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ABSTRACT 

 

 

 With increasing wildfire activity throughout the western United States comes an 

increased need for wildland firefighters to protect civilians, structures, and public 

resources. In order to mitigate threats to their safety, firefighters employ the use of safety 

zones (SZ: areas where firefighters are free from harm) and escape routes (ER: pathways 

for accessing SZ). Currently, SZ and ER are designated by firefighters based on ground-

level information, the interpretation of which can be error-prone. This research aims to 

provide robust methods to assist in the ER and SZ evaluation processes, using remote 

sensing and geospatial modeling. In particular, I investigate the degree to which lidar can 

be used to characterize the landscape conditions that directly affect SZ and ER quality. I 

present a new metric and lidar-based algorithm for evaluating SZ based on zone 

geometry, surrounding vegetation height, and number of firefighters present. The 

resulting map contains a depiction of potential SZ throughout Tahoe National Forest, 

each of which has a value that indicates its wind- and slope-dependent suitability. I then 

inquire into the effects of three landscape conditions on travel rates for the purpose of 

developing a geospatial ER optimization model. I compare experimentally-derived travel 

rates to lidar-derived estimates of slope, vegetation density, and ground surface 

roughness, finding that vegetation density had the strongest negative effect. Relative 

travel impedances are then mapped throughout Levan Wildlife Management Area and 

combined with a route-finding algorithm, enabling the identification of maximally-



iv 

efficient escape routes between any two known locations. Lastly, I explore a number of 

variables that can affect the accurate characterization of understory vegetation density, 

finding lidar pulse density, overstory vegetation density, and canopy height all had 

significant effects. In addition, I compare two widely-used metrics for understory density 

estimation, overall relative point density and normalized relative point density, finding 

that the latter possessed far superior predictive power. This research provides novel 

insight into the potential use of lidar in wildland firefighter safety planning. There are a 

number of constraints to widespread implementation, some of which are temporary, such 

as the current lack of nationwide lidar data, and some of which require continued study, 

such as refining our ability to characterize understory vegetation conditions. However, 

this research is an important step forward in a direction that has potential to greatly 

improve the safety of those who put themselves at risk to ensure the safety of life and 

property.  
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INTRODUCTION 

 

 

Wildfire activity has been on the rise throughout much of the western US in 

recent decades (Dennison et al., 2014a; Jolly et al., 2015; Westerling et al., 2006). A 

century of fire suppression causing a buildup of fuels coupled with temperature increases 

and earlier spring snowmelt have resulted in longer fire seasons, with larger, more intense 

and severe fires (Dennison et al., 2014a; Flannigan et al., 2009; Jolly et al., 2015; Miller 

et al., 2009; Westerling et al., 2006; Westerling, 2016). Based on current projections of 

global climate change, these trends are likely to continue, and perhaps even worsen in the 

future (Abatzoglou and Williams, 2016; IPCC, 2013; Liu et al., 2010; Parks et al., 2016). 

Increased wildfire activity is particularly problematic in the wildland-urban interface, 

where rapid development has encroached into fire-prone areas of the western US, 

increasing the risk to civilian lives and properties (Cohen, 2000; Hammer et al., 2009; 

Liu et al., 2015; Martinuzzi et al., 2015; Mell et al., 2017; Radeloff et al., 2005). This 

increased risk, combined with the inherent complexity of fuelbed structure within the 

wildland-urban interface, has resulted in significant increases in fire suppression costs in 

recent decades (Calkin et al., 2014; Gude et al., 2013; Mell et al., 2017). Among the 

many resources available to fire management agencies for fire control, wildland 

firefighters are the most fundamental and important (Pyne, 1996). Thus, with increased 

fire activity, more firefighters are being deployed to protect the lives and assets of 

civilians in the wildland-urban interface and beyond. 
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Wildland firefighting is an arduous profession fraught with complexity and risk. 

Firefighters are tasked with working long hours (up to 24-hour shifts), often in rugged 

terrain, at high altitudes and in hot temperatures (Ruby et al., 2002). The primary task in 

firefighting is to construct a fire line – a continuous strip of land where flammable 

material is removed to expose mineral soil in order to contain and prevent the spread of a 

wildfire (National Wildfire Coordinating Group, 2016). This frequently necessitates 

working in close proximity to the edge of a fire, particularly when engaging in direct and 

parallel attack containment strategies (Cheney et al., 2001). In doing so, firefighters are 

putting themselves at risk of injury or fatality from convective and radiant heat exposure 

and smoke inhalation. Between 1910 and 2015, there were 1099 documented wildland 

firefighter fatalities in the United States (National Interagency Fire Center, 2016). In 

accordance with the highly varied wildland firefighting environment, the causes of death 

are wide-ranging, but the largest fatality category is that of burnovers, entrapments, 

burns, and asphyxiation (BEBA), with 501 total fatalities in that same time frame (46% 

of all fatalities) (National Interagency Fire Center, 2016). Whereas many fatality types 

occur in isolation, such as heart attacks, vehicular accidents, or getting hit by a falling 

tree or snag, BEBA can sometimes occur in large-scale multiple-fatality events. The 

average number of fatalities per BEBA event is 2.73, as compared to, for example, 

aircraft fatalities (1.87) and vehicle fatalities (1.26). Between 1910 and 2015, there were 

10 individual events in which over 10 firefighters perished due to BEBA, including major 

historical fires such as the Great Fire of 1910 (78 fatalities), the Mann Gulch fire of 1949 

(13 fatalities) and the more recent South Canyon fire of 1994 (14 fatalities) and Yarnell 

Hill fire of 2013 (19 fatalities). Burnovers and entrapments are events in which a fire 
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overtakes firefighting personnel due to unforeseen changes in fire behavior and an 

associated inability to utilize suitable safety zones and escape routes (National Wildfire 

Coordinating Group, 2016). As this definition suggests, safety zones and escape routes 

are two critical components of wildland firefighter safety (Alexander et al., 2005; 

Beighley, 1995; Butler, 2014; Butler et al., 2000; Butler and Cohen, 1998; Campbell et 

al., 2017a, 2017b; Dennison et al., 2014b; Fryer et al., 2013; Gleason, 1991; National 

Wildfire Coordinating Group, 2014; Page and Butler, 2017; Rossi et al., 2011; Ruby et 

al., 2003; Zárate et al., 2008).  

A safety zone (SZ) is an area devoid of flammable material where firefighters can 

reterat to in dangerous situations to avoid danger, risk, or injury (Beighley, 1995; 

National Wildfire Coordinating Group, 2016). An effective SZ is one in which 

firefighters within can remain uninjured, regardless of nearby or surrounding fire 

conditions. This differs from deployment zones and survival zones, which are used in the 

absence of suitable SZ as a method of last resort to avoid fatality, but are likely to cause 

injury (National Wildfire Coordinating Group, 2016; Page and Butler, 2017). The 

conditions that control SZ effectiveness have been fairly well defined throughout the 

literature (Butler, 2014; Butler and Cohen, 1998; Campbell et al., 2017b; Dennison et al., 

2014b; Gleason, 1991; Page and Butler, 2017). SZ should be cleared of vegetation 

(naturally, mechanically, or burned out) (National Wildfire Coordinating Group, 2016, 

2014), large enough to accommodate the fire crew and equipment (Dennison et al., 

2014b), maintain safe separation distance from surrounding fuels on all sides (Butler and 

Cohen, 1998), and not be upslope or downwind of flames in order to avoid the effects of 

convective heat (Butler, 2014; National Wildfire Coordinating Group, 2014; Zárate et al., 
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2008). At present, SZ are evaluated on the ground in advance of firefighting as a part of 

daily fire management activities, and continually re-evaluated throughout the day as crew 

location and fire conditions change (National Fire Protection Association, 2017). 

Accordingly, this necessitates a ground-level interpretation of fuel/vegetation conditions 

both within and surrounding the SZ (e.g. fuel loading, vegetation height) and estimation 

of SZ size and geometry by firefighters, which can potentially be subject to errors. 

Even the best SZ, however, is of little use unless it is accessible by the fire crew. 

Accordingly, once an SZ has been defined, the fire crew must then identify a suitable 

escape route (ER). An ER is a pre-planned and understood route firefighters take to move 

from the fire line to a safety zone or other low-risk area (National Wildfire Coordinating 

Group, 2016). ER effectiveness can be defined in terms of the margin of safety (MOS) 

they provide. Beighley (1995) defined a MOS as “a cushion of time in excess of the time 

needed by the firefighters to get to the safety zone before the fire gets to them”. As this 

definition alludes to, there are two primary variables of concern: the time it takes for the 

firefighters to reach the safety zone (T1) and the time it takes for the fire to spread to them 

(T2). Thus, an equation for MOS can be represented as 𝑀𝑂𝑆 = 𝑇1 − 𝑇2 (Beighley, 1995). 

If, according to this equation, MOS is calculated to be positive, the firefighters will be 

safe; if MOS is negative, the firefighters will not. The estimation of T2 has received much 

attention in the fire science literature, with a number of well-established tools having 

been developed for the prediction of fire behavior, such as FARSITE, FlamMap, and 

BehavePlus (Andrews et al., 2005; Finney, 2006, 2004). Despite its equal importance for 

calculating MOS, the studies attempting to estimate T1 have been relatively few and far 

between (Alexander et al., 2005; Butler et al., 2000; Ruby et al., 2003). What limited 
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research there is suggests that there are both external and internal factors that control ER 

effectiveness. External factors include landscape parameters such as slope, vegetation 

density, and ground surface conditions, whereas internal factors primarily relate to fitness 

and experience levels of individual firefighters (Alexander et al., 2005; Anguelova et al., 

2010; Butler et al., 2000; Pandolf et al., 1977; Ruby et al., 2003; Tobler, 1993; Wood and 

Schmidtlein, 2012). The Incident Response Pocket Guide makes mention of all of these 

variables, but provides no quantitative basis for implementation (National Wildfire 

Coordinating Group, 2014). Thus, in the absence of robust, quantitative evidence, 

firefighters are left to not only interpret the external, landscape conditions that lie 

between the crew and the SZ, but also estimate the degree to which they will affect their 

travel rates. 

In order to enhance and improve wildland firefighter safety planning processes, it 

would be highly advantageous to be able to provide firefighters with objective measures 

of SZ and ER quality. One possible approach to doing just that would be the utilization of 

remote sensing and geospatial technology. Lidar remote sensing, in particular, has been 

shown to be capable of assessing those conditions that define SZ and ER suitability with 

a high degree of spatial precision, including terrain elevation and slope (Clark et al., 

2004; Hodgson et al., 2005; Hodgson and Bresnahan, 2004; Hopkinson et al., 2005; 

Reutebuch et al., 2003; Su and Bork, 2006; Wang and Glenn, 2009), vegetation height 

(Andersen et al., 2006; Ben-Arie et al., 2009; Clark et al., 2004; Falkowski et al., 2006; 

Holmgren et al., 2003; Hopkinson et al., 2006, 2005; Khosravipour et al., 2015; Nelson, 

1997; Popescu et al., 2002; Streutker and Glenn, 2006), understory vegetation structure 

(Goodwin et al., 2007; Hudak et al., 2008; Kramer et al., 2016; Maltamo et al., 2005; 
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Martinuzzi et al., 2009; Mutlu et al., 2008; Riaño et al., 2003; Seielstad and Queen, 2003; 

Singh et al., 2015; Skowronski et al., 2007; Su and Bork, 2007; Wing et al., 2012), and 

ground surface roughness (Frankel and Dolan, 2007; Glenn et al., 2006; Sagy et al., 2007; 

Sankey et al., 2010). Despite the vast potential for applying lidar to wildland firefighter 

safety, prior to the work presented in this dissertation, only one work to date had done so 

(Dennison et al., 2014b). Although highly capable, lidar is not without its limitations. 

Particularly when attempting to characterize understory conditions for ER suitability 

assessment, there are a number of variables that can affect the modeled accuracy thereof, 

including the field methods used for model training and validation, the selection of 

appropriate predictive lidar metrics, lidar pulse density, overstory vegetation density, and 

canopy height. 

The work described herein aims to inquire into the potential use of lidar remote 

sensing and geospatial modeling for SZ and ER identification and evaluation. The 

specific objectives of this research are to (1) develop a new metric and lidar-based 

algorithm for identifying and evaluating wildland firefighter SZ on a broad scale; (2) 

determine the effects that landscape conditions including slope, understory vegetation 

density, and ground surface roughness have on travel rates in order to develop a 

geospatial model for ER optimization; and (3) determine the optimal methods for 

modeling understory vegetation density and assess the degree to which factors such as 

pulse density, overstory vegetation density, and canopy height affect model accuracy. 

This dissertation is presented in three chapters, each of which addresses one of the study 

objectives defined above, in order, followed by a summary of the major conclusions 

gleaned from the research as a whole. 



7 

 

References 

Abatzoglou, J.T., Williams, A.P., 2016. Impact of anthropogenic climate change on 

wildfire across western US forests. Proceedings of the National Academy of 

Sciences 113, 11770–11775. 

Alexander, M.E., Baxter, G.J., Dakin, G.R., 2005. Travel rates of Alberta wildland 

firefighters using escape routes, in: Butler, B.W., Alexander, M. E. (Eds.), Human 

Factors - 10 Years Later. Presented at the Eighth International Wildland Fire 

Safety Summit, International Association of Wildland Fire, Missoula, MT. 

Andersen, H.-E., Reutebuch, S.E., McGaughey, R.J., 2006. A rigorous assessment of tree 

height measurements obtained using airborne lidar and conventional field 

methods. Canadian Journal of Remote Sensing 32, 355–366. 

Andrews, P.L., Bevins, C.D., Seli, R.C., 2005. BehavePlus fire modeling system, version 

4.0: User’s guide. 

Anguelova, Z., Stow, D.A., Kaiser, J., Dennison, P.E., Cova, T., 2010. Integrating fire 

behavior and pedestrian mobility models to assess potential risk to humans from 

wildfires within the U.S.–Mexico border zone. The Professional Geographer 62, 

230–247. 

Beighley, M., 1995. Beyond the safety zone: Creating a margin of safety. Fire 

Management Notes 55, 21–24. 

Ben-Arie, J.R., Hay, G.J., Powers, R.P., Castilla, G., St-Onge, B., 2009. Development of 

a pit filling algorithm for LiDAR canopy height models. Computers & 

Geosciences 35, 1940–1949. 

Butler, B.W., 2014. Wildland firefighter safety zones: A review of past science and 

summary of future needs. International Journal of Wildland Fire 23, 295–308. 

Butler, B.W., Cohen, J.D., 1998. Firefighter safety zones: A theoretical model based on 

radiative heating. International Journal of Wildland Fire 8, 73–77. 

Butler, B.W., Cohen, J.D., Putnam, T., Bartlette, R.A., Bradshaw, L.S., 2000. A method 

for evaluating the effectiveness of firefighter escape routes. 4th International 

Wildland Fire Safety Summit 10–12. 

Calkin, D.E., Cohen, J.D., Finney, M.A., Thompson, M.P., 2014. How risk management 

can prevent future wildfire disasters in the wildland-urban interface. Proceedings 

of the National Academy of Sciences 111, 746–751. 

Campbell, M.J., Dennison, P.E., Butler, B.W., 2017a. A LiDAR-based analysis of the 

effects of slope, vegetation density, and ground surface roughness on travel rates 

for wildland firefighter escape route mapping. International Journal of Wildland 

Fire 26, 884–895. 



8 

 

Campbell, M.J., Dennison, P.E., Butler, B.W., 2017b. Safe separation distance score: A 

new metric for evaluating wildland firefighter safety zones using lidar. 

International Journal of Geographical Information Science 31, 1448–1466. 

Cheney, P., Gould, J., McCaw, L., 2001. The dead-man zone—A neglected area of 

firefighter safety. Australian Forestry 64, 45–50.  

Clark, M.L., Clark, D.B., Roberts, D.A., 2004. Small-footprint lidar estimation of sub-

canopy elevation and tree height in a tropical rain forest landscape. Remote 

Sensing of Environment 91, 68–89. 

Cohen, J.D., 2000. Preventing Disaster: Home ignitability in the wildland-urban 

interface. Journal of Forestry 98, 15–21. 

Dennison, P.E., Brewer, S.C., Arnold, J.D., Moritz, M.A., 2014a. Large wildfire trends in 

the western United States, 1984–2011. Geophysical Research Letters 41, 

2014GL059576.  

Dennison, P.E., Fryer, G.K., Cova, T.J., 2014b. Identification of firefighter safety zones 

using lidar. Environmental Modeling & Software 59, 91–97.  

Falkowski, M.J., Smith, A.M.., Hudak, A.T., Gessler, P.E., Vierling, L.A., Crookston, 

N.L., 2006. Automated estimation of individual conifer tree height and crown 

diameter via two-dimensional spatial wavelet analysis of lidar data. Canadian 

Journal of Remote Sensing 32, 153–161.  

Finney, M.A., 2006. An Overview of FlamMap fire modeling capabilities, in: Fuels 

management -- How to measure success: Conference proceedings. USDA Forest 

Service, Rocky Mountain Research Station, Portland, OR, pp. 213–220. 

Finney, M.A., 2004. FARSITE: Fire area simulator: model development and evaluation 

(Research Paper No. RMRS-RP-4). USDA Forest Service, Rocky Mountain 

Research Station Ogden, UT. 

Flannigan, M.D., Krawchuk, M.A., Groot, W.J. de, Wotton, B.M., Gowman, L.M., 2009. 

Implications of changing climate for global wildland fire. International Journal of 

Wildland Fire 18, 483–507. 

Frankel, K.L., Dolan, J.F., 2007. Characterizing arid region alluvial fan surface roughness 

with airborne laser swath mapping digital topographic data. Journal of 

Geophysical Research 112, F02025.  

Fryer, G.K., Dennison, P.E., Cova, T.J., 2013. Wildland firefighter entrapment 

avoidance: modeling evacuation triggers. International Journal of Wildland Fire 

22, 883–893.  

Gleason, P., 1991. Lookouts, communications, escape routes, and safety zones [WWW 

Document]. Wildland Fire Leadership. URL 



9 

 

https://www.fireleadership.gov/toolbox/documents/lces_gleason.html (accessed 

2.17.17). 

Glenn, N.F., Streutker, D.R., Chadwick, D.J., Thackray, G.D., Dorsch, S.J., 2006. 

Analysis of LiDAR-derived topographic information for characterizing and 

differentiating landslide morphology and activity. Geomorphology 73, 131–148. 

Goodwin, N.R., Coops, N.C., Bater, C., Gergel, S.E., 2007. Assessment of sub-canopy 

structure in a complex coniferous forest, in: Proceedings of the ISPR Workshop 

“Laser Scanning 2007 and SilviLaser 2007”, Espoo, September 12–14, 2007, 

Finland. pp. 169–172. 

Gude, P.H., Jones, K., Rasker, R., Greenwood, M.C., 2013. Evidence for the effect of 

homes on wildfire suppression costs. International Journal of Wildland Fire 22, 

537.  

Hammer, R.B., Stewart, S.I., Radeloff, V.C., 2009. Demographic trends, the wildland–

urban interface, and wildfire management. Society & Natural Resources 22, 777–

782.  

Hodgson, M.E., Bresnahan, P., 2004. Accuracy of airborne lidar-derived Elevation. 

Photogrammetric Engineering & Remote Sensing 70, 331–339.  

Hodgson, M.E., Jensen, J., Raber, G., Tullis, J., Davis, B.A., Thompson, G., Schuckman, 

K., 2005. An evaluation of lidar-derived elevation and terrain slope in leaf-off 

conditions. Photogrammetric Engineering & Remote Sensing 71, 817–823.  

Holmgren, J., Nilsson, M., Olsson, H., 2003. Simulating the effects of lidar scanning 

angle for estimation of mean tree height and canopy closure. Canadian Journal of 

Remote Sensing 29, 623–632. 

Hopkinson, C., Chasmer, L., Lim, K., Treitz, P., Creed, I., 2006. Towards a universal 

lidar canopy height indicator. Canadian Journal of Remote Sensing 32, 139–152.  

Hopkinson, C., Chasmer, L.E., Sass, G., Creed, I.F., Sitar, M., Kalbfleisch, W., Treitz, P., 

2005. Vegetation class dependent errors in lidar ground elevation and canopy 

height estimates in a boreal wetland environment. Canadian Journal of Remote 

Sensing 31, 191–206.  

Hudak, A.T., Crookston, N.L., Evans, J.S., Hall, D.E., Falkowski, M.J., 2008. Nearest 

neighbor imputation of species-level, plot-scale forest structure attributes from 

LiDAR data. Remote Sensing of Environment, Earth Observations for Terrestrial 

Biodiversity and Ecosystems Special Issue 112, 2232–2245.  

IPCC, 2013. Summary for policymakers, in: Stocker, T.F., Qin, D., Plattner, G.-K., 

Tignor, S.K., Allen, J., Boschung, A., Nauels, Y., Xia, Y., Bex, V., Midgley, P.M. 

(Eds.), Climate change 2013: The physical science basis. Contribution of the 

working group I to the fifth assessment report of the Intergovernmental Panel on 



10 

 

Climate Change. Cambridge University Press, Cambridge, UK and New York, 

NY, USA. 

