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Abstract

Examining surface shape appearance by touching and observing a lesion from differ-

ent points of view is a part of the clinical process for skin lesion diagnosis. Motivated

by this, we hypothesise that surface shape embodies important information that serves

to represent lesion identity and status. A new sensor, Dense Stereo Imaging System

(DSIS) allows us to capture 1:1 aligned 3D surface data and 2D colour images simul-

taneously. This thesis investigates whether the extra surface shape appearance infor-

mation, represented by features derived from the captured 3D data benefits skin lesion

analysis, particularly on the tasks of segmentation and classification. In order to vali-

date the contribution of 3D data to lesion identification, we compare the segmentations

resulting from various combinations of images cues (e.g., colour, depth and texture)

embedded in a region-based level set segmentation method. The experiments indicate

that depth is complementary to colour. Adding the 3D information reduces the error

rate from 7.8% to 6.6%. For the purpose of evaluating the segmentation results, we

propose a novel ground truth estimation approach that incorporates a prior pattern anal-

ysis of a set of manual segmentations. The experiments on both synthetic and real data

show that this method performs favourably compared to the state of the art approach

STAPLE [1] on ground truth estimation. Finally, we explore the usefulness of 3D in-

formation to non-melanoma lesion diagnosis by tests on both human and computer

based classifications of five lesion types. The results provide evidence for the benefit

of the additional 3D information, i.e., adding the 3D-based features gives a signifi-

cantly improved classification rate of 80.7% compared to only using colour features

(75.3%). The three main contributions of the thesis are improved methods for lesion

segmentation, non-melanoma lesion classification and lesion boundary ground-truth

estimation.
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Chapter 1

Introduction

Skin cancer is the most frequent type of cancer in the fair-skinned population. One

in every three cancers diagnosed is a skin cancer. Different skin cancers display dif-

ferent symptoms and appearances. There are three main types of skin cancer, Basal

Cell Carcinoma (BCC), Squamous Cell Carcinoma (SCC) and melanoma. Melanoma

is a tumour derived from the melanocyte lineage. It has the highest case fatality with

an instance rate in European populations of around 14 per 100,000, with a mortal-

ity rate of 2-3 per 100,000. Unless melanoma is diagnosed and excised early, it is

generally untreatable. The other two tumour types, BCC and SCC are keratinocyte

derived tumours. Basal cell carcinoma is the commonest human malignancy that vir-

tually never metastasises, although is locally invasive. It is 10-20 times more common

that melanoma. Squamous cell carcinoma is also keratinocyte derived, which may also

metastasise but has a much lower case fatality than melanoma. All these forms of skin

cancer are related to sun exposure, although the exact relationship differs for each one.

Each year, about 132,000 melanoma and between 2 and 3 million non-melanoma skin

cancers occur globally [2]. In the UK, about 100,000 new cases of non-melanoma

skin cancer occur every year with BCC accounting for 75% of all cases and SCC ac-

counting for 20% [3]. In recent decades, skin cancer incidence has increased faster

than that of almost all other cancers. The instance of all these tumours is increasing in

pale skin populations with a doubling time of 10 years. With the dramatically increas-

ing incidence of skin lesions, especially for the most dangerous type of skin tumour

- melanoma, more attention has been focused on developing computer-aided skin le-

sion diagnosis systems (CSLD). A number of researchers have been working in this

field since 1987 [4], when the idea of using computers in skin lesion analysis was first

proposed. Many systems have been developed since then, with the ultimate goal of

1



2 Chapter 1. Introduction

providing objective, consistent, quantitative and cheap diagnosis to compete with the

subjective, descriptive and expensive diagnosis given by clinical experts.

In general, CSLD systems translate the knowledge of dermatologists into a com-

puter program that applies medical image analysis techniques to the quantitative mea-

surements of pathological alterations of human skin [5]. The key to CSLD systems

is therefore these measurements, which are also called features. They are extracted to

represent the morphological characteristics of a lesion surface and to classify the lesion

type by investigating the correlation between them and the kind of lesion. However,

because of the natural complexity and variation displayed by skin lesions, it is very

difficult to extract features that are effective enough to describe the skin morphology

and even to segment lesions from the surrounding skin [6]. Therefore, even after more

than 20 years of effort, CSLD systems are still in the experimental stages and at most

play a role as a second opinion. Complete integrated dermatological image analysis

systems are rarely if ever found in clinical use [5, 7].

1.1 Key Limitations

Currently, features based on colour and texture associated with colour play a dominant

role in automatic CSLD [2]. This is on one hand because colour is an important di-

agnostic indicator. As stated in any clinical dermatology textbook, colours seen on the

skin surface reflect many aspects of its internal structure and composition, such as the

amount of epidermal melanin, dermal blood and concentration of melanocytes invad-

ing the papillary dermis [8, 9]. On the other hand, this is also because of the limitation

of imaging techniques since feature extraction is highly reliant on the information cap-

tured in lesion images. From reviewing the relevant literature, it can be seen that most

computer-aided diagnosis systems are developed using dermoscopy (Epiluminescence

microscopy) images (detailed in Section 2.2.1(2)). The advantage of dermoscopic im-

ages is that the skin subsurface structure is magnified so that more details are visible

[6, 10]. The disadvantage is that the oil immersion process and the pressure applied on

the skin at the dermoscopy interface can distort the elastic skin structures[11], e.g., the

applied oil may smooth the rough appearance of skin surface. Also, the applied liq-

uid sometimes adds artifact (e.g., air bulbs) to lesion surface. These would degrade

the image quality of morphological features. Most importantly, this pin-hole camera

based imaging system transforms the 3D world-space to the 2D imaging-plane. During

this transformation, useful information may be lost, e.g., the lesion superficial shape
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information. Comparatively, range sensors such as stereo-photometric (see Section

2.2.1(5)) have the advantage of delivering such information by preserving it in the as-

sociated 3D or depth data. The 3D (or depth) information could be vital for certain

tasks since there is no doubt that the process for depth recovery is a part of the hu-

man visual system in reality. In recent decades, an especially desirable capability in

computer vision is the automatic reconstruction and analysis of the surrounding 3D

environment and recognition of objects in that space [12].

Besides, skin is the outermost tissue of the human body whose surface is charac-

terised by polyhydric mesh structures representing the three dimensional organization

of the dermis and the subcutaneous tissue [13, 14]. The topography of the skin is di-

rectly related to the cell growth patterns under the skin surface [11]. When the skin is

healthy, this topical structure is highly regular. When skin problems arise, it becomes

irregular. Taking malignant melanoma for instance, the growth of abnormal cells in

the upper dermis will result in irregular clumps that disrupt the regular skin pattern on

the surface. Hence, observing the changing of surface pattern would help to locate the

problem skin region (or lesion). On the other hand, the different pathogenies of differ-

ent skin problems, such as the cell of origin usually result in different topographical

appearances of the outermost skin surface. For example, the common melanocytic nevi

appears different from melanoma and BCC with an unruffled, smooth landscape and a

circular or oval shape. In contrast, melanoma often presents the geographical appear-

ance of rough crests, canyons and reefs [15]; while BCC has a persistent, non-healing

and eroded area with poorly defined borders. The topography of the skin surface is

considered as a mirror of the functional skin status [16]. It can be deemed as another

important skin descriptor similar to colour, revealing delicate differences within lesions

and playing an important role in dermatological diagnosis, in terms of lesion localiza-

tion and classification. In addition, as an intrinsic factor that concerns the physical

properties of an object, the 3D shape has a particular advantage of being free from the

influence of the external environment, such as illumination conditions [17]. This is a

desired characteristic of features used for object recognition. As a result, we hypothe-

size that the surface shape embodies important information that serves to represent
lesion identity and status. Combining the surface shape and colour based features
would improve the performances of CSLD systems on the lesion segmentation and
classification.

In fact, examining the surface shape appearance is also a part of the clinical le-

sion diagnosis and it is done by touching and observing from different points of view.
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Since the computer-based diagnostic systems play a role as a ‘clinical eye’ that mim-

ics and augments the clinician’s ability to distinguish between lesions using various

computer vision techniques, we argue that it would be incomplete without taking into

account the lesion surface shape information. We believe that through capturing new

and better information, a 3D based system may open new possibilities in improving

the medical analysis of skin lesions, although there have always existed arguments re-

garding whether depth is necessary in an object recognition, or if it is only of limited

use when it is available. For the skin lesion diagnosis application, even the dermatol-

ogists could not give a decisive answer of the importance of depth information during

lesion diagnosis 1. The ultimate answer to whether to use depth in a system can only

be determined by concrete experiments [18].

The aim of the thesis is therefore to answer the above concerns and to testify the

above claim through extensive experiments on the lesion datasets (see Appendix D)

captured using the Dense Stereo Imaging System (DSIS, detailed in Section 2.2.1(5))

developed by Dimensional Imaging [19]. Specifically, we need to investigate whether

the extracted skin shape properties would be of potential benefit in the segmentation

and classification process with the addition of 3D data. We have not identified any pre-

vious non-Edinburgh research in the literature that have explored this specific question,

however, there has been some previous research using 3D, e.g., the UWE’s group repre-

sented the lesion line pattern property using the surface norm data [11] (as discussed in

Section 2.3). Besides, unlike most studies in the literature that only take into account

the pigmented lesions and solve the binary classification problems [20, 21], i.e., distin-

guishing melanoma from melanocytic nevus, in our research, multiple pigmented and

non-pigmented lesion classes are included in our databases. They are Actinic kerato-

sis (AK), Basal cell carcinoma (BCC), Squamous cell carcinoma (SCC), Melanocytic

nevus (ML) and Seborrheic keratosis (SK). In addition to two skin cancers, three be-

nign lesions are also taken into account. Melanocytic nevus is commonly known as

mole. It requires a dermatologist to fully evaluate it because it is often mistaken for

melanoma. AKs are a focal area of dysplasia within the epidermis. They are not ma-

lignant but occasionally develop into SCC. SKs are benign clonal tumours of the skin.

Although they may be of cosmetic importance, they are of no medical importance ex-

cept that they are frequently confused with other tumours. Considering multiple lesion

classes undoubtedly increases the diagnosis difficulty. From this respective, including

1Private discussion with Dr. Jonathan L Rees, the Grant Chair of Dermatology at the University of
Edinburgh
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extra diagnostic information appears more important. The melanoma is excluded in

the database, because 1) it has been well studied in many other works and 2) there are

very few samples collected at the Dermatology Department of Edinburgh University

using the 3D capturing system over the past four years. Though most of the lesions

(two types of skin cancer and three types of benign lesion) in our database are not as

deadly as melanoma, their frequent appearance in the clinic still raises concerns. In

addition, compared to the intensive studies on melanoma, the analysis of these skin

conditions are fairly rare.

