392 research outputs found

    Depth data improves non-melanoma skin lesion segmentation and diagnosis

    Get PDF
    Examining surface shape appearance by touching and observing a lesion from different points of view is a part of the clinical process for skin lesion diagnosis. Motivated by this, we hypothesise that surface shape embodies important information that serves to represent lesion identity and status. A new sensor, Dense Stereo Imaging System (DSIS) allows us to capture 1:1 aligned 3D surface data and 2D colour images simultaneously. This thesis investigates whether the extra surface shape appearance information, represented by features derived from the captured 3D data benefits skin lesion analysis, particularly on the tasks of segmentation and classification. In order to validate the contribution of 3D data to lesion identification, we compare the segmentations resulting from various combinations of images cues (e.g., colour, depth and texture) embedded in a region-based level set segmentation method. The experiments indicate that depth is complementary to colour. Adding the 3D information reduces the error rate from 7:8% to 6:6%. For the purpose of evaluating the segmentation results, we propose a novel ground truth estimation approach that incorporates a prior pattern analysis of a set of manual segmentations. The experiments on both synthetic and real data show that this method performs favourably compared to the state of the art approach STAPLE [1] on ground truth estimation. Finally, we explore the usefulness of 3D information to non-melanoma lesion diagnosis by tests on both human and computer based classifications of five lesion types. The results provide evidence for the benefit of the additional 3D information, i.e., adding the 3D-based features gives a significantly improved classification rate of 80:7% compared to only using colour features (75:3%). The three main contributions of the thesis are improved methods for lesion segmentation, non-melanoma lesion classification and lesion boundary ground-truth estimation

    Contributions to the segmentation of dermoscopic images

    Get PDF
    Tese de mestrado. Mestrado em Engenharia Biomédica. Faculdade de Engenharia. Universidade do Porto. 201

    Trustworthy clinical AI solutions: a unified review of uncertainty quantification in deep learning models for medical image analysis

    Full text link
    The full acceptance of Deep Learning (DL) models in the clinical field is rather low with respect to the quantity of high-performing solutions reported in the literature. Particularly, end users are reluctant to rely on the rough predictions of DL models. Uncertainty quantification methods have been proposed in the literature as a potential response to reduce the rough decision provided by the DL black box and thus increase the interpretability and the acceptability of the result by the final user. In this review, we propose an overview of the existing methods to quantify uncertainty associated to DL predictions. We focus on applications to medical image analysis, which present specific challenges due to the high dimensionality of images and their quality variability, as well as constraints associated to real-life clinical routine. We then discuss the evaluation protocols to validate the relevance of uncertainty estimates. Finally, we highlight the open challenges of uncertainty quantification in the medical field

    Generalizing Common Tasks in Automated Skin Lesion Diagnosis

    Full text link

    Evaluating and Improving 4D-CT Image Segmentation for Lung Cancer Radiotherapy

    Get PDF
    Lung cancer is a high-incidence disease with low survival despite surgical advances and concurrent chemo-radiotherapy strategies. Image-guided radiotherapy provides for treatment measures, however, significant challenges exist for imaging, treatment planning, and delivery of radiation due to the influence of respiratory motion. 4D-CT imaging is capable of improving image quality of thoracic target volumes influenced by respiratory motion. 4D-CT-based treatment planning strategies requires highly accurate anatomical segmentation of tumour volumes for radiotherapy treatment plan optimization. Variable segmentation of tumour volumes significantly contributes to uncertainty in radiotherapy planning due to a lack of knowledge regarding the exact shape of the lesion and difficulty in quantifying variability. As image-segmentation is one of the earliest tasks in the radiotherapy process, inherent geometric uncertainties affect subsequent stages, potentially jeopardizing patient outcomes. Thus, this work assesses and suggests strategies for mitigation of segmentation-related geometric uncertainties in 4D-CT-based lung cancer radiotherapy at pre- and post-treatment planning stages

    Advancing probabilistic and causal deep learning in medical image analysis

    Get PDF
    The power and flexibility of deep learning have made it an indispensable tool for tackling modern machine learning problems. However, this flexibility comes at the cost of robustness and interpretability, which can lead to undesirable or even harmful outcomes. Deep learning models often fail to generalise to real-world conditions and produce unforeseen errors that hinder wide adoption in safety-critical critical domains such as healthcare. This thesis presents multiple works that address the reliability problems of deep learning in safety-critical domains by being aware of its vulnerabilities and incorporating more domain knowledge when designing and evaluating our algorithms. We start by showing how close collaboration with domain experts is necessary to achieve good results in a real-world clinical task - the multiclass semantic segmentation of traumatic brain injuries (TBI) lesions in head CT. We continue by proposing an algorithm that models spatially coherent aleatoric uncertainty in segmentation tasks by considering the dependencies between pixels. The lack of proper uncertainty quantification is a robustness issue which is ubiquitous in deep learning. Tackling this issue is of the utmost importance if we want to deploy these systems in the real world. Lastly, we present a general framework for evaluating image counterfactual inference models in the absence of ground-truth counterfactuals. Counterfactuals are extremely useful to reason about models and data and to probe models for explanations or mistakes. As a result, their evaluation is critical for improving the interpretability of deep learning models.Open Acces

    Bridging generative models and Convolutional Neural Networks for domain-agnostic segmentation of brain MRI

    Get PDF
    Segmentation of brain MRI scans is paramount in neuroimaging, as it is a prerequisite for many subsequent analyses. Although manual segmentation is considered the gold standard, it suffers from severe reproducibility issues, and is extremely tedious, which limits its application to large datasets. Therefore, there is a clear need for automated tools that enable fast and accurate segmentation of brain MRI scans. Recent methods rely on convolutional neural networks (CNNs). While CNNs obtain accurate results on their training domain, they are highly sensitive to changes in resolution and MRI contrast. Although data augmentation and domain adaptation techniques can increase the generalisability of CNNs, these methods still need to be retrained for every new domain, which requires costly labelling of images. Here, we present a learning strategy to make CNNs agnostic to MRI contrast, resolution, and numerous artefacts. Specifically, we train a network with synthetic data sampled from a generative model conditioned on segmentations. Crucially, we adopt a domain randomisation approach where all generation parameters are drawn for each example from uniform priors. As a result, the network is forced to learn domain-agnostic features, and can segment real test scans without retraining. The proposed method almost achieves the accuracy of supervised CNNs on their training domain, and substantially outperforms state-of-the-art domain adaptation methods. Finally, based on this learning strategy, we present a segmentation suite for robust analysis of heterogeneous clinical scans. Overall, our approach unlocks the development of morphometry on millions of clinical scans, which ultimately has the potential to improve the diagnosis and characterisation of neurological disorders
    • …
    corecore