Jolly, W.M., Cochrane, M.A., Freeborn, P.H., Holden, Z.A., Brown, T.J., Williamson, 

G.J., Bowman, D.M.J.S., 2015. Climate-induced variations in global wildfire 

danger from 1979 to 2013. Nature Communications 6, 7537.  

Khosravipour, A., Skidmore, A.K., Wang, T., Isenburg, M., Khoshelham, K., 2015. 

Effect of slope on treetop detection using a LiDAR canopy height model. ISPRS 

Journal of Photogrammetry and Remote Sensing 104, 44–52.  

Kramer, H.A., Collins, B.M., Lake, F.K., Jakubowski, M.K., Stephens, S.L., Kelly, M., 

2016. Estimating ladder fuels: A new approach combining field photography with 

LiDAR. Remote Sensing 8, 766. 

Liu, Y., Stanturf, J., Goodrick, S., 2010. Trends in global wildfire potential in a changing 

climate. Forest Ecology and Management, Adaptation of Forests and Forest 

Management to Changing Climate 259, 685–697.  

Liu, Z., Wimberly, M.C., Lamsal, A., Sohl, T.L., Hawbaker, T.J., 2015. Climate change 

and wildfire risk in an expanding wildland–urban interface: A case study from the 

Colorado Front Range Corridor. Landscape Ecology 30, 1943–1957.  

Maltamo, M., Packalén, P., Yu, X., Eerikäinen, K., Hyyppä, J., Pitkänen, J., 2005. 

Identifying and quantifying structural characteristics of heterogeneous boreal 

forests using laser scanner data. Forest Ecology and Management 216, 41–50.  

Martinuzzi, S., Stewart, S.I., Mockrin, M.H., Hammer, R.B., Radeloff, V.C., 2015. The 

2010 wildland-urban interface of the conterminous United States. 

Martinuzzi, S., Vierling, L.A., Gould, W.A., Falkowski, M.J., Evans, J.S., Hudak, A.T., 

Vierling, K.T., 2009. Mapping snags and understory shrubs for a LiDAR-based 

assessment of wildlife habitat suitability. Remote Sensing of Environment 113, 

2533–2546. 

Mell, W.E., Manzello, S.L., Maranghides, A., Butry, D., Rehm, R.G., 2010. The 

wildland-urban interface problem – Current approaches and research needs. 

International Journal of Wildland Fire 19, 238–251. 

Miller, J.D., Safford, H.D., Crimmins, M., Thode, A.E., 2009. Quantitative evidence for 

increasing forest fire severity in the Sierra Nevada and Southern Cascade 

Mountains, California and Nevada, USA. Ecosystems 12, 16–32.  

Mutlu, M., Popescu, S.C., Stripling, C., Spencer, T., 2008. Mapping surface fuel models 

using lidar and multispectral data fusion for fire behavior. Remote Sensing of 

Environment 112, 274–285.  



11 

 

National Fire Protection Association, 2017. NFPA - Wildfires [WWW Document]. URL 

http://www.nfpa.org/public-education/by-topic/wildfire-and-seasonal-

fires/wildland-fires (accessed 2.19.17). 

National Interagency Fire Center, 2016. Wildland fire fatalities by year [WWW 

Document]. URL https://www.nifc.gov/safety/safety_documents/Fatalities-by-

Year.pdf (accessed 2.17.17). 

National Wildfire Coordinating Group, 2016. Glossary A-Z | NWCG [WWW 

Document]. URL https://www.nwcg.gov/glossary/a-z (accessed 2.17.17). 

National Wildfire Coordinating Group, 2014. Incident Response Pocket Guide. 

Nelson, R., 1997. Modeling forest canopy heights: The effects of canopy shape. Remote 

Sensing of Environment 60, 327–334.  

Page, W.G., Butler, B.W., 2017. An empirically based approach to defining wildland 

firefighter safety and survival zone separation distances. International Journal of 

Wildland Fire 26, 655–667. 

Pandolf, K.B., Givoni, B., Goldman, R.F., 1977. Predicting energy expenditure with 

loads while standing or walking very slowly. Journal of Applied Physiology: 

Respiratory, Environmental and Exercise Physiology 43, 577–581. 

Parks, S.A., Miller, C., Abatzoglou, J.T., Holsinger, L.M., Parisien, M.-A., Dobrowski, 

S.Z., 2016. How will climate change affect wildland fire severity in the western 

US? Environmental Research Letters 11, 035002.  

Popescu, S.C., Wynne, R.H., Nelson, R.F., 2002. Estimating plot-level tree heights with 

lidar: local filtering with a canopy-height based variable window size. Computers 

and Electronics in Agriculture 37, 71–95.  

Pyne, S.J., 1996. Introduction to Wildland Fire, 2nd ed. Wiley, New York. 

Radeloff, V.C., Hammer, R.B., Stewart, S.I., Fried, J.S., Holcomb, S.S., McKeefry, J.F., 

2005. The wildland–urban interface in the United States. Ecological Applications 

15, 799–805.  

Reutebuch, S.E., McGaughey, R.J., Andersen, H.-E., Carson, W.W., 2003. Accuracy of a 

high-resolution lidar terrain model under a conifer forest canopy. Canadian 

Journal of Remote Sensing 29, 527–535.  

Riaño, D., Meier, E., Allgower, B., Chuvieco, E., Ustin, S.L., 2003. Modeling airborne 

laser scanning data for the spatial generation of critical forest parameters in fire 

behavior modeling. Remote Sensing of Environment 86, 177–186.  



12 

 

Rossi, J.L., Simeoni, A., Moretti, B., Leroy-Cancellieri, V., 2011. An analytical model 

based on radiative heating for the determination of safety distances for wildland 

fires. Fire Safety Journal 46, 520–527.  

Ruby, B.C., Iii, G.W.L., Armstrong, D.W., Gaskill, S.E., 2003. Wildland firefighter load 

carriage: effects on transit time and physiological responses during simulated 

escape to safety zone. International Journal of Wildland Fire 12, 111–116.  

Ruby, B.C., Shriver, T.C., Zderic, T.W., Sharkey, B.J., Burks, C., Tysk, S., 2002. Total 

energy expenditure during arduous wildfire suppression. Medicine and Science in 

Sports and Exercise 34, 1048–1054.  

Sagy, A., Brodsky, E.E., Axen, G.J., 2007. Evolution of fault-surface roughness with slip. 

Geology 35, 283–286.  

Sankey, J.B., Glenn, N.F., Germino, M.J., Gironella, A.I.N., Thackray, G.D., 2010. 

Relationships of aeolian erosion and deposition with LiDAR-derived landscape 

surface roughness following wildfire. Geomorphology 119, 135–145.  

Seielstad, C.A., Queen, L.P., 2003. Using airborne laser altimetry to determine fuel 

models for estimating fire behavior. Journal of Forestry 101, 10–15. 

Singh, K.K., Davis, A.J., Meentemeyer, R.K., 2015. Detecting understory plant invasion 

in urban forests using LiDAR. International Journal of Applied Earth Observation 

and Geoinformation 38, 267–279.  

Skowronski, N., Clark, K., Nelson, R., Hom, J., Patterson, M., 2007. Remotely sensed 

measurements of forest structure and fuel loads in the Pinelands of New Jersey. 

Remote Sensing of Environment, The Application of Remote Sensing to Fire 

Research in the Eastern United States 108, 123–129.  

Streutker, D.R., Glenn, N.F., 2006. LiDAR measurement of sagebrush steppe vegetation 

heights. Remote Sensing of Environment 102, 135–145.  

Su, J.G., Bork, E.W., 2007. Characterization of diverse plant communities in Aspen 

Parkland rangeland using LiDAR data. Applied Vegetation Science 10, 407–416.  

Su, J.G., Bork, E.W., 2006. Influence of vegetation, slope, and lidar sampling angle on 

DEM accuracy. Photogrammetric Engineering & Remote Sensing 72, 1265–1274.  

Tobler, W.R., 1993. Three presentations on geographical analysis and modeling (No. 93–

1). National Center for Geographic Information and Analysis, University of 

California at Santa Barbara. 

Wang, C., Glenn, N.F., 2009. Integrating LiDAR intensity and elevation data for terrain 

characterization in a forested area. IEEE Geoscience and Remote Sensing Letters 

6, 463–466.  



13 

 

Westerling, A.L., 2016. Increasing western US forest wildfire activity: Sensitivity to 

changes in the timing of spring. Philosophical Transactions of the Royal Society 

B 371, 20150178.  

Westerling, A.L., Hidalgo, H.G., Cayan, D.R., Swetnam, T.W., 2006. Warming and 

earlier spring increase Western U.S. forest wildfire activity. Science 313, 940–

943.  

Wing, B.M., Ritchie, M.W., Boston, K., Cohen, W.B., Gitelman, A., Olsen, M.J., 2012. 

Prediction of understory vegetation cover with airborne lidar in an interior 

ponderosa pine forest. Remote Sensing of Environment 124, 730–741.  

Wood, N.J., Schmidtlein, M.C., 2012. Anisotropic path modeling to assess pedestrian-

evacuation potential from Cascadia-related tsunamis in the US Pacific Northwest. 

Natural Hazards 62, 275–300.  

Zárate, L., Arnaldos, J., Casal, J., 2008. Establishing safety distances for wildland fires. 

Fire Safety Journal 43, 565–575.  

 

 

  

 



____________________
1 Reprinted with permission from Campbell, M.C., Dennison, P.E., Butler, B.W., 2017. Safe 

separation distance score: A new metric for evaluating wildland firefighter safety zones using 

lidar. International Journal of Geographical Information Science 31, 1448-1466. 

 

 

 

 

 

 

 

 

CHAPTER 11 

 

 

SAFE SEPARATION DISTANCE SCORE: A NEW METRIC FOR 

 

EVALUATING WILDLAND FIREFIGHTER 

 

SAFETY ZONES USING LIDAR 

 

 

1.1 Abstract 

Safety zones are areas where firefighters can retreat to in order to avoid bodily 

harm when threatened by burnover or entrapment from wildland fire. At present, safety 

zones are primarily designated by firefighting personnel as part of daily fire management 

activities. Though critical to safety zone assessment, the effectiveness of this approach is 

inherently limited by the individual firefighter’s or crew boss’s ability to accurately and 

consistently interpret vegetation conditions, topography, and spatial characteristics of 

potential safety zones (e.g. area and geometry of a forest clearing). In order to facilitate 

the safety zone identification and characterization process, this study introduces a new 

metric for safety zone evaluation: the Safe Separation Distance Score (SSDS). The SSDS 

is a numerical representation of the relative suitability of a given area as a safety zone 

according to its size, geometry, and surrounding vegetation height. This paper describes 

an algorithm for calculating pixel-based and polygon-based SSDS from lidar data. SSDS 

is calculated for every potential safety zone within a lidar dataset covering Tahoe 
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National Forest, California, USA. A total of 2367 potential safety zones with an SSDS ≥1 

were mapped, representing areas that are suitable for fires burning in low wind and low 

slope conditions. The highest SSDS calculated within the study area was 9.65, a score 

that represents suitability in the highest wind-steepest slope conditions. Potential safety 

zones were clustered in space, with areas in the northern and eastern portions of the 

National Forest containing an abundance of safety zones while areas to the south and 

west were completely devoid of them. SSDS can be calculated for potential safety zones 

in advance of firefighting, and can allow firefighters to carefully compare and select 

safety zones based on their location, terrain, and wind conditions. This technique shows 

promise as a standard method for objectively identifying and ranking safety zones on a 

spatial basis. 

 

1.2 Introduction 

Between 1910 and 2015, there were 1087 documented wildland firefighter 

fatalities in the United States (National Interagency Fire Center 2016). The causes of 

fatalities vary greatly (Figure 1.1), but the leading causes fall into the category of 

burnovers, entrapments, burns and asphyxiation (BEBA). BEBA are the direct result of 

fatal exposure to excessive heat, fire, and/or smoke and comprise 45% of the total 

fatalities from 1910 to 2015. Burnover results from fire rapidly overtaking firefighting 

personnel before they can move to a safe area, and entrapment indicates that firefighters’ 

ability to move to a safe area is compromised. Though BEBA have declined as a 

percentage of total fatalities in recent decades (Figure 1.1), burnover and entrapment have 

been implicated in recent tragic incidents involving multiple fatalities, including 14 

firefighters in the 1994 South Canyon fire in Colorado and 19 firefighters in the 2013 
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Yarnell Hill fire in Arizona (Arizona State Forestry Division 2013, Butler et al. 1998). 

These events are not limited to the United States. For example, in 2010, 44 police and 

firefighters were entrapped and ultimately perished in the 2010 Mount Carmel Fire in 

Israel (United Nations Office for the Coordination of Humanitarian Affairs 2010). 

Gleason (1991) proposed a system of interdependent safety measures to reduce 

firefighter risk of burnover and entrapment: lookouts, communications, escape routes, and 

safety zones (LCES). Safety zones are a critical component of this system, essentially 

areas large enough to allow firefighters to escape the harmful effects of fire (Beighley 

1995). According to the US National Wildfire Coordinating Group (NWCG) Incident 

Response Pocket Guide (IRPG), LCES should be established and known to all members 

of a fire crew before it is needed (National Wildfire Coordinating Group 2014). The 

IRPG indicates that safety zones can be areas that have already burned, can be natural 

(rock areas, water, meadows) or constructed (clear-cuts, roads, helicopter landing zones), 

and should be scouted for size and hazards. If they are upslope of flames, downwind of 

flames, or adjacent to particularly heavy fuels, a larger safety zone is needed (National 

Wildfire Coordinating Group 2014). 

Safety zones must be large enough to hold firefighting personnel and equipment, 

and should provide a safe separation distance (SSD) between vegetation and these assets 

(Figure 1.2). The SSD must be large enough that heat from the wildfire is reduced to the 

point that a fire shelter is not necessary to prevent firefighter injury. The current NWCG 

guideline for estimating SSD comes from Butler and Cohen (1998), who determined, 

based on radiant heat modeling, that SSD should be equal to or greater than four times 

flame height. This guideline assumes flat terrain and does not account for convective heat 
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transfer, which can strongly contribute to firefighter heat exposure (Butler et al. 2015, 

Butler 2014). 

Relatively few studies have attempted to characterize convective heat flux in a 

wildland fire environment, due to its inherent complexity and measurement difficulty. 

Frankman et al. (2013) demonstrated the varied but significant effects of convective 

energy flux (both heating and cooling), which were heavily influenced by fuel, wind, and 

terrain conditions. Zárate et al. (2008) suggested adding a 20% increase in SSD to 

account for the additional convective heat flux. Butler et al. (2015) point out that 

exposure to high winds and adjacency to steep slopes has the potential to transfer 

convective heat as far as two to three flame lengths ahead of the fire front. To account for 

convective heat flux, Butler (2015) proposed that the SSD calculation can be adjusted 

using a ‘slope-wind factor’ (Δ): 

 

                                                        𝑆𝑆𝐷 = 8 × 𝐻𝑣 × ∆, (1.1) 

 

where Hv is vegetation height. For flat terrain and low wind speeds, SSD is simply eight 

times vegetation height, identical to the current NWCG guideline (assuming flame height 

is equal to two times the vegetation height). Although flame height will not always be 

equal to twice the vegetation height, it is a useful approximation for crown fire 

conditions, enabling a broad-scale pre-fire assessment of SSD based on existing 

vegetation conditions, rather than requiring that firefighters predict flame heights. As 

slope and wind speed increase, the slope-wind factor increases to provide a larger SSD 

value. Examples of slope-wind factors from Butler (2015) are shown in Table 1.1. Based 

on the slope-wind factor, a potential safety zone sufficient for flat terrain and moderate 
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wind speed (SSD = 8 × Hv × 1.5) could be too small for flat terrain and strong wind speed 

(SSD = 8 × Hv × 3). 

Field estimates of safety zone geometry and surrounding vegetation height, which 

are used to calculate SSD, are prone to large errors (Bechtold et al. 1998, Steele 2000). 

This study demonstrates a method for identifying, evaluating and mapping the relative 

suitability of all potential safety zones throughout a given area in order to improve the 

process of safety zone designation. Specifically, the objectives of this study are (1) to 

introduce a new metric for evaluating potential safety zones, based on safety zone 

geometry, area, surrounding vegetation height, and number of firefighting personnel 

present: the Safe Separation Distance Score (SSDS), (2) to develop an algorithm to map 

SSDS using lidar data, and (3) to test the implementation of the algorithm on a lidar 

dataset from Tahoe National Forest. 

 

1.3 Methods 

 

1.3.1 Data and study area 

Lidar is a type of active remote-sensing system that enables the generation of very 

high spatial resolution three-dimensional models of terrain and above-ground structure 

(vegetation, buildings, etc.) (Lefsky et al. 2002). Discrete return lidar instruments, which 

are typically mounted on an aircraft, emit hundreds of thousands of individual pulses of 

laser light to the ground every second. The light in each pulse interacts with features on 

the ground and reflects back to the sensor. Extremely accurate measurement of the 

elapsed time between light transmission and reception enables calculation of a precise 

elevation of the reflective object (Lefsky et al. 2002). The result of such data collection is 

typically a point cloud comprised of millions of points, each with an associated x, y, and z 
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value. In order to be able to extract useful information from a lidar point cloud, points are 

generally classified into ground and non-ground (e.g. vegetation and buildings) (Meng et 

al. 2010). Many methods exist for ground point classification, the accuracies of which 

vary significantly according to the method used, the terrain conditions and the degree to 

which surface features obscure the ground surface (Reutebuch et al. 2003). Discrete 

ground points can be interpolated into digital terrain models (DTMs), which are 

continuous raster representations of the ground surface (Kraus and Pfeifer 2001). In the 

presence of vegetation, lidar pulses typically interact with several surfaces prior to 

reaching the ground surface. In these cases, the ‘last return’ can often, though not always, 

represent the ground surface, while the ‘first return’ represents the elevation of the 

highest reflective surface. First return points can be interpolated to generate a digital 

surface model (DSM). In the absence of above-ground objects (e.g. bare soil), surface 

and terrain model pixel values should be equal. Vegetation height can be computed by 

subtracting terrain elevations from surface elevations (Dubayah and Drake 2000, Popescu 

et al. 2002). Dennison et al. (2014) used lidar to map safety zones for different expected 

flame heights, but did not directly utilize variable vegetation height information provided 

by lidar data. 

SSDS were calculated for potential safety zones within Tahoe National Forest, 

California, USA. A lidar-derived DTM and DSM, each with a spatial resolution of 1.0 m, 

were obtained from the US Forest Service (Figure 1.3). The raw point cloud data from 

which these datasets were derived were collected between 2013 and 2014 with an 

average pulse density of 8 pulses/m2. 
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The study area encompasses 5335 km2, 4549 km2 (85%) of which is within the 

Tahoe National Forest administrative boundary. There is a wide range of elevations 

throughout the study area, from 268 m at its lowest point to 2813 m at the highest with a 

mean elevation of 1686 m. The land cover is primarily composed of conifer forest (77%), 

shrubland (8%), riparian vegetation (4%), sparse vegetation (3%), hardwood forest (2%), 

and grassland (1%), with the remaining area being a combination of a variety of rarer 

cover types, including developed land (LANDFIRE 2012). Within the dominant conifer 

class, the distribution of forest types is as follows: Douglas-fir (Pseudostuga 

menziesii)/grand fir (Abies grandis)/white fir (Abies concolor) mix (34%), red fir (Abies 

magnifica) (28%), Douglas-fir (Pseudotsuga menziesii)/ponderosa pine (Pinus 

ponderosa)/lodgepole pine (Pinus contorta) mix (21%), ponderosa pine (Pinus 

ponderosa) (15%), and other conifer (2%). 

 

1.3.2 Safety zone model 

SSDS is a unitless value that is attributed to a forest clearing that provides 

firefighting personnel with an estimate of the relative suitability of that clearing as a 

safety zone according to its area, geometry, surrounding vegetation height, and number of 

firefighting personnel and equipment present. SSDS can be compared directly to the 

slope-wind factor for expected wind speed and slope (Table 1.1) to determine whether a 

specific safety zone is adequate for expected conditions. Using lidar data, an SSDS can be 

calculated for all potential safety zones within an area. Multiple geospatial data 

processing steps are required to calculate SSDS from a lidar-derived terrain and surface 

models. An automated model was developed in Python using primarily ESRI ArcGIS 

tools to facilitate the safety zone analysis across a relatively large study area with many 
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forest clearings varying in size, shape, and surrounding vegetation conditions. This 

section describes, in detail, the model workflow. 

In order to be able to assess vegetation height, a canopy height model (CHM) was 

generated by subtracting the terrain elevation from the surface elevation for each pixel 

(x,y), such that: 

 

                                           𝐶𝐻𝑀(𝑥,𝑦) = 𝐷𝑆𝑀(𝑥,𝑦) − 𝐷𝑇𝑀(𝑥,𝑦), (1.2) 

 

where DSM is the digital surface model and DTM is the digital terrain model. The 

resulting raster dataset contained a pixel-based representation of height, in meters, above 

the ground surface (Figure 1.4(a)). In order to locate forest clearings, a tree/non-tree map 

was generated using a simple height threshold classification, wherein all CHM values less 

than 1 m in height were classified as ‘non-tree’ and all CHM values equal to or greater 

than 1 m in height were classified as ‘tree’. A kernel filtering process was then applied to 

the tree/non-tree classification to eliminate small and/or isolated trees that would be 

unlikely, in a wildfire setting, to have sufficient connectivity to surrounding fuels to 

negatively affect the quality of an otherwise open area as a safety zone (Dennison et al. 