1.2 Thesis Overview

1. In order to validate the importance of depth information to lesion identification

(or segmentation), we incorporate diverse image cues (i.e., colour, depth and

texture) into a segmentation model to investigate whether or not the extra depth

information would lead to better results. A region-based probabilistic formula-

tion of the deformable model that is implemented within the level-set framework

is built as a testing platform. The experiments on 50 skin lesion belonging to five

lesion classes (AK, BCC, SCC, ML and SK) show that integrating depth based

properties results in an overall improvement of segmentation, in terms of both

accuracy and consistency. The error rate is reduced from 7.80%± 5.35% to

6.62%± 2.60%. The result reveals that depth is complementary to colour and

it does improves the lesion identification, particularly for non-pigmented lesions

which have less colour variation over different regions. In order to optimize the

usage of different feature combinations for segmenting different types of lesions,

we propose a hierarchical strategy which further improves the segmentation per-

formance. Parts of the results have been published in [22]. More details can be

found in Chapter 4.

2. The error rate given above is obtained by comparing the computer-based seg-

mentation result against a reference or Ground Truth (GT). In general, the GT

refers to the manual segmentation of a clinical expert. To account for individual

subjectivity, usually the GT is estimated from multiple manual segmentations.

In order to take into account the inter-rater variation, we propose a novel GT

generation algorithm that maximizes the a posteriori probability and incorpo-

rates the segmentation pattern information (LSMLP). This approach integrates
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the prior analysis result of human segmentation patterns and solves the problem

in a form of energy optimization within a level-set framework. The experiments

on both synthetic and real data show that this approach has larger chance to find

an accurate ground truth. The corresponding content can be found in Chapter 3.

Some results have been published in [23, 24].

3. For the purpose of evaluating the contribution of 3D information on lesion di-

agnosis, we carry out extensive and rigorous tests on both human and computer

based classifications. The experiments comparing human performance support

our claim as the diagnosis results show a significant increment of 8.5% when

using the 3D images. We further investigate the contribution of 3D data to a

computer based five non-melanoma skin lesion classification task by a compari-

son between using colour features only and using both colour and depth features.

The comparison results on six classifier models and two databases all show that

the addition of depth does improve the diagnostic accuracy. Based on an ex-

periment using a Support Vector Machine (SVM) on DATABASE II (see Ap-

pendix D), adding the 3D-based features gives an improved classification rate of

80.67% compared to only using colour features (75.25%). This improvement is

also proved to be statistically significant. Details can be found in Chapter 5.



Chapter 2

Literature Review

This chapter presents an overview of existing work in the skin lesion diagnosis field.

Firstly, Section 2.1 provides a brief review of the computer-based lesion diagnosis de-

velopment; Section 2.2 then explores the state of the art techniques and systems in the

field including: 1) the imaging techniques that have been employed in computer-based

diagnosis systems to capture various kinds of lesion information, 2) the popular diag-

nostic schemes that have been proposed to distinguish different skin conditions as well

as the features that are used to represent different criteria and 3) the existing computer-

based skin lesion diagnostic systems. The final section of this chapter reviews the

studies that apply 3D data to analyse skin lesions (Section 2.3).

2.1 History

In the clinical environment, there are often recognizable precursor conditions for differ-

ent lesions. By examining these conditions through inspection and palpation, derma-

tologists are able to make a presumptive prognosis of a lesion. However, the diagnosis

given by clinical experts has the disadvantages of being subjective, descriptive and ex-

pensive. For the purpose of achieving an objective, consistent, quantitative and cheap

diagnosis, many Computer based Skin Lesion Diagnosis (CSLD) systems have been

developed. The first related work dates back to 1987 [4], in which the authors sug-

gested the computer could be a possible new tool for analysing melanoma, regarding

its two advantages: 1) allowing a standardized and repeatable and objective analy-

sis of lesion images and 2) the capability of analysing details not perceivable by the

human eye. Several criteria extracted using classic digital image analysis techniques

were applied to analyse a few melanoma cases and they were shown to add valuable

7
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information to the diagnosis. This preliminary study stimulated the continuation of

research since then. In 1991, Green et al. [25] presented a pioneering fully automated

melanoma diagnosis system [20]. The system analysed 70 pigmented lesions captured

by a colour video camera in terms of eleven clinical and histological characteristic cor-

related measurements, based on which the lesions were assigned to different classes

through a discriminant analysis. Though the performance of the system was hindered

by the simple and crude computer vision and machine learning techniques as well as

the imaging quality, this study generated a prototype of the pigmented lesion diag-

nosis system that comprised three major steps: 1) determination of lesion region, 2)

extraction of diagnostic features and 3) building classification models with important

features. Each step itself has formed an interesting and challenging research topic and

has been widely discussed. Detailed reviews of these topics are in the literature review

section of the respective chapters (3, 4 and 5).

The turning point in the development of CSLD systems was the emergence of the

dermoscopy technique in 1994. Day et al. [6] categorized the developments of CSLD

into two periods, pre-1995 and post-1994 according to this factor. Prior to 1995, con-

ventional naked-eye images were used as the major input for CSLD. From 1995, CSLD

systems commenced to use the dermoscopic-based image set as their input [5]. As der-

moscopy permits the visualization of new and better morphological features which in

most cases facilitate early diagnosis, it boosts the performance of CSLD systems and

has been considered as the state of the art lesion data capturing technique. A system-

atic review covering Medline entries from 1983 to 1997 revealed that dermoscopy had

10−27% increase in sensitivity [20].

2.2 The State of The Art

2.2.1 The Imaging Techniques

1. Conventional macroscopic camera The use of commercially available photo-

graphic cameras is still quite common in skin lesion inspection systems, partic-

ularly for telemedicine purposes [2]. For example, a recent study of the macro-

scopic skin feature - skin pattern was carried out by She et al. [26] based on

the simply captured white light optical clinical skin images. The researchers

measured the skin pattern disruptions in terms of the local line direction using

the local isotropy metric. Their work indicated that combining the local line
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direction descriptors and the ABCD features might be a promising method to

distinguish malignant melanoma from benign lesions [26].

The problems of using conventional images are the poor resolution for small

skin lesions and the difficulty in handling the environmental variation influences

(e.g., illumination). As a result, newer technologies that could solve these prob-

lems and provide new and better information come to the forefront in providing

greater diagnostic accuracy.

2. Dermoscopy Dermoscopy is a common tool that is used in the clinical exam-

ination of pigmented skin lesions, i.e., distinguishing melanomas from benign

melanocytic nevus (moles) and seborrheic keratosis (Seborrheic keratosis are ac-

tually benign keratinocyte tumours which have normal numbers of melanocytes,

but which are hyperpigmented due to over production of melanin in the nor-

mal number of melanocytes there). It is a non-invasive skin imaging technique

that uses optical magnification and either liquid immersion and low angle-of-

incidence lighting or cross-polarized lighting to make the contact area translu-

cent and make subsurface structures (e.g., dermal features) become visible com-

pared to conventional macroscopic (clinical) images [20, 2]. Its advantages are

the capabilities of 1) providing a more detailed inspection of the surface of pig-

mented skin lesions and renders the epidermis translucent, making many dermal

features become visible [2] and 2) avoiding the defused reflection on the skin

surface thanks to the oil immersion process. However, it has also been criticized

for 1) being difficult to learn and subjective, particularly in the hands of inex-

perienced dermatologists and 2) easily distorting the elastic skin structures and

degrading the image quality of morphological features because of the pressure

applied on the skin at the dermoscopy interface and the oil immersion [11]. Sev-

eral studies have confirmed the limits of unaided dermoscopy [27], however, its

good imaging properties have made it the most popularly used in computer aided

pigmented lesion analysis systems [28, 20, 29, 30, 31, 32, 21, 33]. MoleMax is

the most frequently used digital dermatoscopy system. The patented light polar-

ization technique enables the dermatoscopic images to be captured without the

use of immersion fluids. In addition, the specially developed system camera in

MoleMax allows other capturing modes, like macro or even close-up imaging

[34].

Recently, some studies have focused on the enhancement of dermoscopy im-
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ages as a pre-processing step in CSLD systems. For instance, in order to obtain

better features for skin lesion segmentation, Schaefer et al. [35] introduced an

algorithm that could enhance the colour information and image contrast. Their

method solved the problems of poor contrast and lack of colour calibration which

were often encountered when analysing lesion images and improved the segmen-

tation performance which is a critical step in analysing skin lesion images. In

order to recover the colour information from the inappropriate white balance

or brightness in the image, Iyatomi et al. [36] proposed a supervised learning

approach to calibrate the colour of a new dermoscopy image based on the Hue-

Saturation-Value colour model. The modified colour distribution of a given im-

age was closer to that of the training image set.

3. Spectrophotometric Intracutaneous Analysis (SIAscopy) SIAscopy was in-

troduced by the Medical Image Analysis Group of Birmingham University as a

new technique for imaging pigmented skin lesions [8]. This optical skin imag-

ing method acted as a non-invasive biopsy and allowed an insight into the skin

histology in vivo. SIAscopy produced eight narrow-band spectrally filtered im-

ages of the local skin region with radiation ranging from 400 to 1000nm. They

related to the skin internal information regarding total melanin content of the

epidermis and papillary dermis and collagen, etc. New features extracted to rep-

resent this information were found to be highly specific (80.1%) and sensitive

(82.7%) for melanoma in a database of 348 pigmented lesions (52 melanomas).

The authors concluded that SIAscopy delivered new and useful information to

the diagnosis of pigmented skin lesions. In addition, experiments also showed

that SIAscopy compared very favourably with dermoscopy when analysed using

receiver-operator characteristic curves.

4. Photometric Stereo Device (PSD) Researchers in the Machine Vision Labora-

tory, University of the West of England employed a six-light photometric stereo

device to analyse malignant melanoma. PSD was equipped with a camera and

six LED light sources. It captured six separate images with each LED indepen-

dently illuminated. The system output three 3D surface normal images and the

surface reflectance map (see Fig. 2.1) [11]. The surface normal images enabled

the analysis of skin surface textures. Some studies based on PSD are reviewed

in Section 2.3.

5. Dense Stereo Imaging System (DSIS) Our group (Machine Vision Unit, School
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Figure 2.1: An example of the captured image set using the six-light photometric stereo

device from [37]

of Informatics, Edinburgh University) also employs 3D imaging equipment, the

Dense Stereo Imaging System (DSIS) (shown in Fig. 2.2) developed by Dimen-

sional Imaging [19] to capture the complete 3D data of skin lesion surfaces.

DSIS acquires stereo-pair images of the lesion and then decodes the depth in-

formation explicitly captured within the stereo-pair. The colour image of lesions

can also be captured simultaneously and is 1:1 aligned with the 3D image (see

Fig. 2.3). Aiming at measuring the micro structure of the skin lesion (the size

of skin lesion varies and typical lesion size is larger than 10mm× 10mm), the

system is configured for a small area of 80 mm × 60 mm and set to a fixed fo-

cal distance. Raw resolution is about 30 µm in x, y and z directions. However,

as a consequence of image smoothing, the system accuracy test presented in

Appendix B shows that DSIS is able to detect and separate fine textures with

0.7mm scale. In contrast to PSD, DSIS obtains complete 3D data, with which



12 Chapter 2. Literature Review

one could extract various kinds of surface morphological descriptors, including

the surface texture based properties for distinguishing skin lesions.

