687 research outputs found

    Orbital Angular Momentum Waves: Generation, Detection and Emerging Applications

    Full text link
    Orbital angular momentum (OAM) has aroused a widespread interest in many fields, especially in telecommunications due to its potential for unleashing new capacity in the severely congested spectrum of commercial communication systems. Beams carrying OAM have a helical phase front and a field strength with a singularity along the axial center, which can be used for information transmission, imaging and particle manipulation. The number of orthogonal OAM modes in a single beam is theoretically infinite and each mode is an element of a complete orthogonal basis that can be employed for multiplexing different signals, thus greatly improving the spectrum efficiency. In this paper, we comprehensively summarize and compare the methods for generation and detection of optical OAM, radio OAM and acoustic OAM. Then, we represent the applications and technical challenges of OAM in communications, including free-space optical communications, optical fiber communications, radio communications and acoustic communications. To complete our survey, we also discuss the state of art of particle manipulation and target imaging with OAM beams

    Design of terahertz transceiver schemes for ultrahigh-speed wireless communications

    Get PDF
    Future ultra-high-speed wireless communication systems face difficult challenges due to the fundamental limitations of current technologies operating at microwave frequencies. Supporting high transmission rates will require the use of more spectral resources that are only available at higher frequencies. Within this context, terahertz (THz) communications have been attracting more and more attention, being considered by the research community as one of the most promising research fields on the topic due to the availability of extensive unused bandwidth segments. However, its widespread use is not yet possible due to some obstacles, such as the high propagation losses that occur in this band and the difficulty in designing devices that can effectively perform both transmission and detection tasks. The purpose of this dissertation is to contribute for the solution of both of the aforementioned problems and to propose novel THz transceiver schemes for ultra-high-speed wireless communications. Three main research areas were addressed: device modelling for the THz; index modulation (IM) based schemes for Beyond 5G (B5G) networks and hybrid precoding designs for THz ultra massive (UM) – multiple input multiple output (MIMO) systems. The main contributions of this work include the creation of a new design for a reconfigurable THz filter; the proposal of a precoded generalized spatial modulation scheme for downlink MIMO transmissions in B5G networks; the creation of a low-complexity hybrid design algorithm with a near fully-digital performance for multiuser (MU) mmWave/THz ultra massive MIMO systems that can incorporate different analog architectures; and the system-level assessment of cloud radio access network (C-RAN) deployments based on low-complexity hybrid precoding designs for massive MIMO downlink transmissions in B5G networks. The first contribution is especially suited for the implementation of reconfigurable THz filters and optical modulators, since it is based on a simple design, which transits from situations in which it presents a full transparency to situations where it achieves full opacity. Moreover, this approach can also be used for the implementation of simultaneously transmitting and reflecting (STAR) reconfigurable intelligent surfaces (RIS) which are important for enabling flexible system designs in RIS-assisted networks. The second contribution showed that the implementation of precoding schemes based on generalised spatial modulations is a solution with a considerable potential for future B5G systems, since it can provide larger throughputs when compared to conventional MU-MIMO schemes with identical spectral efficiencies.The last two contributions showed that through the proposed hybrid design algorithm it becomes possible