2014). A 10% threshold within a circular kernel 30 m in diameter was used for filtering. 

If the area classified as ‘tree’ was less than 10% of the 30 m kernel, it was reclassified to 

‘non-tree’. Both the diameter of the kernel and the percent threshold are important 

parameters of the model that have direct impacts on the resultant classification of 

clearings versus treed areas, but for the purposes of this study, no sensitivity tests were 

performed to determine their relative effects on resulting safety zone maps. 
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Clearings were located by buffering the ‘tree’ pixels by 8 m and identifying those 

areas remaining beyond the extent of the buffers. Eight meters was used because in a 

best-case scenario (low wind, low slope, 1 m tall surrounding trees), the safe separation 

distance would be 8 m (8 × 1 m × 1). Clearings were then buffered back to the forest edge 

by 8 m, in order to represent the full extent of the clearing. Figure 1.4(b) illustrates one 

such clearing, though it should be noted that Figure 1.4, as a whole, illustrates a single 

example of processes performed on nearly 86,000 clearings throughout the study area. 

For each individual clearing, the following steps were performed. In the interest 

of assessing the vegetation immediately surrounding the clearing, a 10 m buffer was 

created around it. The CHM was then clipped to the extent of this buffer area and 

surrounding tree crowns were delineated individually using a watershed segmentation 

technique first introduced by Wang et al. (2004). Figure 1.5 graphically depicts this 

technique. Beginning with a CHM, all non-tree pixels (height <1 m) were removed 

and the resulting raster was inverted (multiplied by −1) to create tree ‘basins’ out of what 

were previously tree peaks. A ‘flow direction’ image was then generated which simulates 

the flow of water within each of these tree basins. Because these basins all drain 

internally (because, in reality, each tree comes to an individual peak), we then delineate 

individual basins, or watersheds, which generate a raster approximation of individual tree 

crowns. These tree crowns are then converted to a vector polygon for further analysis. 

Tree crown polygons were used to calculate individual tree heights by computing 

a within-polygon maximum CHM value. As Figure 1.4(c) highlights, the result of this 

process was an array of polygons surrounding the clearing, each of which has an 

associated height. However, to analyze the effect of each individual tree height on SSD 
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would be extremely processing-intensive, rendering an algorithm such as this ineffective 

for application on a broad scale. On the other hand, to compute a single mean 

surrounding vegetation height for an entire clearing would be an over-generalization, 

particularly for large clearings where surrounding vegetation heights can vary 

significantly from one portion of their perimeter to another. This variability in vegetation 

height is important to capture, as it will have direct impacts on where the safety zone 

should be located within a clearing (further from areas with taller vegetation, closer to 

areas with shorter vegetation). Thus, mean surrounding vegetation height was calculated 

within each of a series of buffer segments, each 10 m wide and roughly 100 m in length, 

surrounding each clearing (Figure 1.4(d)). Mean tree height was weighted by tree crown 

area to avoid the downward-bias resulting from the likely presence of a greater number of 

smaller (and shorter) trees than larger (and taller) trees, such that: 

 

                                                           𝐻𝑣 =
∑ 𝑎𝑖×ℎ𝑖

𝑛
𝑖=1

∑ 𝑎𝑖
𝑛
𝑖=1

,      (1.3) 

 

where a is crown area and h is height for each individual tree crown i. For each linear 

buffer, Euclidean distance from surrounding vegetation was then calculated on a 

continuous pixel basis within the clearing. Using mean vegetation height and distance 

from surrounding vegetation for each pixel (x,y) within the clearing, a pixel-based 

SSDS(x,y) was calculated, such that: 

 

                                                        𝑆𝑆𝐷𝑆(𝑥,𝑦) =
𝐸𝐷(𝑥,𝑦)

(8×𝐻𝑣)
,      (1.4) 
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where ED(x,y) is the Euclidean distance from vegetation raster data for each pixel (x,y). 

This SSDS calculation is essentially a transformation of the proposed SSD equation 

(Equation (1.1)), substituting the Euclidean distance raster data for SSD and solving for Δ 

on a pixel-by-pixel basis, thus making SSDS and Δ directly comparable values. As a 

result of this calculation, each clearing had a series of individual SSDS raster layers, each 

associated with one of the linear buffers surrounding the clearing. A single clearing-wide 

SSDS raster is then generated by computing a pixel-by-pixel minimum SSDS value 

among each of the contributing SSDS rasters. 

Most often the clearings that emerged from this mapping process were 

irregularly-shaped, unlike the simplified case illustrated in (Figure 1.2). Figure 1.4 

highlights one such irregular clearing. Though it maintained non-tree connectivity 

throughout the clearing, its large size and irregular shape could enable the placement of 

multiple safety zones within. From a geospatial standpoint, one can clearly see in Figure 

1.4(e) how there are several local maxima of SSDS within the clearing due to the effects 

of clearing geometry and variable surrounding vegetation height. In order to address this 

we employed another watershed-based approach for locating safety zones within the 

clearing. This involved taking the inverse of the SSDS raster (multiplying SSDS by −1 to 

form SSDS ‘basins’), calculating ‘flow direction’, and locating ‘sinks’, or areas of 

internal drainage, the results of which represent the points of local maximum SSDS, or 

the safest points within each distinct portion of the clearing (Figure 1.4(e)). 

The last critical variable addressed in this model is firefighter crew size. Safety 

zones need to be large enough to accommodate both personnel and equipment (e.g. 

engines). Andrews et al. (2005) suggests 4.6 m2 (50 ft2) is required for each crew member 
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and 27.9 m2 (300 ft2) is required for each engine. For the purpose of this study, an 

assumed crew size of 20 firefighters and 2 engines was used, requiring a minimum safety 

zone area of 148.6 m2. Circular areas of this size, representing potential safety zones 

where firefighters and equipment would assemble, were centered on the points of local 

maximum SSDS (Figure 1.4(e)). Rather than use this highest SSDS to represent the entire 

safety zone, however, the lowest within-safety zone SSDS is used, because this 

represents the relative safety of the zone on its outside edge. Again, because SSDS values 

are directly comparable to Δ values, we can determine that, because the lowest possible Δ 

is 1, then any safety zone with an SSDS <1 will be unsuitable in any wind and terrain 

conditions. Thus, all potential safety zones with an SSDS much less than 1 are eliminated 

from consideration. However, given the continuous nature of SSDS, one could still 

identify perhaps sub-optimal but still viable safety zones with SSDS of 0.9 or 0.95, if 

these are the only options available to a fire crew, as seen in (Figure 1.4(f)). 

Finally, a slope raster dataset is calculated throughout the entire study area using 

the lidar-derived DTM. Mean slope is then computed within each safety zone. The 

resulting safety zone polygons each have an associated SSDS and slope written to the 

attribute table. Since SSDS is derived directly from the proposed SSD equation, SSDS 

values can then be queried and compared to the Δ values in the slope-wind factor matrix 

to determine the relative suitability of that clearing as a potential safety zone. For 

example, if a safety zone has an SSDS of 1.5, it is suitable in all conditions where a Δ of 

1.5 or less is required. 
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1.4 Results 

The resulting map of potential safety zones with associated SSDS values (greater 

than 1) throughout the study area can be seen in Figure 1.6. As the map highlights, there 

are relatively few safety zones that have an SSDS of 1 or greater, which is to say that at 

the time of lidar acquisition, the vegetation conditions found within the study area would 

offer relatively few potential safety zones that are sufficiently large in even the best-case 

(low wind and low slope) scenarios. Clustering of potential safety zones is clearly 

evident, particularly in the northeastern portion of the study area. Much of the vegetation 

in this area was burned in the high severity Cottonwood fire in 1994. Although roughly 

20 years passed between the Cottonwood fire and the lidar data acquisition, the 

subsequent slow regeneration of vegetation in certain areas of the fire lends itself well to 

use as potential safety zones, according to the results of our model. Potential safety zones 

are particularly sparse in the southern and western portions of the study area, where 

continuous swaths of forest 400 km2 or greater in area, are entirely devoid of potential 

safety zones even at the lowest recommended SSDS of 1. It should be noted that many of 

the largest safety zones with the highest SSDS values are lakes. While lakes may seem 

like an ideal safety zone (no slope, vegetation, or possibility of burning), they present 

their own set of risks, such as drowning or hypothermia (Butler 2014). The resulting 

safety zones were compared to the USGS National Hydrography Dataset, and all of those 

that fell within a waterbody were removed. 

Table 1.2 provides a tabular account of the number of potentially viable safety 

zones in each combination of wind speed and slope according to resulting SSDS. It 

stands to reason that there are many more potential safety zones with low SSDS, suitable 
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in low wind-flat slope conditions, than high SSDSs, suitable in high wind-steep slope 

conditions, simply because there are many more small forest clearings than large. With 

that said, there are still only a total of 2367 potential safety zones with scores of greater 

than or equal to 1 throughout the entire study area. When comparing SSDS values to the 

slope-wind factor matrix, we see that a safety zone with an SSDS of 1 would be suitable 

in the lowest wind and slope conditions (<3 ms−1 and <30%, respectively). However, as 

wind speeds and slopes increase, higher SSDS values are needed to render a safety zone 

viable. For example, if wind speeds are slightly higher (4–7 ms−1), and slopes remain less 

than 30%, an SSDS of at least 2 is needed, of which there are a total of 352. The highest 

SSDS value found throughout the study area was 9.65, which would be suitable for any 

combination of wind speed and slope. Given that slope is a static landscape variable, 

SSDS can be compared to slope in order to determine the wind speed conditions in which 

a given safety zone would be viable. When comparing safety zone slopes to SSDS values, 

we see that even at the lowest wind speed category (<3 ms−1), there are only 1547 

potentially suitable safety zones (Figure 1.7). As wind speed increases to 4–7, 8–13, and 

greater than 13 ms−1, the number of safety zones drops to 500, 79, and 14, respectively. 

Perhaps equally important to the number of potential safety zones is their spatial 

distribution, which directly impacts accessibility. As stated earlier, there is a clearly non-

random distribution of safety zones throughout the study area, leaving vast tracts of 

forested land without any viable safety zones, particularly in the southwest. Figure 1.8 

depicts distance intervals and associated approximate travel times to safety zones with 

varying SSDS thresholds. Travel rates were assumed to be 1.4 ms−1, an empirically 

derived average hiking rate along flat slopes from Tobler (1993). Table 1.3 highlights the 
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proportions of the study area that fall within these same distance and time intervals from 

safety zones. In low wind-low slope scenarios, where an SSDS of at least 1 is needed, 

roughly 8% of the study area is within a 5-minute hike to the nearest safety zone, 17% 

within 10 min, 41% within 30 min, and 64% within an hour (Figure 1.8, Table 1.3). 

Conversely, with high-SSDS safety zones being so sparse throughout the study area, only 

1% of the area is within an hour of the nearest safety zone with SSDS ≥7. 

Clearing area is the best predictor of SSDS. Given that most forest clearings 

contain several potential safety zones, we performed a linear regression between the 

SSDS of the highest-rated safety zone within each clearing and the clearing area. As the 

data were heavily right-skewed, we used a reciprocal-square transformation for the SSDS 

data and a log transformation for the area data (Figure 1.9). The relatively low predictive 

power that emerged (r2 = 0.38) is due to the fact that clearing geometry and surrounding 

vegetation height also have significant impacts on a given safety zone’s SSDS. 

Additional geometric parameters such as clearing perimeter and area-to-perimeter ratio 

were also tested for statistical relationships, but their predictive powers were lower (r2 = 

0.32 and r2 = 0.28, respectively). 

 

1.5 Discussion and conclusions 

This study introduced a new metric and geospatial model for identifying and 

evaluating potential wildland firefighter safety zones using lidar data. Lidar proves to be 

an excellent resource for assessing many of the most important predictors of safety zone 

quality: clearing size and geometry, within- and surrounding-clearing vegetation height, 

and slope. However, at present, safety zones are evaluated and designated on the ground 

by firefighting personnel with limited influence of geospatial information. The use of a 
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standardized metric (SSDS) evaluated through a robust, automated computer model, such 

as was introduced in this study, stands to greatly increase the reliability and consistency 

with which safety zones are evaluated. Instead of relying on visual interpretation of safety 

zone area, geometry and surrounding vegetation height for each individual potential 

safety zone visited on the ground, the SSDS model provides firefighters with a map of all 

of the potential safety zones in the surrounding area, each of which is attributed with a 

value that can be used to determine the wind and terrain conditions in which a given 

safety zone will be suitable. It should be clearly noted, however, that this methodology is 

not a replacement of ground-based safety zone evaluation. Like any model-based remote-

sensing analysis, ground verification is essential. Unlike most other remote-sensing 

analyses, ground verification is particularly important in this study, given the potentially 

dangerous and even fatal consequences of utilizing an unsuitable safety zone. However, 

whereas under the existing protocol for safety zone identification, all potential safety 

zones must be visited and verified, the method we have presented will enable a more 

targeted approach, eliminating the need to visit areas the model has determined that no 

viable safety zones exist, according to surrounding vegetation, clearing geometry, slope, 

wind, and crew size. This will greatly increase the efficiency of safety zone selection and 

minimize potential for selecting unsuitable sites. 

The results of the model implementation in Tahoe National Forest highlight a 

relative sparseness of suitable safety zones, especially for high winds and steep slopes. 

Particularly in the western and southern portions of the study area, if a wildfire were to 

occur, safety zones (at least those composed of existing forest clearings) are few and far 

between. However, knowing where safety zones are not may be just as useful as knowing 
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where safety zones are. In the event of a wildfire in an area devoid of natural safety 

zones, this model can be used to highlight areas where safety zones could be created 

through the use of controlled burning, timber harvesting or other manipulation of existing 

fuels, or through the utilization of recently burned areas in a wildfire. If creation or 

enlargement of safety zones in not feasible then fire management tactics should be 

modified to reduce firefighter risk, such as standing down until conditions change or the 

fire moves to a more suitable location. Similarly, if an area has an existing potential 

safety zone, but the SSDS is too low for the slope and wind conditions, it could provide 

an impetus to expand the safety zone to a suitable size and/or geometry. 

One of the most important parameters not addressed by this model is fuel type, 

both within and surrounding the potential safety zone. The model, in its present form, 

makes a key assumption that vegetation less than 1 m in height is ‘non-tree’, and 

therefore eligible to become a safety zone, provided other conditions are met. While the 1 

m threshold is a model parameter that can be manipulated, regardless of vegetation 

height, certain fuel types are undesirable for safety zones. For example, shrubs may be 

short in stature but highly flammable and might not provide a viable safety zone without 

treatment. Although we are only taking advantage of lidar’s ability to characterize 

vegetation height in this study, lidar can be further exploited for the estimation of other 

fuel parameters, such as crown bulk density and canopy base height (Andersen et al. 

2005). Another potential solution to this issue is incorporation with additional remote-

sensing data. The use of hyperspectral imagery, for example, could be used to 

characterize within-safety zone fuel conditions through the spectral unmixing of green 

vegetation, non-photosynthetic vegetation and soils (Roberts et al. 2006). Alternatively, 
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in the absence of hyperspectral image availability, tools such as LANDFIRE can provide 

critical fuel information such as vegetation type, height and cover, and fire behavior fuel 

models, albeit at a coarser level of thematic precision and with limited accuracy (Rollins 

2009). Additionally, it is understood that fuel type and condition of the vegetation 

surrounding the safety zone will impact the relative flammability of this vegetation, 

potential for crown fire, and fire intensity. In order to eventually incorporate such 

information into SSDS, more detailed studies on the specific relationships between fuel 

and fire parameters are needed. 

Another key variable not assessed in the implementation of this algorithm is 

safety zone accessibility. A large safety zone completely devoid of flammable vegetation 

may be evaluated as having a very high SSDS, suggesting suitability in a wide range of 

wind and terrain conditions, but if it is not accessible by a fire crew, it is not a viable 

option. Escape routes are a critical component of fire safety, representing pre-defined 

pathways for accessing safety zones (National Wildfire Coordinating Group 2016). Given 

the similarities between the conditions that define the relative suitability of escape routes 

and safety zones (low slope, low vegetation cover), similar lidar-based approaches can be 

used in the future for determining optimal escape routes from fire crew location to a 

safety zone. 

A key limitation to the practical application of this study and widespread use of 

the proposed model for safety zone evaluation, at present, is the lack of lidar data 

availability throughout most of the United States. In order to obtain a reliable picture of 

safety zones on a broad scale, there needs to be a similarly reliable lidar dataset extending 

into all areas where wildfires can occur. With the USGS 3D Elevation Program underway 
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(Snyder 2012), a nationwide map of safety zones could be generated and provided to land 

management and firefighting agencies. However, at the time of writing, with the expected 

completion of a nationwide lidar dataset still several years in the future, a more targeted 

approach to lidar data collection in fire-prone areas can provide critical information for 

supporting firefighter safety operations in the interim. Alternatively, in the absence of 

lidar data there are other options that could prove viable, such as stereo imagery-based 

pseudo-point cloud extraction. However, a key limitation with stereo imagery methods is 

the absence of a reliable ground surface model in areas with dense tree canopies, thus 

limiting the ability to extract tree heights which are a critical parameter in safety zone 

analysis (St‐Onge et al. 2008). Another related limitation is the fact that lidar represents a 

single snapshot in time. Particularly in fire-prone areas, vegetation is a dynamic entity 

that changes with the presence of disturbance events including wildfire, timber 

harvesting, insect and disease outbreaks, major wind events, and, over a much longer 

timescale, climate change. By one account (National Fire Protection Association 2011), 

as much as 90% of safety zones are designated ‘in the black’– in already-burned areas. 

These areas would obviously not be depicted in a safety zone map created using lidar 

data flown prior to the wildfire event. One possible solution to this is the incorporation of 

unmanned aerial vehicular technology. The model as it is being presented in this study is 

intended to be a tool for pre-fire planning (O’Connor et al. 2016), though it is 

conceivable that this methodology could be adapted to a rapid response tool used for a 

more targeted approach for safety zone identification and evaluation. Alternatively, the 

use of predictive vegetation growth models and fuel accumulation curves could be used 

to estimate vegetation conditions following disturbance events to fill in temporal gaps in 
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lidar data collections and/or to highlight areas to target repeat lidar data collection efforts. 

Finally, it is worth noting that the scientific basis of convective and radiant heat 

transfer modeling upon which Δ and, as a result, SSDS are based, still requires further 

study (Finney et al. 2013, 2015). As stated earlier, particularly convective heat transfer is 

a tremendously challenging physical phenomenon to model in a controlled environment. 

While the data used in this study are based on recent findings in the research of radiant 

and convective heat transfer in wildfires and their effects on humans, more research is 

needed. Specifically, a more nuanced understanding of the effects of specific vegetation 

types and fuel conditions, which can both be approximated with remote sensing, on heat 

transfer would greatly improve the effectiveness of implementing our algorithm. That 

being said, even if the specific Δ and SSDS numbers were to be updated with newer 

science, the core methodology presented in this study would remain a viable option for 

increasing firefighter safety. 
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Table 1.1. Slope-wind factor safe separation distance matrix from Butler (2015). 

 

Slope-Wind Factor (Δ)  
Slope (%) 

Wind Speed (ms-1) Flat (<20%) 21–30% 31–50% >50% 

Light (0–3) 1 1 3 5 

Moderate (4–7) 1.5 2 4 6 

Strong (8–13) 3 3 6 7.5 

Very Strong (>13) 4.5 5 7 9 
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Table 1.2. Number of suitable safety zones in each combination of wind speed and slope 

according to SSDS values. 

  
Slope (%) 

Wind Speed (ms-1) Flat (<20%) 21–30% 31–50% >50% 

Light (0–3) 2367 2367 99 15 

Moderate (4–7) 881 352 30 7 

Strong (8–13) 99 99 7 2 

Very Strong (>13) 19 15 2 2 
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Table 1.3. Percent of study area within distance and travel time of safety zones with 

different SSDS thresholds. 