Figure 2.2: The dense stereo imaging system (DSIS)

Figure 2.3: The 3D data of skin lesions SCC (Top) and BCC (Bottom) reconstructed

from the 3D data captured using DSIS. From the left to the right, they are textured 3D

model, textured 3D model with lighting and non-textured 3D model with lighting

For a review of other imaging systems (e.g., Video RGB camera, multi-frequency

electrical and raman spectra), we refer the reader to [2].

2.2.2 Diagnostic Schemes

Skin conditions often have certain distinctive features that, in most cases, will enable

the doctor to recognise the disease. These practical criteria are organized into several

schemes, based on which the computer-based diagnostic properties are derived.
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1. ABCD Rule The ABCD rule introduced by Stolz et al. [33] has been accepted

as a standard for distinguishing melanomas from melanocytic nevus with der-

moscopy. The ABCD acronym stands for Asymmetry (meaning one half of the

mole is different from the other), Border irregularity (the edges or borders of

melanomas are usually ragged or notched), Colour (melanoma often has a vari-

ety of hues and colors within the same lesion) and Diameter (most melanomas

are usually greater than 6 mm in diameter when diagnosed, although they can be

smaller). This rule was designed more than 20 years ago specifically for early

melanoma diagnosis. It offers a standard that aids in distinguishing potentially

cancerous pigmented lesions (melanoma) from benign pigmented moles (ML).

To date, the majority of features used in CSLD systems are defined to represent

the four criteria of the ABCD rule. For instance, the asymmetry parameter (A)

was modeled by two Symmetry Distances (SD), the basic SD and the fuzzy SD,

as well as the simple circularity of the shape of a lesion in [38]. Grana et al. [39]

proposed mathematical descriptors like lesion slope, lesion slope regularity, etc.,

to measure the skin-lesion gradient. The efficacy of these border features were

assessed through a classification of a database containing 510 pigmented skin

lesions (85 melanomas and 425 nevus). The result showed that these features

helped to achieve a sensitivity of 85.9% and a specificity of 74.1%. Researchers

in the Medical Image Analysis Group, Birmingham University proposed the Ir-

regularity Index as a measure of border irregularity that was considered as an

significant diagnostic factor when assessing a lesion for malignancy [40]. The

extracted features were applied to different between the melanoma group and the

benign lesion group using a linear classifier and achieved a classification rate of

82.4%. To account for the colour variation (C), the authors in [41] proposed 15

significant colour based descriptors that were obtained by the median cut colour

quantization method. Stanley et al. [42] proposed percent melanoma colour

and colour clustering ratio features using a colour histogram analysis technique.

Manousaki et al. [15] introduced colour textural roughness based features - frac-

tal dimension (a measure of the irregularity of a given surface) and lacunarity

(inhomogeneity within a fractal surface).

Even though most of the studies claimed the effectiveness of their proposed

ABCD based features, it is not clear yet which features are more informative

according to a survey carried out by Maglogiannis et al. [2], in which no agree-

ment could be made. Moreover, the definitions of some features are inconsistent
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and there is a lack of rationale for most given feature functions [10]. On the

other hand, this subjective ABCD rule itself has not yet achieved high consen-

sus among expert dermatologists, as not all melanomas follow the ABCD rule

and some other lesions might fit in the ABCD rule. For example, the Nodu-

lar Melanoma (NM), which commonly occurs as symmetric, elevated lesions

that are uniform in colour and non-pigmented does not fit the ABCD criteria for

melanoma diagnosis [43]. As a result, other diagnostic criteria taking into ac-

count more morphologic parameters are needed, e.g., the 7-point checklist [44].

2. 7-point Checklist The 7-point checklist scores a lesion’s malignancy (i.e., being

melanoma) using standard dermoscopic criteria, including the atypical pigment

network, gray-blue areas, atypical vascular pattern, radial streaming or streaks,

irregular dots and globules, regression pattern and irregular diffuse pigmentation.

This criterion reveals a possibility of lesion diagnosis based on the recognition

of certain morphological patterns. The key to use this criterion is to first detect

these patterns. For example, Betta et al.[45] showed an example for estimat-

ing the pigment network and atypical vascular pattern of a lesion in. In [46],

the authors proposed a machine learning approach to the detection of blue-white

veil structures (irregular, structureless areas of confluent blue pigmentation with

an overlying white ‘ground-glass’ film) in dermoscopy images, given the blue-

white veil is an indicator of the melanoma. In [21], the authors proposed a semi-

automated melanoma identification method that was based on the finding that

granularity was significantly associated with melanoma. However, this approach

needed human involvement in marking the granularity or regions as close as pos-

sible to granular spots in melanoma and non-melanoma lesions, respectively. As

a result, this method has the disadvantages of subjectiveness and being labour

consuming. Dalal et al. [28] achieved an automatic melanoma discrimination

from benign lesions (ML) with the assistance of white areas. By extracting fea-

tures from the detected white areas and putting them into a back-propagation

neural network, they achieved 95% diagnostic accuracy using the data set in-

cluding 57 melanomas and 187 benign nevi. These dermoscopic feature based

methods are comparatively new in CSLD. As the prerequisite of using this strat-

egy is the detection of these structures, which is not a trivial task, it has not been

as commonly used as the ABCD rule. But once the techniques for the detection

of these patterns mature, it is very likely that the diagnostic performance would
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be boosted.

The above two diagnostic schemes are the state of the art standards for the diagnosis

of melanoma. Their common property is being limited to the diagnosis of pigmented

lesions, particularly in distinguishing between melanoma and nevi. In addition, they

are dermoscopic schemes. Hence, features extracted based on ABCD rule and 7-point

checklist are limited to the diagnosis of pigmented lesions and are mostly associated

with colour information in various colour spaces[2]. To further improve the perfor-

mance and generalize the diagnosis ability (e.g., diagnosing non-pigmented lesions)

of CSLD, new diagnostic criteria need to be included. For example, several studies

realized that the disruption of skin pattern would be an important indicator of lesion

malignancy. She et al. [26] explored this factor by introducing local line direction

descriptors based on the local isotropy metric. Zhou et al. [47] characterized the dis-

ruption using 3D differential forms. Both projects concluded that this new research

direction, which was orthogonal to the ABCD rules, would add information useful for

the diagnosis of melanoma.

2.2.3 Computer Based Skin Lesion Diagnostic Systems

In recent years, with the application of dermoscopy and the rapid development of the

medical image analysis techniques, many CSLD systems have been developed. Ta-

ble. 2.1 lists several recent studies in automated melanoma diagnosis. Menzies et

al. [48] evaluated the performance of an automated dermoscopy image analysis in-

strument, SolarScan, for the diagnosis of primary melanoma. Based on the diagnosis

results on a test set including 78 lesions (13 melanomas), SolarScan gave a sensitiv-

ity (SE) of 91% and specificity (SP) of 68% for melanoma and it had comparable or

superior performance when compared with clinicians. The CSLD system presented

by Iyatomi et al. [49] was directed at non-white populations for acral volar melanoma

detection. The reported evaluation accuracy shows a SE of 81.1% and SP of 92.1%

(considering unsuccessful lesion segmentation cases as false classification; otherwise,

a SE of 100%, SP of 95.9% ). The automatic melanoma diagnosis system proposed by

Celebi et al. [10] yielded a Specificity (SP) of 92.34% and a Sensitivity (SE) of 93.33%

based on a set of 564 dermoscopic images. In [28], the author proposed a melanoma

identification algorithm based on the dermoscopic feature of white areas and reported a

diagnostic accuracy of 95% using the data set including 57 melanomas and 187 benign

nevi. To open the computer based lesion diagnostic resources to the public, Iyatomi
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et al. [20, 30] introduced an internet-based melanoma screening systems. In order to

obtain a diagnostic result, the user could upload a dermoscopic image, together with

the associated clinical data, e.g., lesion position. The system would extract the le-

sion area, calculate the lesion characteristics and yield a diagnosis in the form of a

malignancy score between 0 and 100 based on the output of a linear classifier or arti-

ficial neural network. The latest version of their system [20] featured a sophisticated

dermatologist-like lesion segmentation algorithm that attained superior performance.

In addition, the system could automatically selected the appropriate diagnostic classi-

fier from linear and back-propagation artificial neural network based on the location of

lesions provided by users. Based on a leave-one-out cross-validation test on a set of

1258 dermoscopy images (1060 nevi and 198 melanomas) using 428 image related ob-

jective features categorized into asymmetry, border, colour and texture properties, the

system achieved 85.9% sensitivity, 86.0% specificity. In our group, Ballerini et al. [50]

conducted research on a Content-Based Image Retrieval system (CBIR), with the aim

of providing a diagnostic aid for skin lesion prognosis. The decision was made by

humans, but supported by retrieving and displaying relevant past cases visually similar

to the one under examination. More information about CBIR systems can be found in

[29].

From Table. 2.1, it can be seen that some CSLD systems reported higher diagnos-

tic performances (with sensitivity and specificity of about 90%) than clinical experts

(75− 84% in diagnosing melanoma [20]). However, these systems still have several

limitations regarding the acceptable lesion cases (most systems can only analyse pig-

mented lesions and distinguish between melanoma and melanocytic nevi) and using

limited diagnostic information (dermoscopic-images based). The diagnostic capability

of current automated systems does not yet match that of an expert dermatologist [20].

2.3 Skin Lesion Studies using 3D Data

Recently, with rapidly growing research in 3D computer vision, the analysis of objects

in 3D space becomes possible. Some studies that apply 3D systems to skin analysis

problem are:

1) Castellini et al. [53] is possibly the first group carrying out real 3D measurement of

the superficial structure of skin lesions. As the second growth phase of the melanoma,

vertical growth is considered to be important clinical prognostic information. In the

light of this, the authors were inspired to assess the lesion height measured using a
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Source Segmentation method Classifier Images # Classes Performance Image source

Green et al. [25]

- Discriminant analysis 70

melanoma(5)

DA=76% video cameranevus(53)

1991 other pigmented lesions (12)

Rubegni et al. [51]
- ANN 588

melanoma(217)
DA=94% Dermoscopy

2002 nevus(371)

Menzies et al. [48]
- Logistic 78

melanoma(13) SE=91%
Dermoscopy

2005 nevus(65) SP=68%

Celebi et al. [10]
region growing SVM 564

melanoma(88) SE=93.33%
Dermoscopy

2007 nevus(476) SP=92.34%

Stanley et al. [42]
manually drawn

threshold-based
226

melanoma (113) SE=87.7%
Dermoscopy

2007 discrimination nevus(113) SP=74.9%

Iyatomi et al. [49]
region growing linear classifier 213

acral volar melanoma(37) SE=81.1%
Dermoscopy

2008 nevus(176) SP=92.1%

Iyatomi et al. [30] dermotolgist-like
ANN 1258

melanoma(198) SE=85.9%
Dermoscopy

2008 region growing based nevus(1060) SP=86.0%

Iyatomi et al. [52] threshold+
linear classifier 655

melanocytic lesions (548) SE=98.0%
Dermoscopy

2010 morphological operations non melanocytic lesions(107) SP=86.6%

Table 2.1: Recent studies on computer aided skin lesion diagnosis

laser triangulation technique, which had the disadvantage of a long capturing time.