to replace a fully digital precoder/combiner by a fully-connected or even by a partially-connected architecture (array of subarrays and dynamic array of subarrays), while achieving good tradeoffs between spectral efficiency, power consumption and implementation complexity. These proposals are particularly relevant for the support of UM-MIMO in severely hardware constrained THz systems. Moreover, the capability of achieving significant improvements in terms of throughput performance and coverage over typical cellular networks, when considering hybrid precoding‐based C-RAN deployments in two indoor office scenarios at the THz band, was demonstrated.Os futuros sistemas de comunicação sem fios de velocidade ultra-elevada enfrentam desafios difíceis devido às limitações fundamentais das tecnologias atuais que funcionam a frequências de microondas. O suporte de taxas de transmissão altas exigirá a utilização de mais recursos espectrais que só estão disponíveis em frequências mais elevadas. A banda Terahertz (THz) é uma das soluções mais promissoras devido às suas enormes larguras de banda disponíveis no espectro eletromagnético. No entanto, a sua utilização generalizada ainda não é possível devido a alguns obstáculos, tais como as elevadas perdas de propagação que se verificam nesta banda e a dificuldade em conceber dispositivos que possam desempenhar eficazmente as tarefas de transmissão e deteção. O objetivo desta tese de doutoramento, é contribuir para ambos os problemas mencionados anteriormente e propor novos esquemas de transcetores THz para comunicações sem fios de velocidade ultra-elevada. Três grandes áreas de investigação foram endereçadas, contribuindo individualmente para um todo: a modelação do dispositivo para o THz; esquemas baseados em modulações de índice (IM) para redes pós-5G (B5G) e desenhos de pré-codificadores híbridos para sistemas THz MIMO ultra-massivos. As principais contribuições deste trabalho incluem a criação de um novo design para um filtro THz reconfigurável; a proposta de uma nova tipologia de modulação espacial generalizada pré-codificada para transmissões MIMO de ligação descendente para redes B5G; a criação de um algoritmo de design híbrido de baixa complexidade com desempenho quase totalmente digital para sistemas MIMO multi-utilizador (MU) mmWave/THz ultra massivos que podem incorporar diferentes arquiteturas analógicas e a avaliação das implementações da rede de acesso de rádio na nuvem (C-RAN) com base em designs de pré-codificação híbridos de baixa complexidade para transmissões MIMO de ligação descendente massivas em redes B5G. A primeira contribuição é especialmente adequada para a implementação de filtros THz reconfiguráveis e moduladores óticos, uma vez que se baseia numa concepção mais simples, que transita de situações em que apresenta uma transparência total para situações em que atinge uma opacidade total. Para além disso, esta abordagem também pode ser utilizada para a implementação de superfícies inteligentes reconfiguráveis (RIS) de transmissão e reflexão simultânea (STAR). A segunda contribuição mostrou que a implementação de esquemas de pré-codificação baseados em modulações espaciais generalizadas é uma solução com um potencial considerável para futuros sistemas B5G, uma vez que permite alcançar maiores ganhos em termos de débito binário quando comparado com esquemas convencionais MU-MIMO com eficiências espectrais idênticas. As duas últimas contribuições mostraram que através do algoritmo proposto torna-se possível substituir a utilização de uma arquitectura totalmente digital por uma arquitetura totalmente conectada ou mesmo por uma arquitetura parcialmente conectada (arrays de subarrays e arrays dinâmicos de subarrays), conseguindo-se bons tradeoffs entre eficiência espectral, consumo de energia e complexidade de implementação. Estas propostas são particularmente relevantes para dar suporte a sistemas THz UM-MIMO com restrições severas ao nível de hardware. Demonstrou-se também a capacidade de se alcançar melhorias significativas em termos de débito binário e cobertura em relação a redes celulares típicas, considerando dois cenários na banda THz