 

Distance: 0-420 m 420-840 m 840-2520 m 2520-5040 m > 5040 m 

Time: 0-5 min 5-10 min 10-30 min 30-60 min > 60 min 

SSDS ≥ 1 8.11% 8.69% 23.94% 23.65% 35.61% 

SSDS ≥ 2 1.84% 2.57% 9.57% 18.06% 67.95% 

SSDS ≥ 3 0.67% 1.07% 3.53% 7.71% 87.02% 

SSDS ≥ 4 0.25% 0.48% 2.28% 5.82% 91.17% 

SSDS ≥ 5 0.13% 0.31% 1.28% 3.34% 94.94% 

SSDS ≥ 6 0.06% 0.17% 0.94% 2.29% 96.54% 

SSDS ≥ 7 0.01% 0.04% 0.29% 0.85% 98.80% 

SSDS ≥ 8 0.01% 0.04% 0.29% 0.85% 98.80% 

SSDS ≥ 9 0.01% 0.04% 0.29% 0.85% 98.80% 

 

  



37 

 

 

 

 
 

Figure 1.1. Wildland firefighter fatalities by type (BEBA = burnover, entrapment, 

burns, and asphyxiation; VHA = vehicle, helicopter, aircraft; HA = heart attack; OM 

= other medical; TS = tree, snag) (National Interagency Fire Center 2016). 
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Figure 1.2. Basic safety zone example diagram (after Dennison et al. (2014)). 
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Figure 1.3. Study area map. 
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Figure 1.4. Model workflow from canopy height model (a) to clearing classification (b), 

surrounding tree crown delineation and height calculation (c), segment-based mean 

surrounding vegetation height calculation (d), pixel-based SSDS calculation and safety 

zone placement (e), and safety zone SSDS result (f). 
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Figure 1.5. Tree crown delineation method. 
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Figure 1.6. Potential safety zones with associated safe separation distance score values 

throughout the study area. The area burned by the 1994 Cottonwood fire is outlined in 

red. 
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Figure 1.7. Scatterplots of safety zone SSDS values compared to slopes broken down by 

wind speed category. The blue and red regions represent areas of suitability and 

unsuitability, respectively, according to slope and wind conditions as defined by the 

slope-wind factor matrix (Table 1.1). 
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Figure 1.8. Euclidean distance and estimated travel time to nearest potential safety zone 

at a range of SSDS thresholds throughout the study area. 
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Figure 1.9. Linear regression between safety zone SSDS and clearing area in which the 

safety zone fell. 
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A LIDAR-BASED ANALYSIS OF THE EFFECTS OF SLOPE, 

 

VEGETATION DENSITY, AND GROUND SURFACE 

 

ROUGHNESS ON TRAVEL RATES FOR 

 

WILDLAND FIREFIGHTER ESCAPE 

 

ROUTE MAPPING 

 

 

2.1 Abstract 

 

Escape routes are essential components of wildland firefighter safety, providing 

pre-defined pathways to a safety zone. Among the many factors that affect travel rates 

along an escape route, landscape conditions such as slope, low-lying vegetation density, 

and ground surface roughness are particularly influential, and can be measured using 

airborne light detection and ranging (LiDAR) data. In order to develop a robust, 

quantitative understanding of the effects of these landscape conditions on travel rates, we 

performed an experiment wherein study participants were timed while walking along a 

series of transects within a study area dominated by grasses, sagebrush and juniper. We 

compared resultant travel rates to LiDAR-derived estimates of slope, vegetation density 

and ground surface roughness using linear mixed effects modeling to quantify the 

relationships between these landscape conditions and travel rates. The best-fit model 
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revealed significant negative relationships between travel rates and each of the three 

landscape conditions, suggesting that, in order of decreasing magnitude, as density, slope 

and roughness increase, travel rates decrease. Model coefficients were used to map travel 

impedance within the study area using LiDAR data, which enabled mapping the most 

efficient routes from fire crew locations to safety zones and provided an estimate of travel 

time. 

 

2.2 Introduction 

Wildland firefighter escape routes are pre-planned routes firefighters take to move 

to a safety zone or other low-risk area (National Wildfire Coordinating Group 2016). 

Escape routes are an essential component of the Lookouts, Communications, Escape 

Routes, and Safety Zones (LCES) system and 10 standard firefighting orders for 

firefighter safety planning (Gleason 1991; Ziegler 2007). They should be established in 

advance of firefighting, known to all members of a fire crew, and re-evaluated as 

conditions change throughout the day (National Fire Protection Association 2011). The 

goal in selecting escape routes is to determine the path of least resistance and lowest risk 

between fire crew location and safety zone. To maintain a margin of safety (Beighley 

1995), firefighters must have a keen awareness of both fire behaviour and their own 

ability to traverse a given landscape. There is an extensive body of literature and several 

well established tools for modeling fire behaviour (e.g. Andrews 2014; Finney 2006, 

2004), and some data on fire crew physiological performance (Ruby et al. 2003). 

However, few studies have explored the interaction between landscape conditions and 

escape-route travel. 



52 

. 

There are several landscape conditions that can affect travel rate in a wildland 

environment, including terrain slope (henceforth, ‘slope’), low-lying vegetation density 

(‘density’) and ground surface roughness (‘roughness’). Of these factors, slope has been 

the most extensively studied for its effects on travel rate. Butler et al. (2000) examined 

the effects of slope on travel rate using data from two fires with significant firefighter 

fatalities, South Canyon and Mann Gulch. Alexander et al. (2005) performed experiments 

with Alberta firefighters to determine the effects of not only slope, but also vegetation 

type, load carriage and trail improvement on travel rates. Tobler’s Hiking Function (THF) 

is an empirically derived model for estimating travel rates based on slope Tobler (1993) 

that has been widely used in a variety of contexts, including urban evacuation modeling 

(Wood and Schmidtlein 2012), outdoor recreation planning (Pettebone et al. 2009) and 

historical migration simulation (Kantner 2004), but has rarely been applied to the 

wildland firefighting environment, one exception being (Fryer et al. 2013). Another 

common slope-travel rate function is Naismith’s Rule, developed in 1892 by Scottish 

mountaineer William Naismith, which states that hiking 1 flat mile (~1600 m) should 

take 20 min with an additional 30 min for every 1000 feet (~300 m) of elevation gain, 

though it does not account for downhill travel (Norman 2004). More recently, Davey et 

al. (1994) derived a function based on a series of treadmill experiments that predicts 

sustainable uphill travel rates over long distances based on a baseline travel rate on flat 

slopes. Though mathematically similar to Naismith’s Rule and THF, the function of 

Davey et al. (1994) provides a flexible framework for adjusting to individual-level 

fitness. Studies that have quantified slope effects on travel rate universally demonstrate 

that travelling up and down steep slopes reduces travel rate. However, methodological 
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differences make it difficult to compare experimental data relevant to firefighter 

evacuation (e.g. Alexander et al. 2005) to models like THF, Naismith’s Rule and Davey 

et al. (1994). Given the importance of slope as a predictor of travel rate, and the 

importance of travel rate on the effectiveness of escape routes, continued study is 

essential. 

Few studies have examined the effects of vegetation and ground surface 

conditions on travel rates. Alexander et al. (2005) compared experimentally derived 

travel rates to a range of vegetation types, as categorised by Canadian Fire Behavior 

Prediction fuel type. Taller, denser spruce (Picea spp.) and lodgepole pine (Pinus 

contorta) fuel types resulted in slower travel rates than shorter, less dense grass and slash 

fuel types. Anguelova et al. (2010) modelled pedestrian evacuation due to a wildfire 

using a qualitative, heuristic approach to characterise the effects of common vegetation 

types in Southern California on relative travel rates. However, the use of categorical fuel 

and vegetation types in these studies limits applying these relationships on a broad scale. 

No studies to date have explored the effects of roughness on escape route travel 

explicitly, but research in the field of applied physiology has produced relevant results. 

The Pandolf equation is a function for estimating the metabolic cost of travelling across 

various types of terrain and land cover, using a variety of ‘terrain factors’ first introduced 

by Soule and Goldman (1972), which are categorical multiplicative factors used for 

estimating energy expenditure including blacktop road (1.0), dirt road (1.1), light brush 

(1.2), heavy brush (1.5), loose sand (2.1) and soft snow (2.5) (Pandolf et al. 1977). 

Schmidtlein and Wood (2015) used these terrain coefficients to model evacuation times 

in the event of a tsunami, but point out how their categorical nature does not easily 
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translate to more commonly used measures of land cover and highlight the importance of 

continued study to determine the degree to which such coefficients match reality. 

Two fatality events, the 1994 South Canyon fire and the 2013 Yarnell Hill fire, 

highlight the critical effect that slope, density and roughness can have on travel rates. On 

the South Canyon fire, firefighters perished when trying to outrun flames up rocky slopes 

as steep as 55% (298) in an area dominated by dense Gambel oak and pinyon–juniper 

woodlands (Butler et al. 2000). On the Yarnell Hill fire, firefighters were entrapped as 

they travelled along an escape route through terrain characterised by boulders and 

covered with thick chaparral brush (Arizona State Forestry Division 2013). 

To maximise the effectiveness of escape routes, we need to deepen our 

understanding of how slope, density and roughness affect travel rate in a precise, 

quantitative manner. These three landscape conditions can all be readily modelled using 

airborne light detection and ranging (LiDAR) data. LiDAR is a type of active remote 

sensing system in which pulses of laser light are emitted from an airborne platform 

towards the earth’s surface and reflected back to the sensor, the timing of which enables 

the precise measurement of three-dimensional ground and aboveground structure (Lefsky 

et al. 2002). Airborne LiDAR has been used extensively for mapping terrain (e.g. Kraus 

and Pfeifer 2001; Reutebuch et al. 2003), vegetation structure (e.g. Bradbury et al. 2005; 

Hudak et al. 2008) and roughness (e.g. Glenn et al. 2006; Sankey et al. 2010). As such, 

the use of LiDAR has great potential for mapping escape routes. However, in the absence 

of a complete understanding of how these landscape conditions affect travel, the 

effectiveness of such an approach is limited. Accordingly, the objectives of this study are 

to: (1) perform an experiment to test the effects of slope, density and roughness on travel 
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rates, and (2) use the resulting data to develop a LiDAR-based geospatial model for 

optimising firefighter escape routes and estimating travel time to safety on a spatial scale 

most useful for wildland firefighting operations. 

 

2.3 Methods 

For this study, an airborne LiDAR dataset spanning Utah’s Wasatch Front was 

obtained from the OpenTopography LiDAR data portal (opentopography.org). The data 

were acquired by Watershed Sciences, Inc. on behalf of the State of Utah between 

October 2013 and May 2014 and have an average point density of 11.93 points m-2. The 

data are reported to have a respective average vertical accuracy of 2.43, 3.68 and 5.41 cm 

in hard surface, shrub and forested areas. A subset of the broader Wasatch Front dataset 

within Levan Wildland Management Area (39°35’15”N, 111°49’56”W) was chosen as 

the study area based on diversity of topography and vegetation, public land ownership, 

and road accessibility (Fig. 2.1). Elevations range between 1650 and 1775 m with 

dominant vegetation types of Utah juniper (Juniperus osteosperma) woodlands, big 

sagebrush (Artemisia tridentata) shrublands and mixed perennial grasslands. 

To test the effects of slope, density and roughness on travel rates, an experiment 

was conducted in which volunteer study participants were timed as they walked a series 

of linear transects. Twenty-two 100-m transects were placed to capture a range of 

vegetation and topographic conditions (Fig. 2.1). They were selected from a randomly 

generated set of transects to minimise within- and maximise between-transect landscape 

condition variability. Transects were established in the field using a Trimble Geo 7X GPS 

(Trimble, Inc., Sunnyvale, CA, USA, www.trimble.com/Survey/Trimble-Geo-7x.aspx, 

accessed 13 September 2017) with ≥200 point averaging for transect start and end points 
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and a Laser Technology TruPulse 360 rangefinder (Laser Technology, Inc., Centennial, 

CO, USA, www.lasertech.com, accessed 13 September 2017) for azimuth and distance 

measurements. Sign posts were placed at each transect start and end, and coloured 

flagging was placed in between at intervals of 5–10 m, depending on visibility. 

There were 31 study participants, none of whom had previously worked as 

firefighters (Table 2.1). Participants were partnered together and each individual walked 

the transects twice, once in each direction, and timed themselves as they walked, from 

which travel rates were computed. Participants walked the numbered transects in 

sequential order, but to avoid the potentially confounding effects of fatigue, partner 

groups were each assigned different starting transects. The experiment took place over 2 

days, each lasting ~6 h, with a 30-min lunch break in the middle of the day. Participants 

were additionally allowed to rest while their partner was walking the transect. Given that 

individuals have different average walking rates (e.g. because of different fitness levels, 

heights, weights, gaits), participants were asked to maintain a consistent level of effort 

when walking each transect. Additionally, participants were asked to stay as close to the 

flagged transect centerline as possible except when it intersected impassable vegetation, 

in which case participants were permitted to walk around obstacles. 

Travel rates were compared with LiDAR-derived estimates of slope, roughness 

and density. These metrics were generated for each transect using a combination of 

LAStools LiDAR processing software (radpidlasso GmbH, Gilching, Germany, 

www.rapidlasso.com), ESRI ArcGIS geospatial software (ESRI Inc., Redlands, CA, 

USA, www.esri.com, accessed 13 September 2017), and R statistical software (R Core 

Team, Vienna, Austria, www.r-project.org, accessed 13 September 2017). LiDAR data 
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were first classified into ‘ground’ and ‘non-ground’ points, using the lasground algorithm 

(Isenburg 2015). Several iterative classifications were performed, adjusting algorithm 

parameters as needed until the classification was deemed satisfactory according to a 

careful visual interpretation and comparison of the resulting classified LiDAR point 

cloud to high-resolution aerial imagery. Although no field validation was performed to 

obtain a quantitative, point-level accuracy assessment, it is likely that misclassifications 

between very low-lying non-ground points and ground points occurred. Slope was 

calculated by first creating a digital terrain model (DTM) at a spatial resolution of 1 m 

using the las2dem algorithm. For each transect (t), average slope (s) was then computed 

in degrees according to the difference in elevation in metres (e) at the start (a) and end (b) 

of each transect and the horizontal distance in metres (h) between a and b, such that: 

 

                                                           𝑠𝑡 = tan (
𝑒𝑏−𝑒𝑎

ℎ
)      (2.1) 

 

Roughness was calculated following an approach similar to that of Glenn et al. 

(2006) as the difference between a fine-scale DTM (0.25-m spatial resolution) and a 

‘smoothed’ DTM (also 0.25 m) generated by calculating a focal mean of elevation values 

within a 2.5-m-radius circular kernel. The resulting raster dataset contained pixel values 

representing local deviations (e.g. bumps, pits) from the broader topography (Fig. 2.2). 

Linear transects were buffered by 5 m and the absolute values of the roughness raster 

data were averaged within each buffer to obtain a transect-level roughness in metres. 

As vegetation density in different portions of the vertical canopy profile will have 

different effects on travel rates, it was first necessary to determine a suitable range of 

aboveground heights that would most directly affect travel. For example, very dense 
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vegetation in a very high or very low height stratum will likely have little effect on travel 

rates, as one could readily traverse under or over the vegetation unimpeded. LiDAR point 

clouds can be used to estimate vegetation density in distinct height strata by calculating 

normalised relative point density (NRD). NRD is a calculation of the relative proportion 

of point returns that fall within a given height range as compared with the total number of 

points that fall within and below that height range, such that: 

 

                                                             𝑁𝑅𝐷𝑖𝑗 =
∑ 𝑛

𝑗
𝑖

∑ 𝑛
𝑗
0

      (2.2) 

 

where n is the number of LiDAR point returns, i is the floor (low value) of the height 

range and j is the ceiling (high value) of the height range (USDA Forest Service 2014). 

To calculate NRD, aboveground height for each non-ground LiDAR point was first 

calculated using the lasheight algorithm, which uses the ground points to generate a 

triangulated irregular network (TIN) representing the ground surface, and then computes 

the height of each non-ground point above the TIN surface. Transects were buffered by 5 

m, and the point cloud was extracted within the buffer area. Eqn 2.2 was then used to 

calculate a single NRD value for the entire transect. Fig. 2.3 depicts an example height 

range along a 100-m transect, where i = 0.15 m and j = 2.75 m. NRD values range from 0 

to 1, with 1 being indicative of very dense vegetation in a given height range and 0 

representing very little or no vegetation. 

In order to determine the height range that had the most significant effect on 

travel rates, a series of linear mixed effects regression (LMER) analyses were performed. 

As stated earlier, some study participants consistently walk faster than others regardless 

of landscape conditions, and, although this is potentially useful information, of primary 
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interest are the relative effects (i.e. how much does vegetation density reduce travel rate 

independent of individual performance?). LMER modeling fits a series of models with 

variable (or, ‘random’) y-intercepts, providing an account of the fixed effects (the 

underlying trend) and the random effects (variability caused by individuals). 

Two different LMER analyses were run using travel rate as the dependent 

variable. The first LMER analysis was designed to determine optimal NRD height range 

that best predicted travel rates. In order to minimise the confounding effects of slope, 

only data from transects with slopes of less than 58 (n = 16) were used in this analysis. 

For every possible contiguous height range between 0 and 5 m, at intervals of 5 cm, a 

LMER model was generated in R using the lme4 package (Bates et al. 2014) to test the 

predictive power of NRD on travel rates and assessed for model fit. Models were 

assessed for fit using Nakagawa and Schielzeth (2013)’s measures for marginal and 

conditional R2 (henceforth R2
m and R2

c), representing variance explained by the fixed 

effects and the variance explained by both the fixed and random effects respectively as 

implemented in R using the MuMIn package (Bartoń 2016). NRD for the height range 

that was able to best predict travel rates was selected for further use throughout the study 

as a representation of density. The second LMER analysis assessed the combined effects 

of slope, density, and roughness on travel rates, again accounting for variability 

individuals’ travel rates. The best-fit fixed effects LMER model took the form: 

𝑡𝑟𝑎𝑣𝑒𝑙 𝑟𝑎𝑡𝑒 = 𝛼 + 𝛽1𝑑𝑒𝑛𝑠𝑖𝑡𝑦 + 𝛽2𝑟𝑜𝑢𝑔ℎ𝑛𝑒𝑠𝑠 + 𝛽3𝑠𝑙𝑜𝑝𝑒 + 𝛽4𝑠𝑙𝑜𝑝𝑒2     (2.3) 

where α is the y-intercept, representing travel rate for zero density, roughness and slope, 

and β are multiplicative model coefficients, representing relative effects of the landscape 

variables on travel rates. In order to use these travel impedance model coefficients 
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derived from transect-level experimentation in a landscape-level geospatial model for 

escape route optimisation, each of the three landscape variables was computed on a per-

pixel basis across the entire study area at a 5-m spatial resolution. Rasterised landscape 

variables were then multiplied by their model coefficients to derive travel impedance 

raster data throughout the study area. A route optimisation analysis was then performed 

in R using the raster and gdistance packages (Hijmans and van Etten 2014; van Etten 

2012). The gdistance package uses transition matrices to calculate the relative resistance 

of moving between eight directionally adjacent cells in a raster dataset. For each of the 

landscape conditions of interest, a transition matrix was generated such that for each cell, 

a travel cost (s) was computed for travelling to each of its adjacent cells, according to the 

LMER model coefficients (β1, β2, β3 and β4 above). The transition matrices were 

combined to enable an analysis of travel time for travelling between any two locations 

throughout the study area. Lastly, a series of simulations were performed to create escape 

routes between simulated fire crew and safety zone locations. Each route was generated 

automatically to identify the fastest route to safety, according to the combined transition 

matrix, using Dijkstra’s algorithm (Dijkstra 1959). Dijkstra’s algorithm computes the 

relative travel impedance of all possible routes from origin to destination based on a 

defined set of nodes (raster cells) and paths between them (connections between adjacent 

cells) and identifies the single, most efficient path. 

 

2.4 Results 

Fig. 2.4 depicts the three landscape parameters of interest (slope, density, and 

roughness) throughout the study area with the 22 transects overlaid to highlight the range 

of conditions captured in the experiment. Slopes ranged from 0 to 39.48°, density (0.15–
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2.75 m) ranged from 0 to 100%, and roughness ranged from 0 to 0.4 m. The majority of 

the juniper woodlands were found on steeper slopes at higher elevations, with sagebrush 

and grasslands dominating the lower-slope, lower-elevation terrain. In general, juniper 

woodlands tended to have the highest vegetation density, though a few of the sagebrush-

dominant transects had higher vegetation densities (e.g. transects 15 and 16, Table 2.2). 

Roughness values were highest on steeper slopes and in dry streambeds, where erosional 

and depositional processes have created rocky ground surfaces. 

In all, there were 1276 timed walks, with 10 subjects walking 22 transects, 19 

subjects walking 20 transects, and two subjects walking 19 transects, all in both transect 

directions. All resultant travel rates were used in the subsequent analyses, with no outlier 

removal. The results of the first LMER analysis to determine the NRD height range that 

best predicted experimentally derived travel rates on slopes <5°, as approximated by R2
m, 

can be seen in Fig. 2.5 and Table 2.3. Those height ranges with floors of 2 m or higher 

(e.g. 2–3 m, 3–4 m) had very little predictive power, higher (e.g. 2–3 m, 3–4 m) had very 

little predictive power, indicating that vegetation solely above the heads of study 

participants (average height 1.76 m) had little effect on travel rates. Conversely, those 

ranges with ceilings below 1 m (e.g. 0–0.5 m, 0–1 m) have low predictive power as well, 

suggesting that low-lying density alone does not account for much of the variability in 

travel rates. Consistently, the height ranges with floors between 0 and 0.5 m and ceilings 

between 2 and 4 m tend to be the best predictors of travel rates. Although several similar 

height ranges resulted in similarly high predictive power (Table 2.3), the single best 

height range of prediction was 0.15–2.75 m, with an R2
m of 0.54 and R2

c of 0.84 (Fig. 

2.5). This range was used throughout the remaining analyses. 
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Fig. 2.6 highlights the fairly wide dispersal of travel rate values at each transect, 

as represented by the spread in the y direction at each x location. This spread represents 

the tendency for some individuals to travel faster than others regardless of landscape 

conditions, and was accounted for by using LMER. 

