmitter subsystem which is physically smaller than the previous version by redesign of the compact VLF antenna. Additionally, exploitation of the approach used by the Mantenna for homing purposes is explored for full location estimation. This work provides the theoretical background and proof of concept test of a Near Field based location system. Simulation and test results are compared for a minimal configuration involving a single receiver
    • …
    corecore