    Measurement, modelling and performance evaluation of the MIMO radio channel

    Get PDF

    Design and performance assessment of high-capacity MIMO architectures in the presence of a line-of-sight component

    Get PDF

    Estimation of Radio Channel Parameters

    Get PDF
    Kurzfassung Diese Dissertation behandelt die Schätzung der Modellparameter einer Momentanaufnahme des Mobilfunkkanals. Das besondere Augenmerk liegt zum einen auf der Entwicklung eines generischen Datenmodells für den gemessenen Funkkanal, welches für die hochauflösende Parameterschätzung geeignet ist. Der zweite Schwerpunkt dieser Arbeit ist die Entwicklung eines robusten Parameterschätzers für die Bestimmung der Parameter des entworfenen Modells aus Funkkanalmessdaten. Entsprechend dieser logischen Abfolge ist auch der Aufbau dieser Arbeit. Im ersten Teil wird ausgehend von einem aus der Literatur bekannten strahlenoptischen Modell eine algebraisch handhabbare Darstellung von beobachteten Wellenausbreitungspfaden entwickelt. Das mathematische Modell erlaubt die Beschreibung von SISO (single-input-single-output)- Übertragungssystemen, also von Systemen mit einer Sendeantenne und einer Empfangsantenne, als auch die Beschreibung von solchen Systemen mit mehreren Sende- und/oder Empfangsantennen. Diese Systeme werden im Allgemeinen auch als SIMO- (single-input-multiple-output), MISO- (multiple-input-single-output) oder MIMO-Systeme (multiple-input-multiple-output) bezeichnet. Im Gegensatz zu bekannten Konzepten enthält das entwickelte Modell keine Restriktionen bezüglich der modellierbaren Antennenarrayarchitekturen. Dies ist besonders wichtig in Hinblick auf die möglichst vollständige Erfassung der räumlichen Struktur des Funkkanals. Die Flexibilität des Modells ist eine Grundvoraussetzung für die optimale Anpassung der Antennenstruktur an die Messaufgabe. Eine solche angepasste Antennenarraystruktur ist zum Beispiel eine zylindrische Anordnung von Antennenelementen. Sie ist gut geeignet für die Erfassung der räumlichen Struktur des Funkkanals (Azimut und Elevation) in so genannten Outdoor- Funkszenarien. Weiterhin wird im ersten Teil eine neue Komponente des Funkkanaldatenmodells eingeführt, welche den Beitrag verteilter (diffuser) Streuungen zur Funkübertragung beschreibt. Die neue Modellkomponente spielt eine Schlüsselrolle bei der Entwicklung eines robusten Parameterschätzers im Hauptteil dieser Arbeit. Die fehlende Modellierung der verteilten Streuungen ist eine der Hauptursachen für die begrenzte Anwendbarkeit und die oft kritisierte fehlende Robustheit von hochauflösenden Funkkanalparameterschätzern, die in der Literatur etabliert sind. Das neue Datenmodell beschreibt die so genannten dominanten Ausbreitungspfade durch eine deterministische Abbildung der Pfadparameter auf den gemessenen Funkkanal. Der Beitrag der verteilten Streuungen wird mit Hilfe eines zirkularen mittelwertfreien Gaußschen Prozesses beschrieben. Die Modellparameter der verteilten Streuungen beschreiben dabei die Kovarianzmatrix dieses Prozesses. Basierend auf dem entwickelten Datenmodell wird im Anschluss kurz über aktuelle Konzepte für Funkkanalmessgeräte, so genannte Channel-Sounder, diskutiert. Im zweiten Teil dieser Arbeit werden in erster Linie Ausdrücke zur Bestimmung der erzielbaren Messgenauigkeit eines Channel-Sounders abgeleitet. Zu diesem Zweck wird die untere Schranke für die Varianz der geschätzten Modellparameter, das heißt der Messwerte, bestimmt. Als Grundlage für die Varianzabschätzung wird das aus der Parameterschätztheorie bekannte Konzept der Cramér-Rao-Schranke angewandt. Im Rahmen der Ableitung der Cramér-Rao-Schranke werden außerdem wichtige Gesichtspunkte für die Entwicklung eines effizienten Parameterschätzers diskutiert. Im dritten Teil der Arbeit wird ein Schätzer für die Bestimmung der Ausbreitungspfadparameter nach dem Maximum-Likelihood-Prinzip entworfen. Nach einer kurzen Übersicht über existierende Konzepte zur hochauflösenden Funkkanalparameterschätzung wird die vorliegende Schätzaufgabe analysiert und in Hinsicht ihres Typs klassifiziert. Unter der Voraussetzung, dass die Parameter der verteilten Streuungen bekannt sind, lässt sich zeigen, daß sich die Schätzung der Parameter der Ausbreitungspfade als ein nichtlineares gewichtetes kleinstes Fehlerquadratproblem auffassen lässt. Basierend auf dieser Erkenntnis wird ein generischer Algorithmus zur Bestimmung einer globalen Startlösung für die Parameter eines Ausbreitungspfades vorgeschlagen. Hierbei