The second LMER analysis to determine the combined effects of slope, density, 

and roughness on travel rates took the following form (R2
m = 0.59; R2

c = 0.82): 

 

                𝑡𝑟𝑎𝑣𝑒𝑙 𝑟𝑎𝑡𝑒 = 1.662 − 1.076 × 𝑑𝑒𝑛𝑠𝑖𝑡𝑦 − 9.011 × 𝑟𝑜𝑢𝑔ℎ𝑛𝑒𝑠𝑠 −          (2.4) 

(5.191 × 10−3) × 𝑠𝑙𝑜𝑝𝑒 − (1.127 × 10−3) × 𝑠𝑙𝑜𝑝𝑒2      

 

Each of the landscape parameters had a significant (P < 0.001) negative effect on 

travel rates, suggesting that as slope, density and roughness increase, travel rates decrease 

(Table 2.4). Fig. 2.7 provides a visualisation of the fixed and random effects of each 

landscape parameter. In order to display these relationships in two dimensions, for each 

landscape parameter (e.g. slope), the other two (e.g. density and roughness) were 

assumed to be the median value of those parameters among all of the transects. As can be 

seen from the magnitude of the standardised model coefficients (βstandardised, Table 2.4), 

and an analysis of variable-specific partial R2
m, density had the greatest effect on travel 

rates, followed by slope and roughness. 

Using the model coefficients from Table 2.4, Dijkstra’s algorithm (Dijkstra 1959), 

as implemented in the R gdistance package (van Etten 2012) was performed to generate a 

series of simulated least-cost escape routes throughout the study area. Example resulting 

escape routes in Fig. 2.8 highlight the anisotropic effects of slope across this landscape, 

where the least-cost route from a to b differs from that of the reverse direction. Whereas 

the least-cost routes are actually longer than the straight-line distance between these two 
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points, the travel time along the optimised routes were lower than the straight-line routes 

(Table 2.5). Similarly, whereas the b to a route was longer than the a to b route, the travel 

time from b to a is shorter. 

A series of 1000 escape-route simulations was performed between randomly 

generated location pairs to illustrate the effects of landscape parameters on route 

designation (Fig. 2.9). Slope has a major effect on route placement, given the greater 

amount of route overlap in areas where slopes are low and the sparseness in steep areas. 

Density is more locally variable on the landscape, allowing for least-cost paths to traverse 

small avenues of comparably low density within broader swaths of dense vegetation. 

Roughness is inconsistently distributed throughout the study area, with sparse pockets of 

high roughness typically found in drainage channels bearing little apparent effect on the 

placement of escape routes. The straight north–south line with a high degree of escape 

route overlap that appears in the western portion of the study area is a road, highlighting 

the model’s implicit bias towards low-slope, low-density and smooth surfaces. 

 

2.5 Discussion 

This study examined the effects of slope, density and roughness on travel rates in 

order to develop a geospatial model for wildland firefighter escape route optimisation. It 

represents a valuable contribution to the existing body of research surrounding the effects 

of slope on travel rates, and a novel attempt at quantifying the effects of density and 

roughness. At present, escape routes are designated by firefighting personnel based on the 

recommendations of the National Wildfire Coordinating Group’s Incident Response 

Pocket Guide, which suggest avoiding steep uphill escape routes, and scouting for loose 

soils, rocks, and vegetation (National Wildfire Coordinating Group 2014). Although 
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these are important recommendations, the language is inherently subjective (e.g. ‘steep’, 

‘loose’), which can result in judgment error. This study introduces a standardised method 

for quantifying these variables and providing an experimentally derived account of their 

effects on travel. It also provides a framework for mapping travel rates across large areas, 

something that has not previously been possible. Provided that there are LiDAR data 

available within a given area, the resulting geospatial escape route optimisation model 

can be used as a decision support tool, providing fire crew members with objective 

insight to aid in the identification of efficient escape routes. 

An important finding from this study was the determination of the aboveground 

density height range that most directly affected travel rates (0.15–2.75 m). The range 

floor (0.15 m) demonstrates that vegetation shorter than 15 cm in stature will most likely 

have little or no effect on one’s ability to traverse a given landscape. The range ceiling, 

however, is nearly a metre taller than the mean height of study participants (1.76 m). 

Although we did not collected GPS data to track individual movement, anecdotal 

evidence gleaned from experimental observation suggested obstacle avoidance, rather 

than passage through obstacles, was a primary cause of travel rate reduction. Given the 

subjectivity associated with obstacle avoidance and individual route selection, it is 

possible that study participants tended to avoid vegetation slightly overhead based on 

perception of travel efficiency, even if passage under said vegetation would not greatly 

impede travel. It is also possible that the specific vegetation types found within the study 

area are partly responsible for the modelled importance of overhead vegetation. 

Particularly in the case of Utah juniper, the densest portion of the canopy lies between ~2 

and 4 m in height (Fig. 2.10). It is likely that density in these higher portions of the 
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canopy are highly correlated with density in the lower portions of the canopy as well. In 

other words, dense vegetation lying above the heads of study participants, although not 

directly affecting travel, likely indicates similarly dense vegetation at height ranges that 

do directly affect travel. 

Although the 0.15–2.75-m height range was identified as the best range for 

predicting travel rates, as Table 2.3 highlights, there are several very similar ranges that 

possess similar predictive power. When combined with the inherent error in the ground 

point classification process and subtle LiDAR vertical inaccuracies, we can more broadly 

state that vegetation that generally occupies the same vertical space as a human (e.g. 0–3 

m) most directly impedes travel. 

This study has several assumptions and limitations that warrant further discussion. 

Perhaps the most important limitation is that the experiments were performed with non-

firefighting personnel and without typical firefighting gear. That said, the test population 

was not entirely dissimilar to the firefighting community, demographically. According to 

the National Wildland Firefighter Workforce Assessment, almost 50% of aid- and tech-

level USDA Forest Service firefighting personnel were between the ages of 26 and 35, as 

compared with the mean age of our study participants, which was 27 (USDA Forest 

Service 2010). Additionally, given the physical demands of the firefighting profession, 

firefighters tend to be of a high fitness level. By comparison, the study population was of 

generally above-average fitness, exercising a self-reported average of 7 h per week. One 

key difference is that this study population had a relatively large female population as 

compared with that of the firefighting community (39 v. 16% in the USDA Forest 

Service; USDA Forest Service 2010). 



66 

. 

Regardless of the specific sample population used to derive the relative effects of 

landscape conditions, estimating travel rates should be done with great caution, 

particularly when simulating escape routes travel in a potentially dangerous wildfire 

environment. The most valuable contribution of this study is the analysis of relative 

effects of landscape conditions on travel rates, which are more robust to slight differences 

in individuals’ heights, weights and fitness levels. Our data confirm this robustness, with 

an R2
c value of 0.82, which suggests that when accounting for the small differences in 

individual travel rate biases, 82% of the variance in overall travel rate is explained by 

slope, density, and roughness. The resulting model enables the automated generation of 

the fastest route to safety, irrespective of specific resulting travel rates and times. 

It is worth noting that study participants walked, rather than ran, the transects. If 

subjects were asked to run the transects, the resulting between-subject variability would 

make a robust analysis much more difficult. Additionally, the effects of fatigue between 

running the first and last of 22 transects would be more pronounced than those of 

walking, making the within-subject variability problematic for modeling purposes. 

Although one might typically associate escape routes being a measure of last resort, the 

ideal escape route evacuation scenario is one in which a fire crew proceeds along an 

escape route in line at a controlled, walking pace. Although subjects were asked to 

maintain a consistent level of effort while walking transects, there remained a level of 

uncertainty in the computation of relative travel impedance due to a lack of quantitative 

control for energy expenditure levels. To further refine the relationship between 

landscape conditions and travel rates would require the collection of more robust 

measures of physical exertion, such as oxygen consumption rates, which was beyond the 
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scope of our analysis. In addition, having subjects walk the same transects several times 

could have provided an estimate of uncertainty; however, given experimental time 

constraints, this would have limited the total number of transects and, by proxy, the range 

of landscape conditions tested. Fig. 2.11 in the Supplementary material provides a 

graphical depiction of the relative consistency of travel rates, according to how each 

study participant’s travel rates ranked among all participants for each transect. 

Another limitation of this study is the limited range of landscape conditions 

sampled throughout the 22 transects. Although a wide range of conditions was captured, 

obtaining an exhaustive sample was impossible given the practical constraints of testing 

human subjects. This is particularly true of slope, where our maximum sampled slope 

was ~15°. As a result, we must extrapolate the effects on travel rates of slopes steeper 

than 15°, which may in reality take a different form than our proposed model. For 

example, THF, Naismith’s Rule and Davey et al. (1994)’s function all flatten out towards 

the ‘tails’ on very steep slopes, but never quite reach a travel rate of zero, whereas our 

model calculates a travel rate of zero above slopes of ~36° and below slopes of ~-40° 

(Fig. 2.12). The model fit presented in Fig. 2.12 represents the effects of slope assuming 

zero density and roughness. As Fig. 2.12 depicts, the effects of slope as determined in our 

model are less pronounced than the other three models, likely due to differences in 

methodology. Whereas our study provides an account of the effects of slope over 

relatively short distances in wildland environments (100 m), the other three are based on 

long distance hiking on improved trails or treadmills. 

The strength of the approach taken in this study lies in the broad applicability of 

LiDAR metrics tested. Regardless of geography, the quantitative measures that were 
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computed from LiDAR data can be calculated in any environment. However, airborne 

LiDAR pulse density and overstorey vegetation conditions can have significant effects on 

the precision with which these measures are computed. The calculation of slope is fairly 

robust to these limitations, given the coarse scale of analysis. However, accurate 

estimation of understorey vegetation density and roughness relies on a sufficient amount 

of LiDAR pulse energy reaching the understorey and ground surface, requiring a balance 

between LiDAR pulse density and overstorey vegetation density. Though no sensitivity 

tests were performed to determine the effect of pulse density or overstorey conditions on 

characterising landscape conditions, it is likely that lower pulse densities or denser upper 

vegetation canopies than those in our study would reduce the effectiveness of our 

approach. The very nature of the roughness calculation we performed relies on assessing 

the difference between microtopography and macrotopography. As ground point densities 

decrease, those two measures begin to converge, reducing the ability to characterise small 

perturbations in the ground surface. Similarly, the understorey vegetation density 

calculation assumes that LiDAR pulse spacing will be sufficiently dense, so as to enable 

interaction with multiple features within the vertical canopy profile. With a much lower 

pulse density, deciphering between those points that reflect off of the top of the canopy 

and the middle of the canopy becomes much more difficult. Vegetation density, in 

particular, would also be difficult to characterise in vegetation types with very dense 

upper canopies, where relatively little airborne LiDAR pulse energy can reach the 

understorey. However, particularly in the fire-prone coniferous forests throughout the 

western United States, with comparably permeable upper canopies, this method should 

translate well. 
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A key assumption made in the development of this methodology is that the fastest 

route to safety is always the best route to safety, when in reality, this may not be the case. 

There are two key variables not assessed in our model: (1) road or trail access and (2) the 

location of the wildland fire. As Alexander et al. (2005) revealed, travelling along 

improved trails (flagged, cleared of brush) significantly reduced travel time along an 

escape route. Although this is implicitly accounted for in our model (presumably roads or 

trails have lower slope, density and roughness than off-trail areas), it is not explicitly built 

into the model. In a wildland firefighting environment, where high winds and smoke can 

greatly reduce visibility, travelling along a clearly defined road or trail could prove to be 

highly advantageous, even if slower than the ‘optimal’ route. That being said, by using a 

GPS and flagging the route identified by our algorithm, firefighters could reduce travel 

time by a potentially critical amount. Second, this model makes no attempt to 

characterise fire behaviour or identify current fire location. As such, it is conceivable that 

the fire would spread in a direction that would render the escape routes unsuitable or even 

fatal, as in the case of the Yarnell Hill fire in 2013. To address these points, future work 

could include model refinement to include an optional bias towards roads or trails and 

incorporation of fire location or a fire behaviour model, such as was done by Fryer et al. 

(2013) and Anguelova et al. (2010), to bias the model away from potentially dangerous 

routes. 

 

2.6 Conclusions 

The infusion of high resolution-high precision geospatial data, such as airborne 

LiDAR, into fire safety planning has the potential to greatly improve the consistency, 

reliability and efficiency of designating escape routes. However, escape routes are merely 
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one component of the LCES system and must be connected to a safety zone or other low-

risk area. As such, this research compliments recent work by Dennison et al. (2014) and 

Campbell et al. (2017), who have demonstrated methods for taking advantage of the 

advanced capabilities of LiDAR for safety zone identification and evaluation. Taken 

together, these methodologies can eliminate much of the potential for costly errors in the 

decision-making process when implementing LCES. 

This study provides several important fire safety management implications: 

• When designating escape routes, every attempt should be made to avoid steep 

slopes, dense vegetation, and rough ground surfaces. 

• The use of airborne LiDAR to precisely quantify these landscape conditions can 

help select the most efficient escape routes. 

• Mean walking travel rate on flat slopes, with minimal vegetation and ground 

surface roughness was 1.66 ms-1. 

• Travelling up slopes of 5, 10 and 15° reduced the travel rate by 3, 10 and 20% 

respectively. 

• Travelling down slopes of 5, 10 and 15° reduced the travel rate by 0, 4 and 11% 

respectively. 

• Travelling through dense juniper (NRD = 0.33) and dense sagebrush (NRD = 

0.35) reduced the travel rate by 22 and 23% respectively. 

• Travelling along rough ground surfaces (roughness = 3.57 x 10-2 m) reduced the 

travel rate by 19%. 

Particularly in light of the push to collect nationwide LiDAR data throughout the 

United States within a decade as part of the USGS 3D Elevation Program (Snyder 2012), 
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methods such as those presented in this study have the potential to enhance wildland 

firefighting safety. More work is certainly needed to validate and refine the results 

obtained in our experiments, and to test the additional effects of carrying packs, increased 

travel distance, and other external conditions such as temperature and humidity on 

firefighter travel rates, but this study represents a novel contribution in a direction that, as 

yet, has remained largely unexplored in the scientific and applied literature. 
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Table 2.1. Study participant summary. 

 

 
n 

Mean age 

(years) 

Mean height 

(m) 

Mean 

weight (kg) 

Mean exercise 

(h week–1) 

All subjects 31 26.97 1.76 73.22 7.00 

 Male 19 26.11 1.81 81.65 7.78 

 Female 12 28.33 1.67 59.87 5.83 
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Table 2.2. Transect landscape parameter mean values. 

 

Transect Length (m) Slope (°) Density (%) Roughness (m) 

1 99.77 3.04 33.24 2.02 × 10-2 

2 99.96 3.55 25.17 1.91 × 10-2 

3 99.77 3.52 31.50 1.81 × 10-2 

4 99.80 3.71 16.83 1.78 × 10-2 

5 100.04 1.74 9.76 2.06 × 10-2 

6 100.07 3.29 3.57 2.18 × 10-2 

7 100.01 0.09 1.86 2.47 × 10-2 

8 100.20 15.23 4.75 2.61 × 10-2 

9 102.49 13.22 9.35 3.57 × 10-2 

10 99.70 14.61 17.87 2.16 × 10-2 

11 100.77 14.02 16.72 2.46 × 10-2 

12 99.97 2.60 4.08 1.64 × 10-2 

13 99.69 3.15 13.27 1.76 × 10-2 

14 99.99 2.07 19.94 1.97 × 10-2 

15 100.31 2.96 34.17 2.25 × 10-2 

16 100.48 2.16 34.65 1.89 × 10-2 

17 100.52 1.98 27.44 2.41 × 10-2 

18 100.51 0.44 13.79 2.18 × 10-2 

19 100.17 2.21 5.61 1.71 × 10-2 

20 99.95 1.61 2.98 1.80 × 10-2 

21 99.96 15.90 40.20 2.04 × 10-2 

22 100.06 15.57 30.47 1.83 × 10-2 
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Table 2.3. Results from regression analyses to determine optimal light detection and 

ranging (LiDAR) normalised relative point density (NRD) height range for predicting 

travel rate along slopes of less than 5°. 

 

Rank NRD height range R2
m R2

c 

1 0.15–2.75 m 0.540 0.839 

2 0.15–2.70 m 0.540 0.838 

3 0.15–2.65 m 0.539 0.838 

4 0.15–2.60 m 0.539 0.837 

5 0.15–2.80 m 0.539 0.837 

… … … … 

5053 4.85–4.90 m 0.008 0.272 
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Table 2.4. Fixed effects for model predicting travel rates. Probabilities are significant at: 

***, α = 0.001. Residual degrees of freedom = 1269. 

 

Parameter β s.e. βstandardised t p 

intercept (α) 1.662 0.025    

density –1.076 0.024 –0.551 –45.67 <0.001*** 

roughness –9.011 0.743 –0.171 –12.13 <0.001*** 

slope –5.191 × 10-3 3.675 × 10-4 –0.168 –14.12 <0.001*** 

slope2 –1.127 × 10-3 3.649 × 10-5 –0.263 –30.89 <0.001*** 
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Table 2.5. Resulting travel distances, times and rates for simulated escape routes. 

 

Route 
Straight-line 

distance (m) 

Route 

distance (m) 

Travel 

time (s) 

Straight line mean 

travel rate (m s–1) 

Route mean 

travel rate (m s–1) 

a → b 941.5 1038.9 969.6 0.97 1.07 

b → a 941.5 1157.8 950.0 0.99 1.22 
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Fig. 2.1. Study area map, with background imagery care of ESRI (ESRI Inc., Redlands, 

CA, USA, www.esri.com). 
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Fig. 2.2. Roughness calculation; digital terrain model (DTM) elevation values 

exaggerated 3x to highlight texture. 
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Fig. 2.3. Example transect with associated light detection and ranging (LiDAR) point 

cloud cross-section and example height range (0.15–2.75 m); heights scaled for clarity, 

with background imagery care of ESRI (ESRI Inc., Redlands, CA, USA, www.esri.com). 
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Fig. 2.4. Landscape parameters with transects. 
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Fig. 2.5. Power of light detection and ranging (LiDAR) normalised relative point density 

(NRD) height ranges from 0 to 5 m for predicting travel rates along slopes of <5° as 

approximated by Nakagawa and Schielzeth (2013)’s measure for marginal R2 (R2
m) 

compared with average study subject height. Best interval (0.15–2.75 m) shown. 
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Fig. 2.6. Effect of density, as approximated by the optimal light detection and ranging 

(LiDAR) normalised relative point density (NRD) height range (0.15–2.75 m), on travel 

rates along slopes less than 5°. 
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Fig. 2.7. Predicted results of linear mixed effects regression (LMER) for each landscape 

condition within the range of values found on transects throughout the study area, 

assuming a median value of the other two conditions. 
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Fig. 2.8. Two simulated escape routes representing the least-cost paths between points a 

and b in both directions; background imagery: ESRI (ESRI Inc., Redlands, CA, USA, 

www.esri.com). 
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Fig. 2.9. Results of least-cost routes between 1000 randomly generated point location 

pairs throughout the study area with route overlap displayed against landscape 

parameters. 
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Fig. 2.10. Density plot of light detection and ranging (LiDAR) point return heights, 

measured as a proportion of all returns, for a transect with dense juniper. 
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Fig. 2.11. How each study participant’s travel rates ranked among all  

participants for each transect 
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Fig. 2.12. Comparison of model results (calculated assuming zero vegetation density and 

zero ground surface roughness) to three well-established models used to estimate the 

effects of slope on travel rate. Davey et al. (1994)’s model was calibrated to match our 

model’s 0° slope travel rate. 
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CHAPTER 3 

 

 

QUANTIFYING UNDERSTORY VEGETATION DENSITY 

 

USING SMALL FOOTPRINT AIRBORNE LIDAR 

 

 

3.1 Abstract 

 

The ability to quantify understory vegetation structure in forested environments 

on a broad scale has the potential to greatly improve our understanding of wildlife 

habitats, nutrient cycling, wildland fire behavior, and wildland firefighter safety. Lidar 

data can be used to model understory vegetation density, but the accuracy of these 

models is impacted by factors such as the specific lidar metrics used as independent 

variables, overstory conditions such as density and height, and lidar pulse density. Few 

previous studies have examined how these factors impact estimation of understory 

density. In this study, we compare two widely-used lidar-derived metrics, overall point 

relative density (ORD) and normalized point relative density (NRD) in an understory 

vertical stratum, for their abilities to accurately model understory vegetation density. We 

also use a bootstrapping analysis to examine how lidar pulse density, overstory 

vegetation density, and canopy height can affect the ability to characterize understory 

conditions. In doing so, we present a novel application of an automated field photo-based 

understory cover estimation technique as reference data for comparison to lidar. Our 

results highlight that NRD is a far superior metric for characterizing understory density 

than ORD (R2
NRD = 0.44 vs. R2

ORD = 0.14). In addition, we found that pulse density had 
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the strongest positive effect on predictive power, suggesting that as pulse density 

increases, the ability to accurately characterize understory density using lidar increases. 

Overstory density and canopy height had nearly identical negative effects on predictive 

power, suggesting that shorter, sparser canopies improve lidar’s ability to analyze the 

understory. Our study highlights important considerations and limitations for future 

studies attempting to use lidar to quantify understory vegetation structure.  

 

3.2 Introduction 

Understory vegetation plays a large number of critical roles in forest ecosystems. 

It is often the most species-rich and diverse portion of a forest (Eskelson et al., 2011). 