Even though their 3D measurement system enhanced the knowledge in the field of

measurement and reconstruction of skin characteristics, their work mainly focused on

proving the ability of the system to capture the morphological characteristics of the

lesion. There was no further discussion about the diagnostic value of the shape of the

lesion.

2) Leveque et al. [54] introduced a new integrated tool DERMA that allowed the mea-

surement of chronic wounds based on the 3D data obtained using a laser triangula-

tion scanner. DERMA was successfully used to monitor the development of lesions,

e.g., the wound healing process.

3) In [55], the authors described a new method (SkinChip) that used a non-invasive 3D-

based device to characterize the properties of the skin surface. As the captured skin

surface data allowed a highly precise observation of the skin topography that could be

easily quantified in terms of line density and line orientation, SkinChip was considered

as a convenient way to evaluate the age wrinkle smoothing with regard to hydration.

This study showed the potential benefit of 3D data on skin analysis.

4) Ding et al. [11] applied the Photometric Stereo Device (PSD) to capture the skin

surface data in the form of surface normal images, which were then used to analyse

disruptions in skin patterns that were found to be larger for melanoma than for be-

nign lesions. In contrast to analysing the skin line patterns on 2D images as in [26],

their work was based on 3D skin surface normal information. The 3D skin pattern

disruption related features were extracted as the residuals between the surface normal
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data and those from a best-fit model. Their experiment on a database including 12

melanoma and 34 benign lesions showed that using 3D skin surface normal features

improved the specificity from 25.7% to 91.7% compared to using 2D skin line pattern

features. The sensitivity did not change. The results demonstrated that the addition of

3D normal features lowered the risk of considering a benign lesion as melanoma and

indicated the non-invasive 3D test could improve the accuracy of melanoma diagnosis.

Another study from their group [47] investigated the effectiveness of four 3D-based

curvature pattern related properties in melanoma diagnosis. A test on a small-scale

data set comprised of 23 melanoma and 53 benign lesions indicated the effectiveness

of the 3D curvature pattern in melanoma diagnosis, though the improvement was with-

out sufficient statistical proof when compared to the classic 2D features.

5) The most closely related work to our research is the preliminary study carried out in

our lab by McDonagh et al. [56]. In their study, the accuracy of the diagnosis obtained

by combining the topography and colour features were compared with that obtained

by using only colour features. The comparison was based on the Bayesian classifier

with a unimodal multidimensional Gaussian class model. The feature set was selected

using a greedy forward selection strategy that started with an empty set of features

and progressively added features. Their experimental results suggested that the depth

information might improve the diagnostic rate. Though a) this conclusion was weak

regarding the statistical significance (with a p-value of 0.3), b) the experiment was

based on limited number of lesions (234 sample in total) and c) the ill-posed prob-

lem of inverting the covariance matrix in the Bayesian classifier limited the number

of features that could be used in the classification. But still, this work for the first

time indicated that the effective 3D-based information could open new possibilities in

improving lesion diagnostic rate.

2.4 Summary

In summary, one can find that

1) much research on automated melanoma analysis has been done and has achieved ac-

ceptable performance levels. However, that research was only designed to distinguish

between melanoma and melanocytic nevi and was based on the analysis of chromatic

information (mostly derived from dermoscopic images).

2) there has emerged some skin lesion analysis using 3D data. Recently, the idea of

including 3D based properties into the lesion diagnosis has perked up. But no concrete
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and systematic studies showing the benefit of 3D information could be found.

Therefore, applying 3D data and 3D-based analysis methods to non-melanoma skin

cancers or other skin conditions is an open research area. The development of new

3D imaging systems which could capture good surface shape and colour information

simultaneously allows us to explore this research topic in this thesis.





Chapter 3

Ground Truth for Segmentation

Evaluation

Having ground truth is critical for evaluating segmentation algorithms and estimating

the ground truth from a collection of manual segmentations remains an open prob-

lem. This chapter first presents an overview of the existing ground truth estimation

approaches in Section 3.2, followed by an analysis of manual segmentations which

aims at obtaining a better understanding of the pattern of the inter-rater variation in

Section 3.3. Section 3.4 then proposed three ground truth estimation approaches based

on different energy function formulations and solved by optimization under a level-set

framework. Experiments on both synthetic and real data presented later, in Section 3.5,

show that the approached methods are promising in finding an accurate ground truth,

particularly for the one that integrates the prior shape analysis result.

3.1 Introduction

Segmentation is the first step of the computer-based skin lesion diagnosis algorithms

and its accuracy is of crucial importance for the subsequent analysis. Numerous

computer-based skin lesion segmentation methods have been developed based on dif-

ferent methodologies. In order to analyse their performance, objective evaluation

methods are needed.

In general, the segmentation evaluation can be categorized into two groups: super-

vised and unsupervised evaluation, depending on whether the method utilizes a priori

knowledge, which we refer to as the Ground Truth (GT). The former is more widely

used in the medical field. It considers the accuracy of the segmentation result as the

21
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degree to which the result corresponds to the ground truth segmentation through evalu-

ation metrics. Unfortunately, the GT normally does not exist in practice, in the absence

of which, the segmentation evaluation is impossible. Although synthetic data or phan-

toms [57] help, they do not allow the reproduction of the full range of characteristics

observed in clinical data and lose fidelity [58]. An alternative way is to compare the

method output against segmentation made by a trained rater. Because a single expert,

even experienced, is likely to be subject to a personal bias and poor precision, therefore

cannot be used as an absolute reference. The comparative ground truth must be a good

compromise within a group of raters [59].

However, the inter-rater segmentations show a significant disagreement according

to the rater’s subjective criteria in placing the boundary [59, 24]. Hence, the question

is raised as how to compensate for this inter-rater variability, and derive a ground

truth from the results given by multi-raters. To date, the most appropriate strategy

to combine such segmentations is unclear and it has become a popular research topic

itself [1].

3.2 Literature Review

Drawing on the concept from the field of pattern recognition, deriving the ground truth

from a collection of manual labeling results is a decision fusion problem. Treating

the labeling results of a target image as classifications, a combinational modal value

for each pixel can be obtained using a decision fusion rule. An appropriate fusion rule

should be able to compensate for the inter-rater differences and eliminate the intra-rater

variability, which are also referred to as the systematic and random errors in the indi-

vidual results. Therefore, the Estimated Ground Truth (EGT) arrives at a consensus

that is closer to the truth than any of the constituent segmentations.

As a means of decision fusion, the Voting-Rule-based strategy is the most straight-

forward. For the category labeling representation, such as binary labeling, the Major-

ity Voting Rule (MV) assigns each pixel to the value that the majority of experts agree

upon. This method is the most popular in the literature and it has the advantages of be-

ing simple and efficient. Unfortunately, the MV is directly related to human intuition

and does not provide guidance as to how many experts should agree before making the

decision [1]. If a continuous label assignment like probabilities is supplied, more com-

plex voting rules, such as Product Rule, Sum Rule, Max Rule, etc., can be applied [60].

However, all these strategies treat each rater equally and do not allow the incorporation
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of a priori information that describes the performance of individual raters. Though a

weighted version of the vote-rule strategy can be easily implemented, a robust way to

derive weight parameters has not been clarified.

Warfield et al. are the pioneers in estimating the GT incorporating the rater’s per-

formance as weights. Their STAPLE algorithm [1] is so far one of the most referenced

approaches in the field. STAPLE treated decision fusion as a maximum-likelihood

problem. It was solved using the Expectation-Maximization(EM) algorithm that guar-

anteed convergence, but not necessarily global optimality. STAPLE gave the quanti-

tive estimate of the performance level parameters of raters in terms of the sensitivity

and specificity and, based on which, it could output a probabilistic estimation of the

GT simultaneously. Commowick et al. [61] further investigated the factors that might

influence STAPLE performance. They reported that the initialization on the perfor-

mance level parameters affected the estimated results heavily and they also estimated

the confidence interval of the estimated performance parameters. Furthermore, the ex-

periments revealed a dependence of the confidence intervals with respect to the number

of voxels and the size of the segmentation structure of interest. According to their con-

clusion, a sufficient number of manual results should be used for STAPLE to produce

precise results. In their particular case, the uncertainty of performance parameters was

stable when 5 or more experts were used in the study. Warfield et al. [58] generalized

STAPLE by extending it to the cases where the boundary could be represented by a

signed distance transform or level-set where each pixel has a continuous score. Their

formulation considered the subjective bias in terms of overestimate or underestimate

of the position of a boundary as well the consistency of the raters’ performance level

parameters. Langerak et al. [62] and Klein et al. [63] highlighted that the performance

of STAPLE was application dependent. It failed when the performances of the raters

varied greatly. This can be explained by the fact that, even though fusing results in

a weighted way, STAPLE takes into account all raters. A bad rater can contaminate

the overall result, especially when an inappropriate initialization is allocated. In this

context, adding a rater selection step helps. In [62], the authors proposed a simplified

STAPLE variant. This variant iteratively selected the optimal segmentation results

based on image similarity measures and abandoned the ones with poor quality due to

the wrong registration result. The final result was a combination of the optimal seg-

mentations in a weighted Majority Vote procedure. The selection step helped to deal

with the large variability problem encountered in their application and hence produced

better results than STAPLE. Their approach required a large number of manual results
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because of their abandonment strategy and several parameters needed to be tuned in

the iteration step, like the number of segmentations to be discarded and the similarity

threshold. Moreover, the algorithm had no guarantee of convergence. It does however

give us a hint as to whether or not a prior study of the segmentations would help.

From our point of view, the key difference to the decision fusion function is how

the weight that reflects the rater’s performance is set up. If the weights are uni-

form, it is assumed that the performance level of each rater is identical. The EGT
should be a compromise between the raters which minimizes the overall discrep-

ancy between the ground truth and individual segmentations measured using a cer-

tain metric. Various metrics exist in the literature and can be categorized into two

groups: 1) spatial-overlap-based, which measures the overlap between two segmenta-

tions, e.g., XOR [64], Dice Similarity Coefficient (DSC) [63], Overlap Ratio (OR) [65]

and 2) boundary-difference-based, e.g., FOM [66] and Hausdorff measure, which ac-

counts for the distance between two boundaries. These metrics are also useful in com-

paring the computer-based segmentation against the estimated ground truth.