wird von dem Konzept der Structure-Least-Squares (SLS)-Probleme Gebrauch gemacht, um die Komplexität des Schätzproblems zu reduzieren. Im folgenden Teil dieses Abschnitts wird basierend auf aus der Literatur bekannten robusten numerischen Algorithmen ein Schätzer zur genauen Bestimmung der Ausbreitungspfadparameter abgeleitet. Im letzten Teil dieses Abschnitts wird die Anwendung unterraumbasierter Schätzer zur Bestimmung der Ausbreitungspfadparameter diskutiert. Es wird ein speichereffizienter Algorithmus zur Signalraumschätzung entwickelt. Dieser Algorithmus ist eine Grundvoraussetzung für die Anwendung von mehrdimensionalen Parameterschätzern wie zum Beispiel des R-D unitary ESPRIT (Estimation of Signal Parameters via Rotational Invariance Techniques) zur Bestimmung von Funkkanalparametern aus MIMO-Funkkanalmessungen. Traditionelle Verfahren zur Signalraumschätzung sind hier im Allgemeinen nicht anwendbar, da sie einen zu großen Speicheraufwand erfordern. Außerdem wird in diesem Teil gezeigt, dass ESPRIT-Algorithmen auch zur Parameterschätzung von Daten mit so genannter versteckter Rotations-Invarianzstruktur eingesetzt werden können. Als Beispiel wird ein ESPRIT-basierter Algorithmus zur Richtungsschätzung in Verbindung mit multibeam-Antennenarrays (CUBA) abgeleitet. Im letzten Teil dieser Arbeit wird ein Maximum-Likelihood-Schätzer für die neue Komponente des Funkkanals, welche die verteilten Streuungen beschreibt, entworfen. Ausgehend vom Konzept des iterativen Maximum-Likelihood-Schätzers wird ein Algorithmus entwickelt, der hinreichend geringe numerische Komplexität besitzt, so dass er praktisch anwendbar ist. In erster Linie wird dabei von der Toeplitzstruktur der zu schätzenden Kovarianzmatrix Gebrauch gemacht. Aufbauend auf dem Schätzer für die Parameter der Ausbreitungspfade und dem Schätzer für die Parameter der verteilten Streuungen wird ein Maximum-Likelihood-Schätzer entwickelt (RIMAX), der alle Parameter des in Teil I entwickelten Modells der Funkanalmessung im Verbund schätzt. Neben den geschätzten Parametern des Datenmodells liefert der Schätzer zusätzlich Zuverlässigkeitsinformationen. Diese werden unter anderem zur Bestimmung der Modellordnung, das heißt zur Bestimmung der Anzahl der dominanten Ausbreitungspfade, herangezogen. Außerdem stellen die Zuverlässigkeitsinformationen aber auch ein wichtiges Schätzergebnis dar. Die Zuverlässigkeitsinformationen machen die weitere Verarbeitung und Wertung der Messergebnisse möglich.The theme of this thesis is the estimation of model parameters of a radio channel snapshot. The main focus was the development of a general data model for the measured radio channel, suitable for both high resolution channel parameter estimation on the one hand, and the development of a robust parameter estimator for the parameters of the designed parametric radio channel model, in line with this logical work flow is this thesis. In the first part of this work an algebraic representation of observed propagation paths is developed using a ray-optical model known from literature. The algebraic framework is suitable for the description of SISO (single-input-single-output) radio transmission systems. A SISO system uses one antenna as the transmitter (Tx) and one antenna as the receiver (Rx). The derived expression for the propagation paths is also suitable to describe SIMO (single-input-multiple-output), MISO (multiple-input-single-output), and MIMO (multiple-input-multiple-output) radio channel measurements. In contrast to other models used for high resolution channel parameter estimation the derived model makes no restriction regarding the structure of the antenna array used throughout the measurement. This is important since the ultimate goal in radio channel sounding is the complete description of the spatial (angular) structure of the radio channel at Tx and Rx. The flexibility of the data model is a prerequisite for the optimisation of the antenna array structure with respect to the measurement task. Such an optimised antenna structure is a stacked uniform circular beam array, i.e., a cylindrical arrangement of antenna elements. This antenna array configuration is well suited for the measurement of the spatial structure of the radio channel at Tx and/or Rx in outdoor-scenarios. Furthermore, a new component of the radio channel model is introduced in the first part of this work. It describes the contribution of distributed (diffuse) scattering to the radio transmission. The new