Low-lying vegetation cover provides prey species with visual cover to aid in avoiding 

predation (Lone et al., 2014). For forest-dwelling mammals, much of the nutritious and 

palatable forage is found in the understory (Nijland et al., 2014). The quantity and size of 

tree regeneration has important implications not only for forest health, but also economic 

importance for timber production (Korpela et al., 2012). Understory biomass contributes 

to carbon sequestration and soil nutrient cycling (Estornell et al., 2011; Suchar and 

Crookston, 2010). Understory plants also play an important role in maintaining soil 

structure and reducing erosion (Suchar and Crookston, 2010). Surface fuel loading and 

bulk density are some of the most important predictors of wildland fire intensity and rate 

of spread (Keane, 2014). The presence of ladder fuels in the understory of a forested 

environment can facilitate the transition from a surface fire to a crown fire, which can 

have dramatic impacts on post-fire ecosystems (Kramer et al., 2016; Stephens, 1998). 

Understory vegetation density has also been linked to firefighter safety, given that more 

dense understories can reduce the ability to efficiently traverse wildland environments 
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(Campbell et al., 2017a) and impact safety zone suitability (Campbell et al., 2017b). For 

these reasons and many others, it is essential to be able to quantify the abundance and 

spatial distribution of understory vegetation in forested environments. 

There are many ways to characterize understory vegetation in the field (Higgins et 

al., 2005). One of the most common methods for doing so is through the use of cover 

boards, which rely on visually estimating of the relative proportion of a board of known 

dimensions that is being obscured by vegetation from a given vantage point (Jones, 1968; 

Nudds, 1977). Although field-based methods tend to be both highly precise and accurate, 

implementation is costly, time-consuming, and even the most extensive field campaigns 

result in a mere sample of the broader landscape. When field data collections designed to 

sample the landscape in an unbiased and representative manner are used in conjunction 

with remote sensing, however, field estimates of understory structure can be used as 

training data for predictive models, thus enabling the broad-scale imputation of 

vegetation biometrics. Although cover boards have been rarely used as such, they have 

much potential for use in conjunction with remote sensing technologies such as airborne 

light detection and ranging (lidar) (Kramer et al., 2016). A widely-acknowledged 

limitation of cover board analysis, however, is that the subjectivity inherent to the visual 

estimation of cover board cover is prone to error (Collins and Becker, 2001; Limb et al., 

2007; Morrison, 2016). This has motivated the more recent implementation of digital 

image processing into the semi-automated analysis of cover board photos (Jorgensen et 

al., 2013). 

In recent decades, lidar has emerged as a leading technology in the mapping of 

three-dimensional vegetation structure. Lidar is particularly useful in characterizing 
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understory structure, as narrow beams of laser light emitted in rapid succession from an 

airborne sensor can exploit small gaps in a forested canopy. The pulses interact with 

features in the understory (tree leaves, branches, and boles, shrubs, grasses, and forbs) 

and reflect back to the sensor; the timed pulse returns can provide detailed information on 

understory structure. Particularly in the past 15 years, as lidar technology and associated 

data processing capacities have improved, the number of studies involving the use of 

lidar to characterize understory conditions has grown rapidly (Alexander et al., 2013; 

Campbell et al., 2017a; Chasmer et al., 2006; Clark et al., 2004; Estornell et al., 2011; 

Korpela et al., 2012; Kramer et al., 2016; Maltamo et al., 2005; Martinuzzi et al., 2009; 

Morsdorf et al., 2010; Mutlu et al., 2008; Nijland et al., 2014; Riaño et al., 2003; Singh et 

al., 2015; Su and Bork, 2007). To accurately model these conditions, however, first 

requires a careful selection of appropriate ground reference information capable of 

linking ground conditions to remotely sensed data, such as cover board analysis. In 

addition, the selection of relevant lidar-derived metrics for statistical comparison is of 

critical importance. Many such metrics have been used throughout the literature, but two 

height stratum-based metrics have dominated in characterizing the understory: overall 

relative point density (ORD) and normalized relative point density (NRD). A roughly 

equal number of studies have employed the use of ORD (Hudak et al., 2008; Maltamo et 

al., 2005; Martinuzzi et al., 2009; Mutlu et al., 2008; Riaño et al., 2003; Singh et al., 

2015) and NRD (Campbell et al., 2017a; Goodwin et al., 2007; Kramer et al., 2016; Lone 

et al., 2014; Seielstad and Queen, 2003; Skowronski et al., 2007; Su and Bork, 2007), but 

none has compared the two for their respective predictive capabilities. Lastly, there are 

many factors that can affect the accuracy of the resulting structural models that must be 
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carefully considered when attempting to characterize the understory, including lidar pulse 

density, overstory vegetation density, and canopy height. 

The objectives of this study are to (1) develop a method for automated cover 

board photo analysis for use as reference data for lidar understory density estimation; (2) 

compare two widely-used lidar vertical stratum metrics (overall relative point density and 

normalized relative point density) with respect to their ability to accurately characterize 

understory vegetation density; and (3) determine the relative effects of lidar pulse 

density, overstory vegetation density, and canopy height on the ability to accurately 

characterize understory vegetation density. 

 

3.3 Background 

3.3.1 Characterizing understory structure using cover boards 

There are a number of ways to characterize forest understory structure in the field. 

(Higgins et al., 2005) present a comprehensive review of these methods. Some of the 

most oft-employed field methods for estimating understory cover are visual obstruction 

methods. Though the specific methods vary slightly, the assessment is generally based on 

the determination of the degree to which a distant reference object of known dimensions 

is being covered by vegetation from a given vantage point. The underlying assumption is 

that denser vegetation will result in a greater proportion of the object being covered. The 

two most common reference objects are cover poles (Robel et al., 1970) and cover boards 

(Jones, 1968; Nudds, 1977), the former enabling obstruction estimation in one dimension, 

the latter in two. Cover poles are simpler to analyze, given the ease with which one can 

quantify the proportion of vegetation cover in a single dimension, but cover boards, with 

their larger sample area, provide more detailed information to the analysis. Cover boards 
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have been used extensively, particularly in wildlife habitat studies (Duebbert and 

Lokemoen, 1976; Griffith and Youtie, 1988; Jones, 1968; Musil et al., 1994; Sage et al., 

2004; Winnard et al., 2013). 

The main problem with cover board analyses is the subjectivity of field- or photo-

based cover interpretation. Studies have repeatedly demonstrated significant variability in 

individual analysts’ cover estimates (Collins and Becker, 2001; Limb et al., 2007; 

Morrison, 2016). A number of authors have attempted to overcome the issue of 

interpreter subjectivity by capturing a digital photo of the cover board and subsequently 

classifying between board and non-board pixels in some semi-automated fashion (Boyd 

and Svejcar, 2005; Carlyle et al., 2010; Jorgensen et al., 2013; Limb et al., 2007; Marsden 

et al., 2002; Winnard et al., 2013). Limb et al. (2007) compared this procedure to visual 

interpretation of a cover board and cover pole, finding that the classification approach 

greatly reduced the variability in cover estimates and attained the highest degree of 

correlation with field-sampled biomass. However, many of these studies rely on manually 

thresholding the pixel value brightness to distinguish between board and vegetation, 

which can be even more error-prone than visual interpretation (Booth et al., 2005; 

Jorgensen et al., 2013). Accordingly, a small number of studies have begun using more 

advanced image analysis, including supervised classification (Jorgensen et al., 2013). 

Another key limitation of cover board-based studies – and, by extension all solely 

field-based studies – is that they represent a mere sampling of the broader landscape. 

Remote sensing is one potential solution to this problem, provided that a robust, 

statistical relationship can be determined between a field-based measure such as cover 

board cover and some remote sensing dataset capable of characterizing understory 
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vegetation structure, such as lidar. To our knowledge, there has only been one published 

study to date that has attempted to bridge this divide (Kramer et al., 2016). Kramer et al. 

(2016) used cover board cover as training data in a lidar-based model aimed at 

quantifying ladder fuels for fire behavior prediction, demonstrating a high degree of 

predictive power. In a plot-level study of deer predation, Lone et al. (2014) used both 

cover board and lidar-derived estimates of understory cover as predictors in a logistic 

regression model, finding that both variables were strong predictors of predation; 

however, there was no analysis of the degree to which the two measures were correlated. 

Given that Kramer et al. (2016) and Lone et al. (2014) employed manual visual 

interpretation of cover board photos to assess understory cover, no studies, to date, have 

linked digitally-classified cover board photos to lidar-derived understory metrics. 

 

3.3.2 Characterizing understory structure using lidar 

Airborne discrete-return lidar has been widely used for modeling overstory forest 

conditions, such as height (Ben-Arie et al., 2009; Hopkinson et al., 2006; Khosravipour et 

al., 2015; Popescu et al., 2002), basal area (Bright et al., 2013; Chen et al., 2007; Hudak 

et al., 2006; Lefsky et al., 1999), canopy cover/closure (Ahmed et al., 2015; Holmgren et 

al., 2003; Korhonen et al., 2011; Smith et al., 2009), species composition (Brandtberg, 

2007; Korpela et al., 2010; Vaglio Laurin et al., 2016), and leaf area index (Korhonen et 

al., 2011; Riaño et al., 2004; Richardson et al., 2009; Tang et al., 2014). However, 

comparably few studies have examined the ability of lidar to characterize understory 

conditions. Among these studies, the most common approach to doing so is the area-

based approach of Næsset (2002). This method relies on statistically relating one or more 
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lidar-derived metrics within an area of a given size and dimensions to some ground-based 

vegetation biometric data collected within that same area (Næsset, 2002). The 

development of an associated predictive model based on that relationship enables broad-

scale biometric mapping across un-sampled areas (Wulder et al., 2013). A variety of 

different statistical modeling techniques have been employed to develop these predictive 

relationships, including more traditional, parametric modeling techniques such as 

ordinary least squares regression (Clark et al., 2011), multiple regression (Hudak et al., 

2006), and stepwise regression (Drake et al., 2002), and more advanced, non-parametric 

modeling techniques such as k-nearest neighbor (Falkowski et al., 2010), support vector 

machines (Dalponte et al., 2011), and random forests (Martinuzzi et al., 2009). 

Parametric models have the advantage of conceptual simplicity, being based on linear 

relationships between a set of predictor (or independent) variables and a single response 

(or dependent) variable, the results of which can be easily interpreted and evaluated for 

logical consistency (Penner et al., 2013). However, non-parametric models – particularly 

advanced machine learning algorithms such as random forests – can often result in higher 

imputation accuracies, albeit at the expense of model transparency and potential for 

overfitting (Hudak et al., 2008; Latifi et al., 2010). 

One of the most important steps in the area-based analytical process is the 

selection of lidar metrics. Evans et al. (2009) provide an extensive list of metrics that 

have been used throughout the lidar literature. These metrics, ranging from basic 

descriptive statistics such as mean, standard deviation, and range, to more advanced 

parameters such as skewness and kurtosis, can be computed on an entire lidar point cloud 

extracted within a given x by y area (e.g. mean lidar point return height within a 30 x 30 
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m area) (Evans et al., 2009). However, one of the great strengths of lidar is the ability to 

analyze point clouds in discrete vertical strata. Thus, instead of computing these metrics 

on the entire vertical extent of a given area, you can first subdivide the point cloud into a 

series of voxels, based on one or more aboveground height thresholds. This approach is 

particularly useful when attempting to characterize understory structure in forested 

environments (Goodwin et al., 2007; Mutlu et al., 2008; Riaño et al., 2003; Seielstad and 

Queen, 2003; Skowronski et al., 2007). 

Two important vertical stratum metrics that are often used in analyzing understory 

structure are overall relative point density (ORD) and normalized relative point density 

(NRD) (USDA Forest Service, 2014). A key assumption of both ORD and NRD is that as 

vegetation density increases, the likelihood of a given lidar pulse interacting with 

vegetation increaseS, thus increasing the proportion of aboveground vegetation point 

returns. ORD for a given height range between i and j is defined as the number of points 

(n) that fall between i and j divided by the total number of points in a given area, from the 

ground level (height = 0) to the height of the highest point (k) such that: 

 

                                                𝑂𝑅𝐷(𝑖,𝑗) =
∑ 𝑛

𝑗
𝑖

∑ 𝑛𝑘
0

 (3.1) 

 

NRD is very similar, but it characterizes point density as compared only to the 

number of points within a given height range and below, such that: 
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This is an important distinction, as NRD is theoretically more robust to 

differences in overstory conditions (USDA Forest Service, 2014). In the presence of a 

dense overlying canopy, much of the lidar pulse energy is likely to be absorbed in the 

upper canopy, thus reducing the amount of energy, and in turn the proportion of point 

returns, in the understory, regardless of actual understory density. Figure 3.1 contains a 

figurative example of lidar point cloud in a conifer forest with both a dense overstory and 

a dense understory of regeneration. As can be seen, the majority of the point returns are 

found within the overstory as a result of lidar pulse occlusion. If one were to calculate 

understory ORD in this example, the result would be relatively low (e.g. 0.1), suggesting 

that understory density is low, when it is, in fact, relatively high. Conversely, NRD, 

ignoring the overstory returns, would be much higher (e.g. 0.6), more accurately 

representing true understory density. Despite the apparent conceptual advantage of NRD 

over ORD, particularly for characterizing understory structure, there is no clear evidence 

in the literature as to which metric results in improved model accuracy. Nor is there any 

sort of agreement on which metric to use, with a large number of studies using ORD 

(Hudak et al., 2008; Maltamo et al., 2005; Martinuzzi et al., 2009; Mutlu et al., 2008; 

Riaño et al., 2003; Singh et al., 2015), and a similar number using NRD (Campbell et al., 

2017a; Goodwin et al., 2007; Kramer et al., 2016; Lone et al., 2014; Seielstad and Queen, 

2003; Skowronski et al., 2007; Su and Bork, 2007). No studies to date have directly 

compared the respective efficacy of ORD and NRD at characterizing understory 

conditions. 
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3.3.2.1 Characterizing understory structure with ORD 

Riaño et al. (2003) characterized understory conditions using lidar by first 

performing a cluster analysis to distinguish between overstory and understory returns, 

and then computing both understory cover using ORD, and understory height by 

calculating the 99th percentile of understory returns. Maltamo et al. (2005) modeled 

understory tree number and heights using lidar, finding that ORD bore no significant 

predictive power for estimating either parameter, instead finding that maximum lidar 

return height, proportion of all vegetation returns, and height percentiles were more 

effective predictors. Mutlu et al. (2008) fused lidar ORD data calculated in a series of 

height bins ranging from 0 to 2 m in height with QuickBird imagery to generate a high-

resolution surface fire behavior fuel type map. Martinuzzi et al. (2009) modeled 

understory shrub cover and standing dead snags using random forest modeling of a range 

of predictor variables, determining that three predictors were most valuable for 

characterizing understory structure: (1) ORD of ground points; (2) ORD between 1 and 

2.5 m; and a slope-aspect transformation terrain variable. Singh et al. (2015) included 

several understory ORD metrics in a random forest model for the detection of an invasive 

understory plant in North Carolina, but found that they bore little importance in the 

resultant best-fit prediction model. 

 

3.3.2.2 Characterizing understory structure with NRD 

Seielstad and Queen (2003) provided one of the earliest examples of lidar-based 

understory vegetation structural characterization, demonstrating how NRD (referred to as 

“obstacle density”) between 0 and 6 feet in aboveground height can be used to distinguish 

between several of Anderson's (1982) 13 fire behavior surface fuel models. Goodwin et 
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al. (2007) compared NRD between 0.5 and 4 m in height to field-based ocular estimates 

of understory cover, finding that NRD alone was a strong predictor of cover. Skowronski 

et al. (2007) analyzed ladder fuels in the understory through the analysis of a series of 

vertical strata, finding that NRD between 1 and 2 m in height and NRD between 2 and 3 

m in height were strongly correlated to the presence of ladder fuels. Su and Bork (2007) 

used a clustering technique to separate understory from overstory returns, and further 

between shrub and herbaceous layers. They attempted to model shrub and herbaceous 

cover using NRD as the sole predictor; however, no significant relationships were found. 

Wing et al. (2012) used a modified form of NRD, which involved an intensity-based filter 

aimed at minimizing the inclusion of ground points. However, they also used ORD to 

characterize overstory conditions. 

 

3.3.2.3 Effects of pulse density 

Airborne lidar is, in essence, a sampling instrument. Laser pulses are emitted in 

rapid succession from a sensor aboard an aircraft towards the ground surface. They 

interact with one or more surfaces on or above the ground and reflect back to the sensor, 

the timing of which enables the precise measurement of sensor-surface distance. When 

combined with onboard GPS and inertial measurement unit, the resulting point returns 

form a cloud containing millions of individual points, each of which has an x, y, and z 

coordinate, as well as a reflection intensity. The pulse frequency and emission angles 

depend on the specifications of the lidar instrument used. The pulse spacing is a function 

of frequency, angle, flying height, and speed. Higher altitudes and faster speeds result in 

higher pulse spacing (lower pulse density). Thus, with higher pulse density, you are 

getting a more detailed sampling of the earth’s surface. There are more pulses per unit 
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area to potentially interact with more surfaces on the ground. Accordingly, it can be 

assumed, and indeed has been widely cited, that higher pulse density lidar data 

collections enable the generation of more precise, high-resolution estimates of three-

dimensional structure (Estornell et al., 2011; Pesonen et al., 2008; Wing et al., 2012). 

While this general relationship is widely accepted, the specific effects of pulse density on 

the ability of lidar to accurately characterize understory structure have not been explored 

in the scientific literature. 

 

3.3.2.4 Effects of overstory density 

One of the great advantages of using airborne lidar in forested environments is the 

ability of individual laser pulses to exploit gaps in the overstory to reach understory 

vegetation and thus facilitate the structural characterization thereof. However, as the 

density of overstory vegetation increases, the size and number of those gaps decreases. 

Accordingly, it has been acknowledged by a number of authors that denser canopies 

reduce the ability to accurately characterize sub-canopy vegetation (Chasmer et al., 2006; 

Falkowski et al., 2008; Goodwin et al., 2007; Hill and Broughton, 2009; Maltamo et al., 

2004; Martinuzzi et al., 2009; Mutlu et al., 2008; Richardson and Moskal, 2011; Su and 

Bork, 2007; Wing et al., 2012). 

Chasmer et al. (2006) demonstrated how lidar pulse occlusion in dense forest 

canopies negatively impacts live crown base height estimation. Maltamo et al. (2004) 

highlighted the degree to which the presence of overstory trees negatively impacts both 

sub-canopy tree identification and height estimation. Falkowski et al. (2008) similarly 

found that subdominant trees were more difficult to delineate using automated tree 

identification algorithms as canopy cover increased. Su and Bork (2007) compared lidar-
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understory cover model predictive power between open- and closed-canopy aspen 

forests; however, they were unable to obtain any statistically-significant predictive 

relationships in either environment, thus nullifying the comparative ability. Korpela et al. 

(2012) provide a detailed analysis of lidar pulse transmission in a forested environment, 

highlighting the effects of species-specific canopy cover on the likelihood of given pulses 

interacting with features in the understory. They also suggest a potentially significant 

effect of scan angle, indicating that including a variety of scan angles may provide more 

opportunity for canopy penetration. Wing et al. (2012) found no effect of canopy cover 

on understory cover prediction accuracy; however, they suggest that this may be a unique 

effect of the distinct vertical stratum differences between understory and overstory 

vegetation in the ponderosa pine (Pinus ponderosa) forests they were studying.  

Several studies have quantified the effect of overstory vegetation cover and/or 

density on the resultant accuracy of lidar-derived digital terrain models (DTMs) (Clark et 

al., 2004; Hopkinson et al., 2006; Reutebuch et al., 2003; Su and Bork, 2006; Takahashi 

et al., 2006). These studies consistently demonstrate decreasing DTM accuracy with 

increasing overstory cover. However, very few studies have explicitly tested the effect of 

overstory conditions on the ability to characterize the understory, with the exception of 

Su and Bork (2007) who found no effect and Wing et al. (2012) who suggest that the 

specific vegetation type they studied may be anomalous with respect to its overstory-

understory relationship. One of the key challenges of examining the effect of overstory 

density on the ability of lidar to characterize understory density is that there tends to be a 

negative correlation between overstory density and understory density, because as canopy 

cover increases, less light is able to reach the forest floor, limiting the ability of light-
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dependent understory plants to regenerate (Alexander et al., 2013; Bartemucci et al., 

2006; Kerns and Ohmann, 2004; Martinuzzi et al., 2009; Wing et al., 2012). Accordingly, 

when analyzing the effects of overstory lidar occlusion, one must be aware of this 

potentially confounding ecological relationship. 

 

3.3.2.5 Effects of canopy height 

While much of the canopy occlusion effect can be explained by overstory density, 

we hypothesize that there is an additional, independent effect of canopy height. This 

effect is likely to manifest primarily on off-nadir (higher emission angle) pulses. In the 

presence of very tall trees, even if those trees are widely spaced (low density), an angular 

lidar pulse is more likely to interact with multiple overstory surfaces prior to reaching the 

understory (Figure 3.2). For example, in a forest of 150 foot tall trees, a 20° pulse can 

interact with two trees almost 55 m apart. This may be a partial explanation for the lack 

of an effect of overstory cover on the ability to accurately characterize understory 

conditions found by Wing et al. (2012). They were working in forests typically 

characterized by tall and widely-spaced ponderosa pine trees. Although many have 

implicated the effects of overstory vegetation on lidar-based understory characterization, 

none have explicitly related the effect to a continuous measure of canopy height. 