If it is assumed that the performance level of raters varies and should be accounted

for in the estimation, then the weights are set differently. Large weights are assigned

to high quality raters and low weights to poor quality raters. The difficulty lies in

how to characterize the performance level and how to embed them into a GT estima-

tion model? As mentioned previously, the segmentation by the human rater is subject

to both systematic and random errors in practice. The latter results in the intra-rater

variability in the placement of individual labels [65] and it is defined as the precision

in [58] measuring the reproducability of individual raters. It can be diminished when

multiple segmentations are fused [65]. The systematic error arises during the stage

of defining the reference boundary and leads to the discrepancy between the reference

labeling and the unknowable true labeling. It reflects a consistent bias over the position

of a boundary of a rater [58]. This error totally depends on the rater’s subjective seg-

mentation policy. Previous algorithms like STAPLE intend to characterize such a bias

through performance level estimation in terms of sensitivity and specificity parameters

and compensate for it in the weight-based fusion process. However, we hypothesize

that the estimated ground truth cannot arrive at the true position unless the following

condition is satisfied: both overestimation and underestimation exist and are equally

distributed. In fact, this condition is almost surely not true in the lesion segmentation

mission because no raters intend to underestimate the boundary location according to

potential risk consideration, especially for lesions with smooth and fuzzy boundaries,
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like non-pigmented lesions. In practice, some raters draw the boundary along the le-

sion edge strictly and produce detailed segmentations, while others prefer to include

a bit of the skin region adjacent to the boundary and lead to a more compact bound-

ary. It is obviously not fair to compare the latter (or even a compromise of both in any

means that would always keep a positive distance from the truth) against the computer-

based segmentation that always produces a fuzzier boundary following the pixel-wise

intensity or shape variation, even though they still provide useful information about

the location of the boundary. This might explain why adding a reference selection step

improved the ground truth estimation result in [62].

As a result, we hypothesize that a proper EGT should take into account the segmen-

tation bias pattern. In order to produce a more reasonable boundary, a prior analysis

of the bias pattern would be helpful. This can later serve as a priori information that

guides the weighting of raters and drives the EGT closer to the truth. This strategy has

not been attempted in the related literature as far as the authors are aware.

In this Chapter, we represent the ground truth estimation as an optimization is-

sue under a level-set framework. Two formulations are proposed based on different

strategies: minimizing variation and maximizing the a posteriori probability. We first

conduct a pattern analysis of manual segmentations and then investigate whether in-

corporating such pattern information will improve the ground truth estimation. For the

purpose of embedding the pattern information, we will add a shape prior model term to

the energy function. The performances of five different approaches will be compared

by experimenting on both synthetic and real data.

Materials The 50 real skin lesion images for the purpose of testing are randomly se-

lected from our lesion data-base. The lesion boundaries are obtained by eight dermatol-

ogists from the Dermatology department of the University of Edinburgh who directly

draw the lesion boundary on the colour image displayed in Adobe Photoshop CS3 us-

ing a Wacom Clintiq 12WX Interactive pen tablet independently. We then convert the

results into binary-valued images, in which the lesion is labeled as ‘1’ and the skin

as ‘0’. We present the first comprehensive assessment using carefully validated seg-

mentations of 50 lesion images. To our knowledge, ground truth estimation for lesion

segmentation analysis has not been studied on such a large data set.

Notations Some notations are listed as follows:

Di j(x): the manual segmentation of the ith image drawn by the jth expert at pixel x

Ti(x): the estimated ground truth of the ith image at pixel x. Ti(x) ∈ {0,1} and [1:
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lesion, 0: normal skin]

I: the number of images

J: the number of raters

P(Ω): the partition of the image Ω into N distinct regions: {Ωn}N
n=1, ∪N

n=1Ωn ≡Ω and

Ωi∩Ω j = /0,∀i 6= ji, j. Ω denotes the image domain, N is the number of regions (N = 2

for lesion and normal skin images).

3.3 Lesion Manual Segmentation Pattern Analysis

3.3.1 Impact of Different Segmentation Policies Related to Intra

Rater Variation

Visual inspection reveals the existence of both intra-rater and inter-rater variations on

the same lesion, but the latter is more significant than the former, as shown in Fig. 3.1.

These variations mainly take place at locations where the transition between lesion and

healthy skin is smooth, e.g., the blurred boundary of non-pigmented lesions and where

the edge is non-convex, e.g., regions where the boundary penetrates into the lesion.

It would be interesting to investigate their respective impacts on the lesion labeling

results.

For the intra-rater variation, one rater repeated the manual segmentation 5 times

on images of the same lesion. Two trials are on the original orientation, while the

other three are rotated clockwise by 90, 180, 270 degrees, respectively. As a result,

we obtain 5 manual segmentations for each lesion image. The variation between each

segmentation pair is measured using both XOR [64] and FOM [66].

XOR measures the spatial-region-based dissimilarity between two segmentations,

e.g., the real ground truth (GT) and the estimated ground truth (EGT). It has the form

as:

XOR =
Area(EGT

⊕
GT)

Area(EGT+GT)
=

FN +FP
FN +FP+2×T P

. (3.1)

It ranges from 0 (best) to 1 (worst).
⊕

denotes exclusive-OR and gives the pixels for

which Ti and Di j disagree; + means union. The smaller the XOR, the closer the ground

truth is to the manual results. The drawback of this metric is that it tends to favor larger

lesions due to the size term in the denominator. FOM (Pratt’s Figure Of Merit) is a

distance-based measurement that is often used to compare the performance of edge

detection algorithms. It stood out in comparison with five other supervised evaluation

criteria for segmentation results and proved to be most effective in a comparison study
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(a) Intra Variation (b) Inter Variation

Figure 3.1: Both intra-rater and inter-rater variation exist and the latter is more signifi-

cant than the former (see text for description of methodology)

conducted by Chabrier et al. [66]. It corresponds to an empirical contour distance

between the GT and the EGT in the form of

FOM(CoT,CoD) =
1

max{length(CoT ), length(CoD)}
·

length(CoT )

∑
k=1

1
1+α×d2(k)

,

(3.2)

where CoT and CoD are the boundary representations of the GT and the EGT. d(k) is

the Euclidean distance between the kth pixel of CoT and the nearest pixel of CoD. Its

weight α is set to 1 in the experiments.

The average of the measures across the 50 test images is considered as the intra-

rater variation and it reflects the precision of this rater during the segmentation process.

Full results are shown in Table. 3.1. The first row demonstrates the comparison result

Measures (×100) XOR FOM [66]

Intra
No rotation (2 samples) 6.33 15.66

Rotation (4 samples) 5.80 16.67

Inter Other dermatologist (7 samples) 8.07 12.39

Table 3.1: Intra and Inter rater variation comparison (smaller XOR and larger FOM is

better)

between the 2 non-rotated segmentations from the same person. The second row com-
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pares the results drawn by the same person but on 4 images rotated every 90 degrees.

The third row displays the inter-rater variation, which is the average comparison re-

sults between different raters. For one thing, the intra-variation are relatively smaller

compared to the inter-variation (in terms of smaller XOR and larger FOM values). On

the other hand, it is possible to eliminate the intra-rater variation during the multiple

results fusion process [65]. Hence, we hypothesize that the inter-rater variation is the

main factor that differentiates the segmentations from different raters and should be

compensated for during the ground truth estimation procedure.

In order to account for the inter-rater variation, the authors in [58] considered the

existence of two bias patterns as underestimation and overestimation. They compen-

sated for it through the estimated bias parameters. As discussed before, in the lesion

segmentation, using these two patterns is not enough, since the rater would either trace

the lesion boundary exactly, or overestimate the boundary to an extent, but no under-

estimation exists. Hence, the estimated ground truth would still have some overesti-

mation since all the results make a (weighted) contribution to the ground truth. We

question whether or not some other factors can help the EGT to converge to a more

accurate lesion boundary. In the light of this, the pattern analysis of manual segmenta-

tions is necessary.

3.3.2 Two Segmentation Policy Models

Visual inspection reveals that lesion manual segmentations vary because of different

raters’ segmentation policies. Different opinions on the importance of finding the exact

lesion boundary lead to different attitudes when people perform the manual segmenta-

tion. For some raters, locating a general lesion region is necessary for a good diagno-

sis. Hence, they pay less effort to the exact edge details; while other raters might pay a

great deal of attention to draw a very precise pixel-by-pixel boundary. In this context,

we assume that there are two patterns of manual results: segmentations that have finer

details along the boundary should be comparatively more detailed and less careful seg-

mentations that tend to have a more compact lesion region. To test this assumption,

we describe all the manual results drawn by eight raters by two measurements: Com-
pactness measurement (CM = perimeter2

4π×area ) and Fractal Dimension (FD = log(M(s))
log(M) , M

denotes the number of squares covering the image field and M(s) denotes the number

of squares occupied by the boundary). For each manual segmentation, a CM and a

FD value are assigned. Hence, there are J manual results from different raters for each
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lesion i and they are denoted as CM(Di j) and FD(Di j), i = 1, . . . , I, j = 1, . . . ,J. For

the purpose of comparison, both CM and FD values are normalized across J raters for

each lesion (e.g.,FDi = (FDi−mean(FDi, j=1:J))/std(FDi, j=1:J))). The scatter plot of

these two values is shown in Fig. 3.2a. If we draw a discriminative line (e.g., across
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(a) The discriminant line in red shows the poten-

tial separation between two pattern clusters. The

segmentations with small compactness and fractal

dimension values are considered as compact ones;

while those with large compactness and fractal di-

mension values are considered as detailed segmen-

tations. Segmentations from 8 raters are displayed

in different colours. All segmentations from de-
tailed style raters have reddish colour; while seg-

mentations from compact style raters have green-

ish colour. Raters with different segmentation poli-

cies produce consistent patterns of segmentations

(i.e., most segmentations given by a ‘detailed’ style

rater lays on the right hand of the discriminant line).
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(b) All segmentations are separated into two

pattern clusters using kmeans method. The

segmentations with small compactness and

fractal dimension values are considered as

compact ones; while those with large com-

pactness and fractal dimension values are con-

sidered as detailed segmentations.

Figure 3.2: The scatter plot of FD and CM.

the scatter plot center and perpendicular to the principal component axis direction, see

dotted line in Fig. 3.2a), then we divide the samples into two groups. One has large

CM and FD values (denoted as detailed) and the other has small values (denoted as

compact). If either the detailed or the compact segmentations consistently belong to

a group of raters (e.g., most points on the right-hand side of the discriminative line have



30 Chapter 3. Ground Truth for Segmentation Evaluation

red colour which denotes the detailed segmentation), then we have reasons to believe

that group of raters share a common pattern of segmentation policy which differs from

the other group.

In order to verify this thought, 1) we apply kmeans (where we force k = 2) to

cluster all manual segmentations from 8 rater and 50 images (8× 50) based on both

CM and FD. Each manual segmentation result is categorized into one group (either

detailed or compact). The clustering result is shown in Fig. 3.2b. 2) For each rater,

we count the number of his/her segmentations being compact, as shown in the sec-

ond column in Table. 3.2. Each rater has a corresponding cluster vector which records

how compactly they draw the lesion boundary over the 50 lesions. According to the

divergence between the counts for compactness, there exist two kinds of segmentation

style (detailed and compact) and one can categorize raters into detailed and compact
patterns based on this count (i.e., if more than 25 segmentations of a rater belong to

the compact group, this rater has a compact style). The categorization results are

intuitively presented in Fig. 3.2a and Fig. 3.5a. Segmentations from 8 raters are dis-

played in different colours. All segmentations from detailed style raters have reddish

colour; while segmentations from compact style raters have greenish colour. Most of

the segmentations from the detailed raters tend to have larger CM and FD values and

those from the compact raters tend to have smaller CM and FD values. Fig. 3.3b)

shows ground truths estimated from detailed segmentations and compact segmenta-

tions using Majority voting based method. It can be seen that the compact style raters

intend to include more healthy skin parts into lesion region. This result echos the rater

performance parameters estimated from STAPLE (see the right hand of Table. 3.2), in

which compact style raters normally have large precision but small specificity.