component is key for the development of a robust radio channel parameter estimator, which is derived in the main part of this work. The ignorance of the contribution of distributed scattering to radio propagation is one of the main reasons why high-resolution radio channel parameter estimators fail in practice. Since the underlying data model is wrong the estimators produce erroneous results. The improved model describes the so called dominant propagation paths by a deterministic mapping of the propagation path parameters to the channel observation. The contribution of the distributed scattering is modelled as a zero-mean circular Gaussian process. The parameters of the distributed scattering process determine the structure of the covariance matrix of this process. Based on this data model current concepts for radio channel sounding devices are discussed. In the second part of this work expressions for the accuracy achievable by a radio channel sounder are derived. To this end the lower bound on the variance of the measurements i.e. the parameter estimates is derived. As a basis for this evaluation the concept of the Cramér-Rao lower bound is employed. On the way to the Cramér-Rao lower bound for all channel model parameters, important issues for the development of an appropriate parameter estimator are discussed. Among other things the coupling of model parameters is also discussed. In the third part of this thesis, an estimator, for the propagation path parameters is derived. For the estimator the 'maximum-likelihood' approach is employed. After a short overview of existing high-resolution channel parameter estimators the estimation problem is classified. It is shown, that the estimation of the parameters of the propagation paths can be understood as a nonlinear weighted least squares problem, provided the parameters of the distributed scattering process are known. Based on this observation a general algorithm for the estimation of raw parameters for the observed propagation paths is developed. The algorithm uses the concept of structured-least-squares (SLS) and compressed maximum likelihood to reduce the numerical complexity of the estimation problem. A robust estimator for the precise estimation of the propagation path parameters is derived. The estimator is based on concepts well known from nonlinear local optimisation theory. In the last part of this chapter the application of subspace based parameter estimation algorithms for path parameter estimation is discussed. A memory efficient estimator for the signal subspace needed by, e.g., R-D unitary ESPRIT is derived. This algorithm is a prerequisite for the application of signal subspace based algorithms to MIMO-channel sounding measurements. Standard algorithms for signal subspace estimation (economy size SVD, singular value decomposition) are not suitable since they require an amount of memory which is too large. Furthermore, it is shown that ESPRIT (Estimation of Signal Parameters via Rotational Invariance Techniques) based algorithms can also be employed for parameter estimation from data having hidden rotation invariance structure. As an example an ESPRIT algorithm for angle estimation using circular uniform beam arrays (circular multi-beam antennas) is derived. In the final part of this work a maximum likelihood estimator for the new component of the channel model is developed. Starting with the concept of iterative maximum likelihood estimation, an algorithm is developed having a low computational complexity. The low complexity of the algorithm is achieved by exploiting the Toeplitz-structure of the covariance matrix to estimate. Using the estimator for the (concentrated, dominant, specular-alike) propagation paths and the parametric estimator for the covariance matrix of the process describing the distributed diffuse scattering a joint estimator for all channel parameter is derived (RIMAX). The estimator is a 'maximum likelihood' estimator and uses the genuine SAGE concept to reduce the computational complexity. The estimator provides additional information about the reliability of the estimated channel parameters. This reliability information is used to determine an appropriate model for the observation. Furthermore, the reliability information i.e. the estimate of the covariance matrix of all parameter estimates is also an important parameter estimation result. This information is a prerequisite for further processing and evaluation of the measured channel parameters