 

3.4 Methods 

3.4.1 Study area 

This study was conducted in the Monroe Mountain area of Fishlake National 

Forest in central Utah (Figure 3.3). This area was selected primarily due to the 

availability of recent, high-quality lidar data collected during leaf-on conditions. The 
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lidar data were acquired by Digital Mapping, Inc. on behalf of the USDA Forest Service 

and Utah Automated Geographic Reference Center between August and September of 

2016 with an average point density of 16.43 pts/m2. The 711 km2 area ranges in elevation 

from 1711 m to 3418 m. The dominant vegetation types within the study area include 

black sagebrush (Artemisia nova) and big sagebrush (Artemisia tridentata) shrublands, 

pinyon-juniper (Pinus edulis and Juniperus osteosperma), Gambel oak (Quercus 

gambelii), and curlleaf mountain mahogany (Cercocarpus ledifolius) woodlands, and 

quaking aspen (Populus tremuloides), Engelmann spruce (Picea engelmannii), white fir 

(Abies concolor), and subalpine fir (Abies lasiocarpa) forests. The area has seen 

significant changes in vegetation conditions over the past few decades, including 

widespread beetle-induced Engelmann spruce mortality, and aspen decline due to 

decreased fire frequency and increased grazing (USDA Forest Service, 2017). In recent 

years, along with a number of partner organizations, the Forest Service has enacted 

extensive forest management in the Monroe Mountain area, including mechanical 

treatment and prescribed burning, to promote aspen regeneration. These changes have 

combined to produce a landscape mosaic of diverse forest types and conditions in both 

the understory and overstory. 

 

3.4.2 Field data 

3.4.2.1 Field site selection 

In order to facilitate direct comparison to the lidar data, field data were collected 

exactly one year after the lidar data were acquired (between August and September of 

2017). Field sites had to meet the following criteria to facilitate accessibility, promote 

data collection efficiency, and reduce potential edge effects. Sites had to be: (1) within 
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100 m of major roads; (2) at least 25 m from all roads and water features; (3) on slopes of 

less than 10 degrees; and (4) on public lands. In addition, with the primary goal being to 

analyze understory vegetation in forested environments, sites had to be located within 

areas where vegetation equal to or greater than 2 m in height occupied at least 20% of a 

given 30 x 30 m area. This required the creation of a canopy height model (CHM) from 

lidar. A study area-wide CHM was generated at a 1 m spatial resolution as the difference 

between a digital terrain model, interpolated from lidar points classified as “ground” 

points, and a digital surface model, interpolated from all first-return lidar points. A binary 

tree vs. non-tree classification was performed using a 2 m CHM height threshold. The 

classification was then aggregated to 30 m to determine relative tree cover.  

The combination of these site placement criteria resulted in a relatively small area 

of eligibility. Within this area of eligibility, we employed a conditioned Latin hypercube 

sampling (CLHS) strategy in order to capture a broad range of vegetation conditions. 

CLHS is a stratified random sampling procedure that enables the selection of samples 

that simultaneously maximize the variability captured in each of a defined set of variables 

(Minasny and McBratney, 2006). The variables we chose to include were: (1) lidar-

derived elevation; (2) lidar-derived understory (0.15 – 1.85 m) NRD (NRDunder); (3) 

lidar-derived overstory (> 1.85 m) NRD (NRDover); (4) lidar-derived vegetation height; 

and (5) Landsat 8 OLI-derived normalized difference vegetation index. All lidar data 

processing was performed using LAStools (Isenburg, 2015). 

Fifty sample points were placed within the area of eligibility using the CLHS 

algorithm, as implemented in the clhs package in R statistical software (R Core Team, 

2016; Roudier, 2017) (Figure 3.3). Each point was then converted to a 10 m transect line, 
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by extending a line 5 m in each direction perpendicular to the terrain slope (along the 

contour), to ensure relatively flat transects. 

 

3.4.2.2 Cover board photos 

Cover boards are most often designed to facilitate visual photo interpretation, 

typically comprising a grid of alternately-colored boxes, like a checkerboard. Thus, when 

analyzing a cover board photo, one can readily judge how many boxes, or what portions 

of each box, are covered by vegetation, the averaging of which can provide an estimate of 

overall cover for the entire board. However, in order to reduce the potential for 

interpretation error and/or observer bias in cover estimation, we opted to create a cover 

board that could be analyzed in an objective, automated fashion. To do so, the board 

needed to be both easily distinguished from natural vegetation, and a single, uniform 

color. Through preliminary experimentation it was determined that a magenta-colored 

cover board would be highly spectrally separable from vegetation. Accordingly, we 

created a 1.5 x 1.5 m magenta cover board using heavy-duty canvas and PVC pipes 

(Figure 3.4). In addition, our preliminary work highlighted the fact that small differences 

in viewing angle could result in significant differences in the resultant cover estimate. 

Accordingly, we created a 1.5 x 1.5 m photo viewing grid, also using canvas and PVC, 

with 25 equally-spaced viewing holes through which cover board photos would be taken 

(Figure 3.4). 

We navigated to each transect start point, staked the photo viewing grid into the 

ground, and collected a GPS point using a Trimble Geo7x with 200+ point averaging. We 

then used a tape to measure 10 m from the start point to the end point using a compass to 

navigate in the direction of the azimuth defined during the transect generation process. 
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We then staked the cover board into the ground and collected another GPS point. Lastly, 

we took photos through each of the viewing grid holes towards the cover board, totaling 

25 photos per site using a SONY HX-50V digital camera, with a fixed, 8X optical zoom. 

 

3.4.2.3 Photo classification 

As a result of the field data collection effort, there were 1250 cover board photos 

(50 sites x 25 photos). Rather than attempt to visually estimate the cover in each of these 

photos, an automated “board” vs. “non-board” classification was performed as follows. A 

program was written in R using the raster package (Hijmans et al., 2016) to load each 

photo sequentially, and generate 4 random points within a square area generally occupied 

by the cover board (square length and height equal to 2/3 of the photo height). Each point 

was then visually interpreted as either “board” or “non-board”. “Non-board” is an 

inclusive class that represents pixels containing anything besides the cover board, 

primarily live and dead vegetation. There were 5000 photo interpreted points in total, 

4800 of which were randomly designated as training data, and 200 of which were 

designated as accuracy assessment data (100 “board” points, 100 “non-board” points). 

For each of the 4800 training points, red, green, and blue (RGB) pixel value 

means were extracted within a 5x5 pixel square immediately surrounding it. A number of 

derivative variables were also calculated to improve classification accuracy (Table 3.1). 

We performed a stepwise logistic regression, beginning with a full model that contained 

all of the independent variables in Table 3.1 and iteratively removing them until an 

optimal balance between model complexity and variance explained, as approximated by 

the Akaike Information Criterion (AIC). The resulting model was used to classify 

“board” and “non-board” in all 1250 photos. We assessed overall and class-specific 
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user’s and producer’s accuracies of the photo classification using the accuracy 

assessment data. 

Given that every photo was taken from a fixed distance (10 m), with a consistent 

zoom (8x), towards a board of the same size (1.5 x 1.5 m), relative cover could be easily 

calculated, provided that a relative scale could be determined between photo pixel size 

and cover board size. To calculate this scale, we first needed to identify a single photo 

from each transect that had at least one entire cover board dimension (either a full width 

or height) visible. There were only 4 transects where no such dimensions were clearly 

visible. For the remaining 46, a measurement was taken in Adobe Photoshop of 

equivalent number of pixels for each cover board height or width, depending on which 

was more clearly visible. From this, an effective per-pixel area could be calculated. This 

effective pixel area was then multiplied by the number of pixels classified as “board” for 

each photo, which was then compared to the entire board area (2.25 m2) to determine 

relative cover. Overall understory cover was then calculated for each transect by taking 

the mean value for all 25 photos. 

 

3.4.3 GIS and lidar data processing 

The GPS points representing transect start and end points were differentially 

corrected using base station data from nearby Scipio, UT and converted to shapefile 

format for use in GIS. A line was drawn between points representing the transect, and a 

buffer created around each transect within which the lidar data would be analyzed. A 0.75 

m rectangular buffer was generated around the transect line to represent the precise area 

between cover board and photo grid (10 m long x 1.5 m wide). However, given the small 
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uncertainty in the GPS data, we performed an additional buffer around the rectangle of 

0.25 m (Figure 3.5). 

Lidar point cloud data were extracted within each transect plus GPS uncertainty 

buffer. The following metrics were derived for each transect point cloud: (1) understory 

NRD from 0.15 – 1.85 m (NRDunder); (2) understory ORD from 0.15 – 1.85 m 

(ORDunder); (3) overstory ORD from > 1.85 m (ORDover); (4) 95th height percentile; and 

(5) pulse density. Even though the cover board ranged in height from 0.25 – 1.75 m, we 

opted to add 10 cm to both ends to account for small uncertainty in the vertical accuracy 

of lidar returns and to create a more inclusive voxel to increase the number of point 

returns analyzed. We did not calculate overstory NRD because overstory ORD and NRD 

are the same metric, since it was inclusive of all points higher than 1.85 m. 

 

3.4.4 Analysis 

In order to assess their respective abilities to predict understory vegetation 

density, individual ordinary least squares regression models were generated for ORDunder 

and NRDunder. Both ORD and NRD displayed non-normal, right-skewed distributions. 

Accordingly, log regression was performed in both cases. The models were compared 

according to the degree to which the lidar-based independent variables were able to 

explain variance in the cover board-based dependent variable, as approximated by R2, 

and AIC. 

In order to determine the relative effects of lidar pulse density, overstory 

vegetation density, and canopy height, we performed a bootstrapping analysis. Ten-

thousand random samples of 20 were taken from the 50 original transect-level data 

points, without replacement. For each sample data subset, the mean pulse density, the 
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mean overstory ORD, and the mean 95th height percentile were calculated. In addition, a 

regression model was generated comparing understory NRD (independent variable) to 

cover board cover (dependent variable) for each subset as well, from which R2 values 

were computed. We then compared the subset data pulse density, overstory ORD, and 

95th height percentile to the resultant model R2 in a series of individual ordinary least 

squares regression analyses to determine the relative effects of these variables on the 

degree to which understory NRD can predict understory vegetation density in a series of 

regression analyses. Lastly, in order to account for the potentially confounding effects 

arising from correlation between overstory ORD and 95th height percentile, we performed 

a multiple regression containing all three predictor variables (pulse density, overstory 

ORD, and 95th height percentile). 

 

3.5 Results 

In total, 1250 photos were classified according to a binary “board” vs. “non-

board” classification (Figure 3.6). Of the 18 spectral variables generated for each photo, a 

stepwise regression algorithm determined that a combination of 8 variables was best for 

distinguishing between those image pixels that contained primarily board and those that 

contained primarily non-board (predominantly vegetation) (Table 3.2). Each predictor 

variable was significant at a level of α = 0.1. The model coefficients were used to develop 

a prediction equation, such that: 

 

𝑦 = 0.039𝑅 − 0.077𝐺 + 0.052𝐵 + 423.9𝑅𝑛𝑜𝑟𝑚 + 8.678𝑁𝐷𝐺𝐵 + (3.3) 

57.57𝑁𝐷𝐵𝑅 − 237.0𝑁𝐷𝑀𝐶 − 62.63𝑁𝐷𝑌𝑀 − 0.015  
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where variable names are listed in Table 3.2. Resulting pixel values greater than or equal 

to 0.5 were classified as board (1); those pixels with values less than 0.5 were classified 

as non-board (0). Randomly-selected accuracy assessment points were compared to the 

resultant classification (Table 3.3). Overall accuracy was high, at 97.5%. Inaccuracies 

arose solely in the commission of pixels classified as non-board, suggesting that the 

resulting classified images tended to slightly overestimate cover by a small margin. 

For each transect, a single density estimate was obtained by taking the mean 

percent cover for each of the 25 gridded photos. Transect-level cover board density was 

then compared to lidar-derived ORDunder and NRDunder (Figure 3.7). NRDunder far 

outweighed ORDunder in terms of predictive power (R2: 0.442 vs. 0.137) and model 

quality (AIC: -15.802 vs. 5.966). ORDunder bore almost no recognizable relationship to 

cover board density (Figure 3.7a). 

The results of the bootstrapping analysis to determine the relative effects of pulse 

density, overstory vegetation density, and canopy height on the ability to accurately 

model understory density can be seen in Figure 3.8 and Table 3.4. Although there is 

much spread in the resulting scatterplots, each variable was found to have a statistically 

significant relationship to the NRD-cover board density model R2 values in a multiple 

regression environment (α = 0.001). As the standardized coefficients suggest, pulse 

density had the effect of greatest magnitude on R2, followed by overstory density and 

canopy height, which had very similar effects. Accordingly, as pulse density increases, 

the ability to model understory density using lidar NRDunder increases. Conversely, as 

overstory vegetation density (as approximated by lidar ORDover) increases, the ability to 

model understory density using lidar NRDunder decreases. And lastly, as canopy height (as 
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approximated by lidar 95th height percentile) increases, the ability to model understory 

density using lidar NRDunder decreases. 

 

3.6 Discussion 

Lidar is unique in its ability to characterize understory structure at a high spatial 

resolution across broad tracts of forest land. While this ability has widespread application 

in fields ranging from wildlife biology to wildland firefighter safety, there are some key 

considerations that require addressing before engaging in such an analysis. We have 

presented and quantified the effects of a number of these considerations in this study. The 

first consideration is the selection of appropriate understory lidar metrics for use in 

modeling understory vegetation density. Throughout the literature, there have been a 

wide array of metrics used for characterizing understory vegetation (Evans et al., 2009). 

In nearly every study we found, researchers used some form of a vertically-stratified lidar 

point density measure as either the single, or one of many predictor variables. The 

underlying assumption of such a measure is that denser vegetation in a given height 

stratum will have a greater likelihood that a given lidar pulse will interact with vegetative 

surfaces. Thus, an assessment of the relative proportion of lidar point returns that fall in 

that same height stratum should provide some information about the density of 

vegetation. Relative proportion, however, can be calculated in two primary ways: (1) 

number of points in a height stratum relative to the total number of points in a given area 

(overall relative point density, or ORD), and (2) number of points in a height stratum 

relative to the number of points in that stratrum and below (normalized relative point 

density, or NRD). 
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There is no agreement in the lidar literature about which metric should be used, as 

researchers have seemingly used ORD and NRD with relatively equal frequency and no 

one has yet compared the predictive power of the two. We compared ORD to NRD for 

their respective abilities in predicting understory density as measured in the field, finding 

that NRD was far superior in this regard. NRD was able to explain nearly half of the 

variance in field-measured understory density, whereas ORD explained next to none. 

This significant difference is likely a result of overstory conditions. The very nature of 

understory vegetation suggests that there is overlying vegetation. Many authors have 

pointed to the fact that overstory vegetation can result in lidar pulse energy occlusion, 

thus limiting the ability to characterize understory conditions. NRD accounts for 

differences in overstory vegetation, as it only takes into consideration those portions of a 

given lidar pulse that have already penetrated the canopy in computing relative 

proportion. ORD does not. Accordingly, if one’s goal is to characterize understory 

conditions in a forested environment – particularly one with a dense overstory – the 

results of our study suggest using NRD. In the absence of an overstory, however, NRD 

and ORD are, in fact, the exact same measure. 

The results of our study also suggest that NRD, though preferable to ORD, does 

not account for all overstory effects. The very fact that NRD only accounted for roughly 

half of the variance in field-measured density highlights this fact. Accordingly, we 

examined the effects of two overstory conditions on understory model fit. Using a 

bootstrapping analysis, we found that as overstory density and canopy height increase, 

the ability to effectively model understory conditions decreases. In addition, as pulse 

density increases, so too does the ability to model understory conditions. Thus, it comes 
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as no surprise that the superior ability of NRD to accurately quantify understory density 

is maximized with a high pulse density lidar dataset in areas with shorter, sparser 

canopies. For example, if we take the uppermost 97.5 percentile of pulse density (17.90 

pulses/m2) and the lowermost 2.5 percentile of overstory density (0.38) and canopy 

height (9.04 m) in our bootstrapped data – representing “ideal” conditions while avoiding 

extrapolation – the resultant R2 for using NRD to predict understory would be 0.59, 

according to our multiple regression results. Presumably, with an even higher pulse 

density, and even lower overstory density and canopy height, this relationship could 

improve even more. 

However, even in these optimal conditions, a noteworthy amount of variance is 

still left unexplained. There are several reasons why this may be the case. First, as in all 

lidar-based studies but particularly in those that examine near-ground vegetation 

conditions, the accuracy of the classification between ground and non-ground points is 

critical (Meng et al., 2010). The ground point classification is the basis upon which lidar 

point aboveground heights are calculated prior to calculation of metrics for predictive 

modeling. Particularly when working in as narrow of a height range with a low-end 

threshold as low as we did in this study (0.15 – 1.85 m), a few misclassified ground 

points can have a dramatic effect on resultant NRD calculations. The dataset we used in 

this study has a self-reported vertical root mean square error of 6.1 cm for ground points, 

and a 95% confidence interval of ± 11.9 cm. Thus, it is highly likely that some of the 

points we considered aboveground vegetation were in fact ground points, and vice versa. 

In this study area in particular, there was an abundance of downed coarse woody debris, 
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which a ground filtering algorithm may have difficulty distinguishing from the ground 

(Pesonen et al., 2008). 

A second factor than may have negatively impacted the lidar-understory density 

relationship found in our study stems from the nature of our field data. As discussed 

earlier, cover boards are an invaluable tool for characterizing understory conditions, 

widely used for their efficiency of implementation, conceptual simplicity, and 

applicability in a range of disciplines. Our study represents one of the first attempts at 

using cover boards as ground reference data for direct comparison to lidar, with Kramer 

et al. (2016) being the only other published example to date. While it shows great 

promise as a source of training and validation data, there are limitations that emerge, 

primarily from the effects of viewing geometry. To avoid biasing our dataset towards 

open understories, we made every attempt to place our viewing grid on the precise, 

computer-generated GPS location to the extent that it was physically possible. Likewise, 

we attempted to place the cover board exactly 10 m from the viewing grid along a pre-

defied azimuth. While this facilitated an unbiased sample, occasionally it resulted in, for 

example, the viewing grid falling right behind the bole of a tree. Thus, even in a 

relatively open stand, cover could appear relatively high, due to the relationship between 

viewing geometry and tree proximity. Figure 3.9 demonstrates one such example, where 

mean cover is increased almost entirely due to the presence of a single tree bole. Our use 

of a 25-photo, multi-angle viewing grid was explicitly aimed at reducing these effects. 

And, in fact, the calculation of standard deviation between individual photo cover 

estimates allowed us to quantify the effects of this viewing geometry-based structural 

complexity on lidar-understory density model fit. As can be seen in Figure 3.10, as 
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structural complexity increases, the ability to accurately characterize understory density 

using lidar decreases.  

 

3.7 Conclusions 

Lidar is an incredibly powerful remote sensing dataset capable of assessing a wide 

range of vegetation structural conditions; however, it is not without its limitations. In this 

study, we inquired into several important considerations that studies aimed at quantifying 

understory structure in forested environments must take into account. Specifically, we 

highlight that lidar NRD is far superior to ORD in terms of its modeling capacity. This is 

a particularly impactful result, as no one has yet quantitatively compared the two, and yet 

each is widely used throughout the lidar literature. We also provide robust, quantitative 

backing to the oft-cited but scarcely-quantified effects of pulse density, overstory 

vegetation density, and canopy height on the ability to characterize forest understory 

vegetation density. 

Although every attempt was made to maximize the variety of conditions sampled 

in our study, continued study is needed in a broader range of vegetation conditions – 

especially overstory conditions – to expand the spatial applicability of the results we 

obtained from our study area in Monroe Mountain, UT. In addition, while the use of 

cover boards as ground reference data for lidar-based quantification of understory 

vegetation density is promising, more research is required to determine methodological 

optimality (e.g. plot layout, board material/color/dimensions). 
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Table 3.1. Spectral variables used in stepwise logistic regression to classify board vs. 

non-board on cover board photos. 

 

Variable Abbreviation Calculation 

Red R 8-bit R pixel mean 

Green G 8-bit G pixel mean 

Blue B 8-bit B pixel mean 

Normalized red Rnorm R / (R + G + B) 

Normalized green Gnorm G / (R + G + B) 

Normalized blue Bnorm B / (R + G + B) 

Magenta M (R + B) / 2 

Cyan C (B + G) / 2 

Yellow Y (G + R) / 2 

Normalized magenta Mnorm M / (M + C + Y) 

Normalized cyan Cnorm C / (M + C + Y) 

Normalized yellow Ynorm Y / (M + C + Y) 

Normalized difference red-green NDRG (R – G) / (R + G) 

Normalized difference green-blue NDGB (G – B) / (G + B) 

Normalized difference blue-red NDBR (B – R) / (B + R) 

Normalized difference magenta-cyan NDMC (M – C) / (M + C) 

Normalized difference cyan-yellow NDCY (C – Y) / (C + Y) 

Normalized difference yellow-magenta NDYM (Y – M) / (Y + M) 
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Table 3.2. Stepwise logistic regression model results for cover board photo classification. 