On the other hand, the dermatologists are reasonably consistent according to the

‘counts for compact’ score, which means each dermatologist obeys the same rule when

doing the manual segmentation. This can be further observed from the scatter plot in

Fig. 3.2a, in terms of the different underlying distributions of red and green samples.

Therefore, it is reasonable to distinguish different raters, although the two patterns are

not completely separated from each other in Fig. 3.2a (e.g., some red / green points

enter the domain of the points of the opposite colours). This is mainly because 1)

there is intra-rater-variation and 2) both CM and FD values are lesion dependent, even

though a normalization is performed. In order to further prove that the rater pattern

categorization is feasible, we perform a statistical hypothesis test by comparing the

categorization results to the hypothetical results. We suppose the null hypothesis is
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(a) Detailed segmentations and compact
segmentations

(b) Ground truths estimated from de-
tailed segmentations and compact seg-

mentations using Majority voting based

method

Figure 3.3: Real segmentations

that the two patterns of segmentation (compact and detailed) for each rater are equally

likely to occur, or in another words, the expected ‘counts of compact’ should be 25 out

of 50. The question is then how likely is it to find our pattern clustering results. We

consult the binomial two-tailed test B(50, 1
2) to find out the probability of finding a

certain number compact counts either above or below the expectation (25) in a sample

of 50. The resulting P values are listed in the third column in the Table. 3.2, which

indicates that raters have tendency towards one kind of pattern in segmentation and it

is not random.

The above pattern analysis result can be considered as useful prior information

with potential value in estimating the ground truth. In our application, we consider a

good quality lesion segmentation as one which has a small average distance from the

true boundary. In this context, the detailed segmentation outperforms the compact
segmentation and should be considered as more important (see Fig. 3.3b).
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Rater Patterns Clustering based on FD and CM Performance(STAPLE [1])

Rater counts for compact (out of 50)
Binomial Test

patterns precision group specificity group
Two-tails P Value

1 18 0.0649 detailed 0.9379 small 0.9890 large

2 42 < 0.0001 compact 0.9578 large 0.9647 small

3 10 < 0.0001 detailed 0.8417 small 0.9904 large

4 3 < 0.0001 detailed 0.9095 small 0.9924 large

5 47 < 0.0001 compact 0.9466 large 0.9794 small

6 32 0.0649 compact 0.9437 large 0.9597 small

7 45 < 0.0001 compact 0.9620 large 0.9821 small

8 40 < 0.0001 compact 0.9220 small 0.9828 large

Table 3.2: Rater style clustering. count of compact indicates the number of compact

segmentations (out of 50) produced by each rater. Based on the count of compact

across 50 images, each rater is assigned to a pattern (i.e., if a rater produces more

than 25 ‘compact’ segmentations, he/she is considered as a compact style rater). A

binomial test shows that each rater consistently obeys his/her segmentation policy dur-

ing the manual segmenting task. The performance of each rater, in terms of precision

and specificity, is also estimated using STAPLE. Each performance parameter can be

clustered into two groups (‘small’ and ‘large’) and this clustering result relates to the

rater pattern clustering result (i.e., compact style raters have large precision and small

specificity because they intend to include more healthy skin into lesion region)

3.4 Ground Truth Estimation Methods

In this section, we propose two ground truth estimation algorithms: with and without

taking into account a rater’s performance level. Ground truth estimation is solved as

an optimization issue using a level-set framework. The advantages of using a level-set

framework are: 1) the force that drives the evolution of the level set function has a

physical interpretation, 2) it is easy to extend to multiple category labeling problems,

3) it can also be extended to the continuous manual segmentation representation. Last

but not the least, 4) the level set formalism enables us to directly incorporate prior

segmentation pattern information into the estimation framework by adding a specially

designed term in the energy function E(φ).

3.4.1 Variation Based Method (LSV)

The motivation behind the variation based ground truth estimation approach is to mini-

mize the average discrepancy between estimated ground truth Ti and the manual results.
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This is equivalent to minimizing the average area of the non-overlap region between Ti

and Di j. Hence, an energy function can be defined as:

Ei =
J

∑
j=1

∫
Ω

[Ti(x)−Di j(x)]2dx (3.3)

=
J

∑
j=1

N

∑
n=1
{
∫

Ωn

[Ti(x)−Di j(x)]2dx} (3.4)

=
J

∑
j=1
{
∫

Ωlesion

[Ti(x)−Di j(x)]2dx+
∫

Ωskin

[Ti(x)−Di j(x)]2dx}. (3.5)

The level-set representation of the above energy function would be:

Ei =
J

∑
j=1
{
∫

Ω

H(φ)[1−Di j(x)]2 +[1−H(φ)][0−Di j(x)]2dx}. (3.6)

= 2×
∫

Ω

H(φ)[
J
2
−

J

∑
j=1

Di j(x)]dx+
J

∑
j=1

∫
Ω

D2
i j(x)dx. (3.7)

Here, the estimated ground truth is represented by the level-set function φ. The bound-

ary is the zero level-set. H(φ) denotes the heaviside step function:

H(φ)≡ H(φ(x)) =

{
1 φ(x)≥ 0,x ∈Ωlesion

0 φ(x)< 0,x ∈Ωskin
(3.8)

Ti(x) is the EGT label,

Ti(x) =

{
1 x ∈Ωlesion

0 x ∈Ωskin
(3.9)

Using the Euler-Lagrange equation, the minimization of E(φ) solved by a gradient de-

scent for the embedding function φ is:

∂φ

∂t
= −∂E

∂φ
(3.10)

= 2×δ(φ)[
J

∑
j

Di j(x)−
J
2
], (3.11)

here, δ(φ) = dH(φ)
dφ

is the Dirac delta function. It has value 1 at the lesion boundary and

0 elsewhere. From Eq. 3.11, the level set function φ tends to be stable at the position

where the votes of location x as lesion and skin are tied. If more raters label x as lesion,

then the zero level-set evolves towards the skin direction; otherwise, it evolves in the

lesion direction. The force is determined as the distance between the overall votes



34 Chapter 3. Ground Truth for Segmentation Evaluation

of being lesion and the half of rater number. On the other hand, the energy function

Eq. 3.7 is comprised of two terms and the second one is a constant. The energy will

always be bigger than the constant unless pixels belonging to the lesion region satisfy

∑
J
j=1 Di j(x) ≥ J

2 . This is equivalent to the Majority Vote Rule (MV) theoretically.

From Eq. 3.11, the energy function arrives at the extreme value when ∑
J
j=1 Di j(x) = J

2 .

This reveals that the Majority Voting Rule with voting ratio θ = J
2 makes the estimated

ground truth have the smallest average variation to the manual results. We further

verify this result in Section 3.5.1.

3.4.2 Maximum a posteriori (MAP) Probability Based Method (LSML)

The probabilistic formulation estimates the ground truth as a process of finding an

optimal partition P(Ω) of the image domain. It maximizes the a posteriori probability

of a partition p(P(Ω)|Di{1,2,...,J}) under the condition of a set of manual results. Simply

speaking, the EGT should be the most probable partition given all the manual results.

As a result, the formulation has the form as:

p(P|Di{1,2,...,J}) = p(Ωlesion,Ωskin|Di{1,2,...,J}) (3.12)

=
2

∏
n=1

p(Ωn|Di{1,2,...,J}) (3.13)

=
2

∏
n=1

∏
x∈Ωn

p(T (x)|Di{1,2,...,J}(x)). (3.14)

p(T (x)|Di{1,2,...,J}(x)) is the conditional probability that pixel x belongs to region T (x)

(e.g., T (x) = 1 means x belongs to the lesion) and it has the format as:

p(T (x) = 1|Di{1,2,...,J}(x)) =
p(T (x) = 1,Di{1,2,...,J}(x))

p(Di{1,2,...,J}(x))
(3.15)

=
a(x)

a(x)+b(x)
(3.16)

= W (x). (3.17)

p(T (x) = 0|Di{1,2,...,J}(x)) =
p(T (x) = 0,Di{1,2,...,J}(x))

p(Di{1,2,...,J}(x))
(3.18)

=
b(x)

a(x)+b(x)
(3.19)

= V (x). (3.20)
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Here, a and b denotes the joint probability and are defined by assuming that the raters

perform the segmentation independently:

a(x) = p(Di{1,2,...,J}(x),T (x) = 1) (3.21)

= p(Di{1,2,...,J}(x)|T (x) = 1)p(T (x) = 1) (3.22)

=
J

∏
j=1

p(Di j(x)|T (x) = 1)p(T (x) = 1) (3.23)

b(x) = p(Di{1,2,...,J}(x),T (x) = 0) (3.24)

= p(Di{1,2,...,J}(x)|T (x) = 0)p(T (x) = 0) (3.25)

=
J

∏
j=1

p(Di j(x)|T (x) = 0)p(T (x) = 0) (3.26)

p(Di{1,2,...,J}(x)) = a(x)+b(x). (3.27)

W (x) and V (x) are the joint conditional probability of pixel x belongs to the lesion

and skin, respectively. For an individual rater, the definition of the likelihood function

p(Di j(x)|T (x)) is inspired by STAPLE [1] and upholds the idea that the contribution of

each rater to the ground truth estimation differs based upon their performance. Hence,

we have:

p(Di j(x)|T (x) = 1) =

{
p(Di j(x) = 1|T (x) = 1) = se j if Di j(x) = 1;

p(Di j(x) = 0|T (x) = 1) = 1− se j if Di j(x) = 0.

p(Di j(x)|T (x) = 0) =

{
p(Di j(x) = 0|T (x) = 0) = sp j if Di j(x) = 0;

p(Di j(x) = 1|T (x) = 0) = 1− sp j if Di j(x) = 1.

Here, se(sensitivity) = T P
T P+FN and sp(speci f icity) = T N

T N+FP . Definitions of the

4 measures, T P (true positive), T N (true negative), FP (false positive), FN (false

negative) are shown in Fig. 3.4. The prior information term p(T (x)) is determined

solely by the labeling results at location x:

p(T (x) = 1) =
∑

J
j=1 Di j(x)

J
. (3.28)

p(T (x) = 0) = 1− p(T (x) = 1). (3.29)



36 Chapter 3. Ground Truth for Segmentation Evaluation

Figure 3.4: Four basic measures for binary segmentation evaluation. The red circle

denotes the ground truth and the yellow denotes an estimated result

Maximizing the a posteriori probability in Eq. 3.14 is equivalent to minimize its

negative logarithm as

E = −∑
n

∑
x∈Ωn

log p(T (x)|Di{1,2,...,J}(x)) (3.30)

= −{ ∑
x∈Ωlesion

log p(T (x) = 1|Di{1,2,...,J}(x))+ (3.31)

∑
x∈Ωskin

log p(T (x) = 0|Di{1,2,...,J}(x))} (3.32)

According to Eq. 3.17 and Eq. 3.20, we have

E =−{ ∑
x∈Ωlesion

log(W )+ ∑
x∈Ωlesion

log(V )} (3.33)

The level-set representation of the above energy function can be expressed as

E(φ) = −
∫

x∈Ω

H(φ) log(W )+(1−H(φ)) log(V )dx. (3.34)

According to the Euler Lagrange equation, maximizing of the energy functional E(φ)

derives
∂E(φ)

∂φ
= δ(φ)

(
log

W
V

)
= 0. (3.35)

Solving Eq. 3.35 using a gradient descent for the embedding function φ results in a

PDE which represents the contour evolution equation as

∂φ

∂t
= −∂E(φ)

∂φ
= δ(φ)

(
log

W
V

)
. (3.36)

The values of W and V keep updating through iterations based on the estimated perfor-

mance parameters. The physical meaning of this equation is very clear. The boundary
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evolves to the location where the probabilities of the pixel belonging to the lesion and

the skin are identical. If the conditional probability of pixel x being lesion is larger

than skin, there is a positive force proportional to log(W/V ) driving the boundary to

move towards the skin direction and vice versa.