    Optimisation of Mobile Communication Networks - OMCO NET

    Get PDF
    The mini conference “Optimisation of Mobile Communication Networks” focuses on advanced methods for search and optimisation applied to wireless communication networks. It is sponsored by Research & Enterprise Fund Southampton Solent University. The conference strives to widen knowledge on advanced search methods capable of optimisation of wireless communications networks. The aim is to provide a forum for exchange of recent knowledge, new ideas and trends in this progressive and challenging area. The conference will popularise new successful approaches on resolving hard tasks such as minimisation of transmit power, cooperative and optimal routing

    Innovative Adaptive Techniques for Multi Channel Spaceborne SAR Systems

    Get PDF
    Synthetic Aperture Radar (SAR) is a well-known technology which allows to coherently combine multiple returns from (typically) ground-based targets from a moving radar mounted either on an airborne or on a space-borne vehicle. The relative motion between the targets on ground and the platform causes a Doppler effect, which is exploited to discriminate along-track positions of targets themselves. In addition, as most of conventional radar, a pulsed wide-band waveform is transmitted periodically, thus allowing even a radar discrimination capability in the range direction (i.e. in distance). For side-looking acquisition geometries, the along-track and the range directions are almost orthogonal, so that the two dimensional target discrimination capabiliy results in the possibility to produce images of the illuminated area on ground. A side-looking geometry consists in the radar antenna to be, either mechanically or electronically, oriented perpendicular to the observed area. Nowadays technology allows discrimination capability (also referred to as resolution) in both alongtrack and range directions in the order of few tenths of centimeters. Since the SAR is a microwave active sensor, this technology assure the possibility to produce images of the terrain independently of the sunlight illumination and/or weather conditions. This makes the SAR a very useful instrument for monitoring and mapping both the natural and the artificial activities over the Earth’s surface. Among all the limitations of a single-channel SAR system, this work focuses over some of them which are briefly listed below: a) the performance achievable in terms of resolution are usually paid in terms of system complexity, dimension, mass and cost; b) since the SAR is a coherent active sensor, it is vulnerable to both intentionally and unintentionally radio-frequency interferences which might limit normal system operability; c) since the Doppler effect it is used to discriminate targets (assumed to be stationary) on the ground, this causes an intrinsic ambiguity in the interpretation of backscattered returns from moving targets. These drawbacks can be easily overcome by resorting to a Multi-cannel SAR (M-SAR) system

    Angular dispersion of radio waves in mobile channels

    Get PDF
    Multi-antenna techniques are an important solution for significantly increasing the bandwidth efficiency of mobile wireless data transmission systems. Effective and reliable design of these multi-antenna systems requires thorough knowledge of radiowave propagation in the urban environment. The aim of the work presented in this thesis is to obtain a better physical understanding of radiowave propagation in mobile radio channels in order to provide a basis for the improvement of radiowave propagation prediction techniques for urban environments using knowledge from 3-D propagation experiments and simulations combined with space-wave modelling. In particular, the work focusses on: the development of an advanced 3-D mobile channel sounding system, obtaining propagation measurement data from mobile radio propagation experiments, the analysis of measured data and the modelling of angular dispersive scattering effects for the improvement of deterministic propagation prediction models. The first part of the study presents the design, implementation and verification of a wideband high-resolution measurement system for the characterisation of angular dispersion in mobile channels. The system uses complex impulse response data obtained from a novel 3-D tilted-cross switched antenna array as input to an improved version of 3-D Unitary ESPRIT. It is capable of characterising the delay and angular properties of physically-nonstationary radio channels at moderate urban speeds with high resolution in both azimuth and elevation. For the first time, omnidirectional video data that were captured during the measurements are used in combination with the measurement results to accurately identify and relate the received radio waves directly to the actual environment while moving through it. The second part of the study presents the results of experiments in which the highresolution measurement system, described in the first part, is used in several mobile outdoor experiments in different scenarios. The objective of these measurements was to gain more knowledge in order to improve the understanding of radiowave propagation. From these results the dispersive effects in the angular domain, caused by rough building surfaces and other irregular structures was paid particular attention. These effects not only influence the total amount of received power in dense urban environments, but can also have a large impact on the performance and deployment of multi-antenna systems. To improve the data representation and support further data analysis a hierarchical clustering method is presented that can successfully identify clusters of multipath signal components in multidimensional data. By using the data obtained from an omnidirectional video camera the clusters can be related directly to the environment and the scattering effects of specific objects can be isolated. These results are important in order to improve and calibrate deterministic propagation models. In the third part of the study a new method is presented to account for the angular dispersion caused by irregular surfaces in ray-tracing based propagation prediction models. The method is based on assigning an effective roughness to specific surfaces. Unlike the conventional reflection reduction factor for Gaussian surfaces, that only reduces the ray power, the new method also distributes power in the angular domain. The results of clustered measurement data are used to calibrated the model and show that this leads to improved channel representations that are better matched to the real-world channel behavior
    corecore