Null deviance = 6131.12 on 4799 degrees of freedom. Residual deviance = 658.92 on 

4791 degrees of freedom. 

 

Model Parameter Coefficient Standard Error z value p 

Intercept -0.015 38.00 -3.907 < 0.001 

R 0.039 0.009 4.456 < 0.001 

G -0.077 0.015 -5.127 < 0.001 

B 0.052 0.016 3.323 < 0.001 

Rnorm 423.9 113.6 3.730 < 0.001 

NDGB 8.678 4.980 1.743 0.081 

NDBR 57.57 24.56 2.344 0.019 

NDMC -237.0 58.06 -4.082 < 0.001 

NDYM -62.63 16.24 -3.856 < 0.001 
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Table 3.3. Cover board photo classification accuracy assessment. 

 

  Reference data Accuracy 

  Board Non-board User Producer Overall 

Classified data 
Board 95 0 100.0% 95.0% 

97.5% 
Non-board 5 100 95.2% 100.0% 
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Table 3.4. Results of multiple regression analysis between bootstrapped R2 values and 

pulse density, overstory density, and canopy height (R2 = 0.104, p < 0.001). 

 

Model Parameter Coefficient Standardized Coefficient Standard Error t value p 

Intercept 0.029 0.476 0.054 0.525 0.6 

Pulse density 0.050 0.024 0.003 17.64 < 0.001 

Overstory density -0.489 -0.018 0.048 -10.15 < 0.001 

Canopy height -0.017 -0.017 0.002 -9.281 < 0.001 
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Figure 3.1. Three-dimensional lidar point cloud example of a multi-aged lodgepole pine 

(Pinus contorta) forest stand containing both a dense overstory and understory. The 

yellow circles represent simulated lidar point returns. The dotted lines distinguish 

between vertical strata representing ground returns (< 0.25 m), understory returns (0.25 – 

2 m), and overstory returns (> 2 m). 
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Figure 3.2. The relationship between tree height and theoretical tree separation distance 

under which individual lidar pulses could interact with multiple trees at various scan 

angles. 
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Figure 3.3. Study area map. Monroe Mountain area of Fishlake National Forest outlined 

in black. 
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Figure 3.4. Cover board photo setup. 

  



129 

. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

Figure 3.5. Transect layout. 
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Figure 3.6. Cover board photo classification example results. In the lower two panels, 

white indicates pixels classified as “board” and black indicates pixels classified as “non-

board”. 
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Figure 3.7. Comparison between ordinary least squares regression models predicting 

cover board density using lidar-based understory overall relative point density (ORD) (a) 

and normalized relative point density (NRD) (b). 
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Figure 3.8. The bootstrapped effect of lidar pulse density (a), overstory canopy density 

(as approximated by lidar overall relative point density of all points higher than 1.85 m) 

(b), and canopy height (as approximated by 95th percentile of lidar point return height) (c) 

on the ability of lidar to model understory cover (as approximated by the amount of 

variance in cover board cover explained by lidar understory normalized relative point 

density). 
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Figure 3.9. Photo-by-photo cover estimates for an example transect that demonstrate the 

effect that a single tree can have on overall, transect-level cover estimates. 
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Figure 3.10. The effect of understory complexity, as approximated by the standard 

deviation of cover derived from individual photo cover estimates, on the ability to 

characterize understory density using lidar NRD. 
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CONCLUSIONS 

 

 

Throughout over a century of wildland firefighting in the US, there have been 

many important milestones and evolutions in wildland firefighter safety. One of the first 

major advances was the required establishment of safety zones in response to 11 

firefighter fatalities on the Inaja fire in 1957 (Butler, 2014). Since then, a host of safety 

initiatives, protocols, and tools have been developed. Major safety initiatives included the 

required passage of a fitness test prior to engaging in wildland firefighting in 1975 

(Sharkey, 1998), Project Aquarius, which aimed to study the physiology and effects of 

wildland firefighting (Budd et al., 1997), the TriData study, a broad-scale survey of 

firefighting personnel geared towards understanding the major obstacles to safety in 

wildland firefighting (TriData, 1996), and the establishment of the International 

Association of Wildland Fire, whose Safety Summit conferences bring together fire 

science and management in order to share ideas for improving wildland firefighter safety. 

Major safety protocols include the Lookouts, Communications, Escape routes and Safety 

zones (LCES) protocol (Gleason, 1991), the 10 Standard Fire Orders (Ziegler, 2007), and 

the 18 Watch Out Situations (Morse, 2004). Major safety tools include personal 

protective equipment such as fire-resistant Nomex uniforms (Braun et al., 1980) and fire 

shelters (Putnam, 1996), fire modeling applications such as FARSITE (Finney, 2004), 

FlamMap (Finney, 2006), and BehavePlus (Andrews et al., 2005), and fire safety 

applications such as WUIVAC (Cova et al., 2005; Dennison et al., 2007). 
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The research presented in this dissertation represents a potentially significant step 

forward in a direction that has, as yet, remained largely unexplored in the scientific and 

applied literature: the application of remote sensing and geospatial technology to the 

evaluation of safety zones (SZ) and escape routes (ER). SZ and ER are two of the most 

important safety measures that firefighters can employ to mitigate potentially hazardous 

situations. Although guidelines exist for the suitability assessment of both, the 

implementation thereof still requires a degree of subjectivity inherent to interpreting 

ground-level conditions. The use of lidar remote sensing, in particular, can provide 

firefighters with high spatial resolution models of those landscape conditions that are 

most directly relevant to SZ and ER suitability, including terrain and vegetation structure. 

The methods that I have developed for the lidar-based identification and evaluation of 

potential SZ and ER can provide firefighters with objective, quantitative information in 

advance of firefighting, not to replace, but to assist in the selection of SZ and ER on the 

ground. 

In Chapter 1, I presented a new metric for identifying and evaluating SZ and an 

algorithm for calculating this metric on a broad spatial scale using lidar. Existing SZ safe 

separation distance guidelines are based solely on the effects of radiant heat (Butler and 

Cohen, 1998). However, more recent research has suggested that the additional effects of 

convective heat can significantly increase safe separation distance, particularly when 

upslope and/or downwind of flames (Butler, 2015, 2014; Parsons et al., 2014). Chapter 1 

represents the first attempt at incorporating these effects into the mapping and suitability 

assessment of SZ. The proposed metric, the Safe Separation Distance Score (SSDS), is a 

single value that can be computed for all potential SZ in a given area, incorporating 
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vegetation height within and surrounding the SZ, the geometry of the SZ, and the number 

of firefighting personnel and assets present. This enables firefighters to use the resultant 

maps of SSDS to determine when a given SZ will be suitable according to local slope and 

wind conditions to improve the efficiency and effectiveness of the SZ designation 

process. 

In Chapter 2, I presented the results of an experiment geared towards improving 

our understanding of the degree to which landscape conditions affect travel rates when 

moving along an escape route in wildland environments. Specifically, I tested three 

landscape variables – slope, understory vegetation density, and ground surface roughness 

– each of which can be mapped using lidar. The effects of slope have been previously 

explored by several authors (Butler et al., 2000; Davey et al., 1994; Tobler, 1993), and a 

select few have examined the effects of broad, categorical vegetation and ground surface 

types (Alexander et al., 2005; Soule and Goldman, 1972), but my work represents the 

first experimental characterization of the more scalable and broadly-applicable measures 

of vegetation density and ground surface roughness on travel rates. The results suggest 

that all three conditions negatively affect travel rates, with vegetation density having the 

strongest effect. Knowing the specific, quantitative effects that each of these variables 

possessed, I was able to generate maps of relative travel impedance from lidar. These 

travel impedance surfaces could then be combined and used in conjunction with a 

geospatial route-finding algorithm in order to identify the maximally efficient route 

between any two locations in a wildland environment. This approach could provide 

firefighters with an objective, experimentally-backed and quantitatively robust method 

for identifying an escape route between the fire line and a safety zone. This work 



147 

. 

represents the first-ever attempt at the geospatial optimization of wildland firefighter 

escape routes on a broad spatial scale using lidar remote sensing. 

In Chapter 3, I explored the process of quantifying understory vegetation density 

using lidar. Given the importance of this landscape condition in predicting wildland 

travel rates, it is essential to develop a sound understanding of the strengths and 

limitations of its quantification. There are several key variables that can affect the quality 

of a lidar-based assessment of understory vegetation structure, including the methods 

selected for field reference data collection, the lidar metrics used as model predictors, the 

pulse density of the lidar data, and overstory vegetation conditions, such as canopy 

density and height. My study contains one of the first applications of vegetation cover 

boards as training data for lidar-based modeling of understory vegetation, and the first 

such application that employed an automated cover board photo classification technique 

– a technique that shows much promise for future implementation. Throughout the 

literature, there have been many lidar metrics used as model predictors for imputing 

vegetation structure, but two vertically-stratified, point density-based metrics have 

dominated: overall relative point density (ORD) and normalized relative point density 

(NRD). Though their conceptual bases, underlying assumptions, and equations are quite 

similar, my study was the first to compare and reveal their significant differences in 

relative predictive power, with NRD far out-performing ORD. I also determined that with 

increasing pulse density, decreasing overstory vegetation density, and decreasing canopy 

height, the ability to accurately characterize understory vegetation density increases. The 

results of this study broadly provide a foundation upon which future studies of understory 

vegetation structure can be built, and perhaps most importantly, highlight the conditions 
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that will control the relative effectiveness of lidar-based wildland firefighter escape route 

mapping in different environments.  

Taken together, the studies presented in this dissertation highlight much promise 

for the use of lidar in wildland firefighter safety applications. The ability to identify, 

evaluate, and map SZ and ER in advance of firefighting using objective measures of 

existing landscape conditions stands to greatly improve the implementation of LCES, 

ideally reducing the risk of injury and fatality among firefighters. Using the SZ 

evaluation procedure I have introduced, it may be feasible to produce a nationwide map 

of existing potential SZ in the relatively near future. Such a map could be provided to fire 

management agencies, or an interagency groups such as the National Wildfire 

Coordinating Group and National Interagency Fire Center and be distributed to fire crews 

on the ground to assist in fire safety planning. The map could act as either a basis of 

quantitative suitability comparison of existing SZ, if there are a number of potential SZ in 

a given area, or highlight a lack of SZ in a given area, prompting fire crews to create a SZ 

manually or rely on previously-burnt, “black” areas for safety. Similarly, generating 

nationwide maps of existing landscape conditions, such as terrain slope, vegetation 

density, and ground surface roughness in advance of firefighting would allow for the 

rapid computation maximally efficient ER, given the relative travel impedance results 

gleaned from this research. Although lidar data processing on broad scales remains fairly 

cumbersome at present, route-finding algorithms require comparably less computing 

power, potentially enabling such computation to occur on a smartphone or GPS unit on 

the fire line, provided that landscape conditions can be mapped in ahead of time. Thus, 

even in the complex firefighting environment, where situational awareness and visibility 
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can be greatly reduced, following a pre-defined route mapped onto the display of a 

handheld device may provide firefighters with an unparalleled ability to navigate to 

safety. 

The broad-scale implementation of the SZ and ER mapping and evaluation 

techniques introduced in these studies, however, are not without critical limitations. I 

explicitly tested the effects of some of these limitations, particularly with respect to ER 

mapping, in Chapter 3. The most significant obstacle to broad-scale implementation is the 

current lack of nationwide lidar. This obstacle will likely be resolved in the near future 

with the implementation of the USGS 3D Elevation Program, which aims to collect high-

quality lidar data throughout the entire US (Snyder, 2012; Sugarbaker et al., 2014). That 

said, although nationwide lidar would be a boon to research in the field of wildland 

firefighter safety and well beyond, a single snapshot in time will not provide sufficient 

temporal relevancy for analyzing conditions that are prone to short-term changes, such as 

vegetation structure. Particularly in fire-prone areas throughout the western US, it would 

be highly advantageous to have lidar data collected at a fairly high temporal resolution – 

at least once every 5 years or so. It is even conceivable that, with the increasing 

availability and decreased cost of unmanned aerial vehicle and lidar technology, 

combined with an ever-increasing capacity for rapidly and efficiently processing complex 

datasets, SZ and ER mapping can eventually be accomplished in real time. 

These limitations, although important, do not detract from the work that I have 

presented here. Developing these methods in advance of data availability allows us to 

refine my understanding of the complex interactions between humans, fire, and the 

surrounding landscape. One of the major risks in engaging in wildland firefighter safety 



150 

. 

research, particularly when attempting to evaluate critical safety measures such as SZ and 

ER, is that errors in the analytical methodology and/or theoretical framework could put 

firefighters in danger. Accordingly, there is still much work to be done to build upon the 

foundational research that I have presented here. With respect to the mapping of SZ, one 

of the key variables not addressed in my algorithm is mapping of fuel type and conditions 

within and surrounding the SZ. My model accounts for vegetation height in these areas, 

but does not distinguish between, for example, short shrubby vegetation and short 

herbaceous vegetation within the safety zone, which could result in significantly different 

rates of fire spread and intensities. Likewise, in the area surrounding a safety zone, an 

analysis of fuel loading and/or bulk density, each of which can be estimated using lidar 

(e.g. Andersen et al., 2005; Erdody and Moskal, 2010; Mutlu et al., 2008; Riaño et al., 

2004a), may have a significant effect on safe separation distance. Though our 

understanding of the very precise effects these variables have on radiant and convective 

heat transfer is still developing, at the very least an assessment of, for example, an SZ 

with “high fuel load” versus “low fuel load” surrounding vegetation could provide 

valuable insight into its relative safety. 

In terms of ER mapping, there are a host of variables that affect travel rates that I 

was simply unable to account for due to limitations in experimental logistics. For 

example, a key variable that has been shown to have significant effects on wildland 

firefighter travel efficiency is load carriage (Alexander et al., 2005; Ruby et al., 2003). In 

addition to necessitating more physical exertion, carrying a large, heavy pack through 

dense vegetation, for example, may have an interacting effect, due to the increased bulk, 

and the decrease in agility. Thus, future experiments should incorporate a pack versus no 
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pack variable when assessing travel rates. In addition, regardless of the travel efficiency, 

if an ER were to send firefighters into an area where their viewshed was dramatically 

reduced (e.g. a gully), this would reduce their situational awareness, and potentially 

increase their risk of injury or fatality. Given that lidar provides a detailed three-

dimensional account of both terrain and aboveground vegetation structure, the 

incorporation of a viewshed analysis to highlight landscape visibility along the ER could 

provide a quantitative measure of ER situational awareness. 

Lastly, for both SZ and ER mapping, it would be highly advantageous to 

incorporate the results of these mapping algorithms with those of a fire behavior model. 

For example, a SZ with a high SSDS value (suitable in a wide range of conditions) that is 

in the path of predicted fire spread may prove to be of less value than a SZ with a lower 

SSDS value in an area that the fire is not anticipated to reach. Likewise, an ER of 

maximal travel efficiency that travels through an area within the predicted fire spread is 

of comparably little utility to a less efficient route that travels through an area where fire 

is unlikely to spread. Accordingly, future research should attempt to provide a more 

holistic and realistic account of the wildland fire environment as a whole when assessing 

SZ and ER suitability. 

 

References 

 

Alexander, M.E., Baxter, G.J., Dakin, G.R., 2005. Travel rates of Alberta wildland 

firefighters using escape routes, in: Butler, B.W., Alexander, M. E. (Eds.), Human 

Factors - 10 Years Later. Presented at the Eighth International Wildland Fire 

Safety Summit, International Association of Wildland Fire, Missoula, MT. 

Andersen, H.-E., McGaughey, R.J., Reutebuch, S.E., 2005. Estimating forest canopy fuel 

parameters using LIDAR data. Remote Sensing of Environment 94, 441–449. 



152 

. 

Braun, E., Cobble, V.B., Krasny, J.F., Peacock, R.D., 1980. Measurement of the 

protective value of apparel fabrics in a fire environment. Journal of Consumer 

Product Flammability 7, 15–25. 

Budd, G.M., Brotherhood, J.R., Hendrie, A.L., Jeffery, S.E., Beasley, F.A., Costin, B.P., 

Zhien, W., Baker, M.M., Cheney, N.P., Dawson, M.P., 1997. Project aquarius 1. 

stress, strain, and productivity in men suppressing Australian summer bushfires 

with hand tools: Background, objectives, and methods. International Journal of 

Wildland Fire 7, 69–76.  

Butler, B.W., 2015. Firefighter safety zones [WWW Document]. Fire, Fuel, and Smoke 

Science Program, Rocky Mountain Research Station. URL 

https://www.firelab.org/project/firefighter-safety-zones (accessed 10.21.17). 

Butler, B.W., 2014. Wildland firefighter safety zones: A review of past science and 

summary of future needs. International Journal of Wildland Fire 23, 295–308.  

Butler, B.W., Cohen, J.D., 1998. Firefighter safety zones: A theoretical model based on 

radiative heating. International Journal of Wildland Fire 8, 73–77.  

Butler, B.W., Cohen, J.D., Putnam, T., Bartlette, R.A., Bradshaw, L.S., 2000. A method 

for evaluating the effectiveness of firefighter escape routes. 4th International 

Wildland Fire Safety Summit 10–12. 

Cova, T.J., Dennison, P.E., Kim, T.H., Moritz, M.A., 2005. Setting wildfire evacuation 

trigger points using fire spread modeling and GIS. Transactions in GIS 9, 603–

617.  

Davey, R.C., Hayes, M., Norman, J.M., 1994. Running uphill: An experimental result 

and its applications. The Journal of the Operational Research Society 45, 25–29.  

Dennison, P.E., Cova, T.J., Mortiz, M.A., 2007. WUIVAC: A wildland-urban interface 

evacuation trigger model applied in strategic wildfire scenarios. Natural Hazards 

41, 181–199.  

Erdody, T.L., Moskal, L.M., 2010. Fusion of LiDAR and imagery for estimating forest 

canopy fuels. Remote Sensing of Environment 114, 725–737.  

Finney, M.A., 2006. An overview of FlamMap fire modeling capabilities, in: Fuels 

management -- How to measure success: Conference proceedings. USDA Forest 

Service, Rocky Mountain Research Station, Portland, OR, pp. 213–220. 

Finney, M.A., 2004. FARSITE: Fire area simulator: Model development and evaluation 

(Research Paper No. RMRS-RP-4). USDA Forest Service, Rocky Mountain 

Research Station Ogden, UT. 



153 

. 

Gleason, P., 1991. Lookouts, communications, escape routes, and safety zones [WWW 

Document]. Wildland Fire Leadership. URL 

https://www.fireleadership.gov/toolbox/documents/lces_gleason.html (accessed 

2.17.17). 

Morse, G.A., 2004. A trend analysis of fireline “watch out” situations in seven fire-

suppression fatality accidents. Fire Management Today 66. 

Mutlu, M., Popescu, S.C., Stripling, C., Spencer, T., 2008. Mapping surface fuel models 

using lidar and multispectral data fusion for fire behavior. Remote Sensing of 

Environment 112, 274–285.  

Parsons, R., Butler, B., Mell, W. “Ruddy,” 2014. Safety zones and convective heat: 

numerical simulation of potential burn injury from heat sources influenced by 

slopes and winds. Imprensa da Universidade de Coimbra, Coimbra. 

Putnam, T., 1996. Your fire shelter: Beyond the basics. National Interagency Fire Center. 

Riaño, D., Chuvieco, E., Condés, S., González-Matesanz, J., Ustin, S.L., 2004. 

Generation of crown bulk density for Pinus sylvestris L. from lidar. Remote 

Sensing of Environment 92, 345–352.  

Ruby, B.C., Iii, G.W.L., Armstrong, D.W., Gaskill, S.E., 2003. Wildland firefighter load 

carriage: Fffects on transit time and physiological responses during simulated 

escape to safety zone. International Journal of Wildland Fire 12, 111–116.  

Sharkey, B., 1998. Work capacity tests for wildland firefighters: Test administrator’s 

guide (No. 9851–2810–MTDC), Technology and Development Program. USDA 

Forest Service, Missoula, MT. 

Snyder, G.I., 2012. The 3D elevation program: Summary of program direction (USGS 

Numbered Series No. 2012–3089), Fact Sheet. U.S. Geological Survey, Reston, 

VA. 

Soule, R.G., Goldman, R.F., 1972. Terrain coefficients for energy cost prediction. Journal 

of Applied Physiology 32, 706–708. 

Sugarbaker, L.J., Constance, E.W., Heidemann, H.K., Jason, A.L., Lukas, V., Saghy, 

D.L., Stoker, J.M., 2014. The 3D elevation program initiative: A call for action 

(USGS Numbered Series No. 1399), Circular. U.S. Geological Survey, Reston, 

VA. 

Tobler, W.R., 1993. Three presentations on geographical analysis and modeling (No. 93–

1). National Center for Geographic Information and Analysis, University of 

California at Santa Barbara. 



154 

. 

TriData, 1996. Wildland firefighter safety awareness study: Phase I - Identifying the 

organizational culture, leadership, human factors, and other issues impacting 

firefighter safety. 

Ziegler, J.A., 2007. The story behind an organizational list: A genealogy of wildland 

firefighters’ 10 standard fire orders. Communication Monographs 74, 415–442.  

 

 