3.4.3 Maximum a a posteriori Probability Based Method Incorpo-

rating the Segmentation Pattern Information (LSMLP)

In the previous section 3.3, we categorize the manual segmentation into two patterns

(detailed v.s. compact). Given the aim of comparing computer-based segmentations

against the EGT, it is reasonable to generate a ground truth that has a more accurate

boundary. We remark that the detailed segmentations suit this requirement better.

Hence, we introduce a Shape Prior Model (denoted as SPM) that is built upon the

detailed manual segmentations using the Majority Vote Rule. A shape prior based term

aiming at minimizing the distance between the estimated Ti and SPM is formalized as:

Eshape =
∫

Ω

[Ti(x)−SPM(x)]2dx (3.37)

=
∫

Ω

H(φ)[Ti(x)−SPM(x)]2 +[1−H(φ)][Ti(x)−SPM(x)]2dx (3.38)

=
∫

Ω

H(φ)[1−SPM(x)]2 +[1−H(φ)][0−SPM(x)]2dx (3.39)

=
∫

Ω

H(φ)[1−2×SPM(x)]dx+
∫

Ω

SPM2(x)dx. (3.40)

We add this term to the energy function of the LSML in Eq. 3.34 and lead to a new

energy function as:

ELSMLP = ELSML + γ×Eshape. (3.41)

Minimizing the above energy function derives the boundary evolution equation as:

∂φ

∂t
=−∂ELSMLP(φ)

∂φ
= δ(φ)

(
log

W
V

+ γ× (2×SPM(x)−1)
)
. (3.42)

Here, γ weights the importance of the shape prior energy (we set it to 0.4 in our exper-

iment to give more weight on the contribution of all manual segmentations).

In such a way, we give prominence to the detailed segmentations and reduce the

impact of the compact segmentations. It is worth noting that the above level-set for-

mulations are based on two key assumptions:

1. Each rater independently performs the lesion segmentation job.
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2. There is no spatial correlation between pixels.

Though the second assumption can be relaxed by incorporating a Markov random field

model as stated in [58], it is out of the scope of our work.

3.5 Experiments and Results

In this section, we will compare the proposed approaches against two popular ground

truth estimation methods: the Majority Voting Rule (MV) and STAPLE, based on

both synthetic and real lesion data. For the Majority Voting Rule approach, we also

investigate the number of agreements needed for making the decision.

3.5.1 The Best Voting Threshold

The Majority Voting Rule aims to find the ground truth with common agreement using

the formulation as:

Ti(x) =

{
1 if ∑

J
j=1 Di j(x)≥ θ;

0 otherwise.
(3.43)

Here, θ is the voting threshold that is used to determine the classification of each

pixel and it is the only parameter in this simple approach. However, as pointed out

by Warfield et al. [1], there is no guidance as to how many experts (θ) should be in

agreement before making the decision. In Section 3.4.1, we showed that θ = J/2 is

correct choice for the estimated ground truth to have the smallest average discrepancy

to the manual results. We now justify this claim with experimental evidence.

We compute the ground truth using various threshold values θ for different numbers

of manual results (J). The XOR measure (mean±standard deviation) comparing the

ground truth against its corresponding manual results (
∑

I
i=1 ∑

J
j=1 XORi j(Ti(θ),Di j)

I×J ) is shown

in Table. 3.3 (the smallest XOR measures are highlighted in red). This result shows that

XOR measure (×100)

Voting Threshold (k)

Manual(J) 3 4 5 6

8 6.70±3.90 6.17±3.62 6.24±3.80 6.92±4.29

7 5.46±4.13 5.19±3.87 5.59±4.16 6.82±4.96

6 4.59±4.27 4.66±4.39 5.56±5.17

5 3.52±3.89 4.03±4.48

Table 3.3: Average segmentation error rates and their standard deviations
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the best estimation of the ground truth is determined when using the voting method

with θ = J+1
2 when J is odd and θ = J

2 otherwise. The latter is reasonable in practice

due to the risk consideration. When a tie is reached, it is preferred to favor the more

dangerous situation. The result illustrates the conclusion in Section 3.4.1. To our

knowledge, we are the first group to analyse the best vote threshold for the Majority

Vote Rule both theoretical and experimentally. Also, the XOR decreases when the

number of manual results is reduced, which reflects the reduced variation among the

dermatologists.

3.5.2 Comparison on Synthetic Data

In order to compare the EGTs derived from different approaches, it is preferred if the

real ground truth (GT) is known. Hence, we generate synthetic data that simulates

the two patterns of manual segmentations. The data is derived by using a selected

computer segmentation as the ground truth that is represented as a level set function as

φ ([67], defined based on the signed distance function from the contour). Developing

the synthetic data is therefore compiled as the evolution of this ground truth. The force

that drives the evolution of the level set function takes into account both systematic

and random errors. The formulation of this process is as following:

∂φ

∂t
= N×F (3.44)

= N× (Random+νdiv
∇φ

|∇φ|
). (3.45)

N is the normal to the curve and can be determined directly from the level set function

as N =− 5φ

|5φ| . F is the force and is comprised of two terms:

1. The Random term simulates randomness errors. A normally distributed pseudo-

random value ranging from -1 to 1 is assigned to it.

2. The second term is a regularization term related to the smoothness of the evolv-

ing contour. ν denotes the weight. A larger weight is used to simulate compact

segmentation; while a smaller weight is used for detailed segmentation.

Moreover, overestimation is simulated using a morphological operation: dilation. The

scale of the dilation structure differs between detailed and compact, smaller for the

former and larger for the latter.

The detailed segmentations are the ones with smaller ν (0.15 in the experiment)

and smaller dilation scale (ranging from 2 to 5); while the compact segmentations are
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the ones with larger ν (0.45 in the experiments) and larger dilation scale (ranging from

4 to 10). Both are shown in Fig. 3.5c.

(a) Real Segmentations (b) Real Segmentations

 

 

Ground Truth
Detailed1
Detailed2
Detailed3
Detailed4
CompactSeg1
CompactSeg2
CompactSeg3
CompactSeg4

(c) Synthetic Segmentations

Figure 3.5: Real and synthetic segmentations

The corresponding real segmentations are shown in Fig. 3.5a and Fig. 3.5b. The

detailed and compact segmentations are displayed in red and green, respectively. The

ground truth estimated from each pattern of segmentations using the Majority Vote

Rule is shown in Fig. 3.6. From both Fig. 3.5 and Fig. 3.6, we can see that the syn-

thetic data have similar characteristics to the real segmentations. Hence, we use them
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(a) Real Data (b) Synthetic Data

Figure 3.6: The ground truth estimated from different patterns of the segmentations

through the Majority Vote Rule

Methods

Metrics MV LSV STAPLE LSML LSMLP

XOR (%) 3.8409 3.8409 3.7212 3.2733 2.1615

FOM (%) 8.9026 8.9026 10.6596 13.1484 26.7412

Sensitivity 1.0000 1.0000 1.0000 1.0000 1.0000

Specificity 0.9709 0.9709 0.9719 0.9754 0.9839

Table 3.4: The performance of different approaches according to the four metrics. The

values are calculated based on the known ground truth and the ground truth estimated

using different methods.

to compare different ground truth estimation algorithms. The results are shown in

Fig. 3.7. The comparison results using XOR, FOM, sensitivity and specificity metrics

are demonstrated in Table. 3.4 and Table. 3.5. These results show:

1. The EGT estimated using LSMLP is the closest to the real ground truth. The

improvement is significant compared to the other approaches according to three

metrics (i.e., XOR, FOM and Specificity). The Sensitivity equals to 1 for all

the methods because of the overestimation simulation. LSMLP outperforms

the others mainly because it produces finer boundary details, especially at the

locations where two groups of segmentation have big differences, such as those

shown in Fig. 3.7b.
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Methods

Rater Index Sensitivity:Specificity MV LSV STAPLE LSML LSMLP Real Parameters

Rater1
Sensitivity 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

Specificity 0.9660 0.9660 0.9651 0.9616 0.9533 0.9380

Rater2
Sensitivity 0.9976 0.9976 1.0000 0.9992 0.9997 1.0000

Specificity 1.0000 1.0000 1.0000 0.9961 0.9876 0.9719

Rater3
Sensitivity 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

Specificity 0.9737 0.9737 0.9728 0.9693 0.9609 0.9454

Rater4
Sensitivity 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

Specificity 0.9520 0.9520 0.9510 0.9476 0.9394 0.9243

Rater5
Sensitivity 0.9622 0.9622 0.9642 0.9726 0.9900 1.0000

Specificity 1.0000 1.0000 0.9998 0.9998 0.9980 0.9858

Rater6
Sensitivity 0.8900 0.8900 0.8922 0.9002 0.9205 0.9611

Specificity 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

Rater7
Sensitivity 0.9767 0.9767 0.9768 0.9835 0.9948 1.0000

Specificity 1.0000 1.0000 0.9991 0.9983 0.9941 0.9801

Rater8
Sensitivity 0.9613 0.9613 0.9633 0.9723 0.9942 1.0000

Specificity 1.0000 1.0000 0.9999 1.0000 1.000 0.9861

Table 3.5: Performance level of raters estimated from different methods. The real per-

formance level parameters for each rater are calculated from the known ground truth

and the synthetic data. For each approach, the estimated performance level parame-

ters of raters are calculated from the estimated ground truth using the corresponding

approach and the synthetic data.
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(a) The estimated ground truths

 

 

GT

MV

LSV

STAPLE

LSML

LSMLP

(b) The estimated ground truths of a local

region

Figure 3.7: The ground truths estimated from the synthetic data. These grey level im-

ages are generated by aggregating individual rater binary segmentations. This provides

a visual representation of rater agreement (i.e., rater agreement varies with respect to

grey level intensity)

2. LSML produces the second best result and STAPLE comes the third, though

there is no significant difference between them.

3. LSV and MV give the same result as predicted in our test. In Fig. 3.7, the

boundary estimated by these two approaches overlap.

3.5.3 Comparison on Real Lesion Data

We also apply the approaches on our real lesion data, examples of which are shown

in Fig. 3.8, Fig. 3.9. The same conclusion holds. The LSMLP outperforms the

others at the locations where the boundary is non-convex and missed in the compact
segmentations (Fig. 3.8b and Fig. 3.9b).

Note, for fair comparison on both synthetic and real data, the four iteration-based

approaches (STAPLE, LSV, LSML and LSMLP) are initialized with the same set-

ting: an initial circular boundary covering the lesion.
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(a) Real Data (b) Local region

Figure 3.8: Test on real data. LSV and MV give the same result as predicted in our test.

(a) Real Data (b) Local region

Figure 3.9: Test on real data. LSV and MV give the same result as predicted in our test

3.6 Conclusion and Future work

As a means of comparing the performances of different segmentation algorithms objec-

tively, the segmentation evaluation method needs a reference standard. But it is usually

not available in real life. Therefore, estimating a GT from a collection of manual re-

sults becomes necessary. A good GT estimation algorithm should take into account

both the intra and inter-rater variability, which appear in manual segmentations. We

have provided evidence to argue that the latter is much more significant than the former

and is the main factor that should be considered in the segmentation combination pro-

cess. In order to compensate for the inter-rater variation and get reproducible results,

ground truth estimation methods employ different decision fusion strategies to find a
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compromise between multiple manual results. In our opinion, the major difference be-

tween these approaches is whether or not they take the rater performance (in terms of

weights) into account. For example, the Majority Voting Rule treats every rater equally;

while STAPLE weights different raters according to the estimated performance level

parameters. However, both of them ignore the characteristic of the raters’ segmen-

tations. Little research has analyzed the patterns of the manual segmentation results

and we are the first group to study this subject. We found that the manual segmenta-

tions of lesion differed mainly because of the rater’s segmentation policies and could

be categorized into two groups: detailed and compact. Taking into account that the

aim of estimating a ground truth is to compare it against computer-based algorithms,

we argue it is fair to treat two patterns equally. Hence, using the categorisation result

as prior information, we introduce a shape prior model that is built upon the detailed
segmentations.

We treat ground truth estimation as an optimization problem and solve it under

a level-set framework. We propose two approaches by designing the energy function

based on different formulations, one is by minimizing the variation (LSV) and the other

is by maximizing the a posteriori probability (LSML). The latter takes forward the

idea in STAPLE [1] that takes each rater’s performance level into account. The rater’s

pattern is incorporated by adding an energy term related to a shape prior model to

LSML and results in a third approach called LSMLP. Experiments on both synthetic

data and real lesion data reveal that LSMLP outperforms all the other methods that do

not consider the prior information, followed by LSML and STAPLE.

In addition, we prove theoretically and experimentally that LSV and Majority Vote

Rule (MV) are equivalent essentially. MV produces the smallest average discrepancy

between the EGT and the manual segmentations with a voting threshold as θ = J/2.

Future work will concentrate on addressing the deficiencies in the current work:

1. We generate the prior shape model by combing the detailed segmentations that

are clustered by k-means using a Majority Vote Rule based strategy. It is worth

learning the shape prior model in a more comprehensive way, e.g., based on prin-

cipal components analysis (PCA). Besides, other ways to incorporate the prior

pattern analysis should be considered, e.g.,, embedding the prior information

into the prior probability term p(T (x)).

2. Our level-set based formulations are based on an assumption that pixels have a

spatial independence. We would relax this assumption by introducing a Markov
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random field model as stated in [1].

3. It is of interest to extend this work into multiple phase applications, e.g., multiple

lesions in one image.

4. In Eq.3.42, γ that trades off between the LSML and shape based term was set

to 0.4 arbitrarily. This is because based on the synthetic data, there is no solid

ground truth and manual segmentations to estimate an optimal value for it. In

any case, one could rerun the experiments using our data with varying gamma

and select a value in a range of stable results. A proper way to select γ and com-

pare different methods should be based on a test dataset with known ground truth

and real manual segmentations. This data can be generated by replacing the syn-

thetic manual segmentations with the real segmentations from dermatologists.

However, the difficulty of this method lies in modifying the known ground truth

(often a contour) to simulate the real-life lesion boundary which is often blurry

and fuzzy.



Chapter 4

Lesion Segmentation

The chapter first presents a review of the algorithms and the information that are com-

monly used for skin lesion segmentation (Section 4.2). In Section 4.3, a uniform seg-

mentation method is proposed as a test platform, which is based on a region-based

probabilistic formulation of the deformable model and is implemented within the level-

set framework. In order to validate the importance of depth information to lesion iden-

tification (or segmentation), diverse image cues (i.e., colour, depth and texture) are in-

corporated into this segmentation model. Experiments and results show that the extra

depth information leads to better segmentation. Section 4.4 further presents a decision

tree based segmentation method that is proposed to optimize the usage of different fea-

ture combinations for segmenting different types of lesions. Experiments suggest that

this strategy can further improve the segmentation performance.

4.1 Introduction

Segmentation is a mandatory step in skin lesion diagnosis, because 1) it simplifies and

changes the representation of an image into something that is more meaningful and

easier to analyze in the follow-up process [68], 2) the generated lesion boundary itself

provides important information for accurate diagnosis and 3) the extraction of other

clinical features depends on the accuracy of the boundary [69]. Any error at this stage

would of course bias all the subsequent measurements and would, therefore, reduce

the accuracy of the final diagnostic result [59].

Computer-based lesion segmentation plays a role as a ‘clinical eye’ that mimics

and augments the dermatologist’s ability in separating the lesion from its adjacent

healthy skin using various human perception-based macroscopic information and com-

47
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plex computer vision technologies. Compared to human segmentation, the computer-

based segmentation has the advantages of being objective, consistent and efficient.

Pantofaru et al. [70] noted that computer-based image segmentation algorithms had

matured to a point that they provided segmentations which agreed to a large extent

with human intuition. This might be true for common images. However, Ma et al. [71]

argued that, due to reasons such as low contrast between structures, artifact inferences,

etc., the segmentations for medical applications needed more concrete background,

which can be interpreted in two ways: 1) distinctive and suitable algorithms for lesion

segmentation application and 2) indicative and discriminative visual information that

is available to human being and useful for lesion and skin differentiation. We particu-

larly focus on the latter as the goal of the thesis is to investigate the contribution of 3D

information in lesion diagnosis.

According to the visual inspection, the lesion surface appearance is comprised of

both chromatic and geometric attributes. The chromatic attribute has been commonly

implied since colour information could be easily achieved by conventional 2D imaging

systems. As there have been tremendous advancements in imaging techniques, higher

and higher resolution imagery is becoming available [71]. Since the 1990s, the high

resolution images produced by the modern imaging modality, dermoscopy (or epilu-

minescence microscopy) have been widely used as they offer much more lesion detail.

Dermoscopy enables access to the subsurface features of lesions and therefore it can

enhance the accuracy of the diagnostic and segmentation results for pigmented lesions

in certain situations [72]. Most lesion segmentation methods are therefore developed

for dermoscopy images and focus on pigmented melanocytic lesions (e.g., melanoma

and benign melanocytic nevus). Unfortunately, these methods are not suitable for the

non-pigmented lesions, in which the chromatic variation between different structures is

not distinguishable [52]. This type of lesions include two other important skin cancers

BCC (Basal Cell Carcinoma, e.g., Fig. 4.11a) and SCC (Squamous Cell Carcinoma,

e.g., Fig. 4.1a, 4.5a) for which early and correct diagnosis is also of great importance.

They are included in our lesion database. For these lesions, additional diagnostic cues

are desired (e.g., 3D surface geometric attributes).

Compared to the chromatic attributes, the geometric attributes which reflect the

topological structure of lesion surfaces have hardly been investigated, despite that they

are also used as diagnostic basis by clinicians in practice. This is mainly because of the

lack of corresponding 3D information which is indiscernible in the 2D images. Rigel et

al. [72] pointed out the combination with other modalities like in-vivo range-imaging
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of the skin surface could provide additional features for a more reliable diagnosis. Our

stereo system (see Section 2.2.1(5)) completes the story. It enables us to assess the

3D information and analyze the geometric-based features. Hence, we hypothesize this

additional information could enrich the computer’s vision and provide an extra attribute

that helps to distinguish between lesions and their adjacent skin regions. As far as we

are concerned, there has been very few contributions to the literature from both vision

and dermatology sides as to whether the 3D superficial information is useful in lesion

diagnosis and segmentation [47]. This makes our research meaningful.

To evaluate our hypotheses, we need to build an experimental platform - a segmen-

tation method, which enables us to assess the impact of different lesion characteristics

on the segmentation, and make a discussion on their contributions to different kinds of

skin lesions (e.g., pigmented, non-pigmented). We propose a segmentation approach

which is suitable for our particular skin lesion application.

In the following, we will first carry out a brief literature review on segmentation

algorithms as well as segmentation cues, respectively.

4.2 Segmentation Literature Review

4.2.1 Algorithms

Image segmentation refers to the process of image partition. It results in a set of seg-

ments that are adjacent and non-overlapping and collectively cover the entire image,

or alternatively, a set of contours extracted from the image [68]. From a classifica-

tion point of view, it can be interpreted as a process that assigns a discrete label to

every pixel in an image. For a good segmentation result, all of the pixels belonging

to the same region should share certain visual characteristics, such as colour, inten-

sity, or texture; while adjacent regions should be significantly different with respect to

the same characteristics. In order to achieve this goal, many algorithms using differ-

ent technologies have been proposed. In the section, we will present a general review

and comparison of methods belonging to the four categories: pixel-based, edge-based,

region-based and deformable models based segmentation.

1. In pixel-based approaches, the segmentation is carried out by labeling pixels on

the basis of local features like intensity. An example is the histogram threshold-

ing segmentation, which is based on the premise that the interesting structures

(e.g., lesion and skin) have distinctive quantifiable features. Alternatively speak-
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ing, there should exist significant peaks and valleys in the histogram, based on

which the thresholds can be identified (usually found by Otsu’s method). Using

these thresholds, each region is comprised of the pixels whose values are within

certain ranges [71]. The advantages of this method are simplicity and efficiency.

It performs well in the situation where the structures have obvious intensity dif-

ferences like melanocytic lesions. For instance, Xu et al. [73] developed the

Skin Cancer Segmentation software package based on a semi-automatic method

using thresholding techniques. Their experimental results on pigmented lesions

showed an average error that was about the same as that obtained by experts.

However, the software failed when applied to the non-pigmented lesions in the

experiment conducted by Li et al. [22]. The failure was explained by the fact that

the premise of having distinctive quantifiable intensity features in the lesion im-

ages was largely false. As it can be seen from Fig. 4.1a and 4.5a, the lesion region

may be comprised of several kinds of tissue that result in multiple peaks and pits

in the histogram; alternatively, the lesion and skin regions (like in Fig. 4.8a), on

the other hand, may share very similar colour intensities causing the histogram

to have a flat distribution. In both cases, threshold-seeking becomes difficult.

Furthermore, pixel-based approaches are very sensitive to noise, such as arti-

facts and the uneven illumination influence. What makes things worse is that, as

each pixel is processed independently, the clustering in feature space can lead to

unconnected regions in image space and can also result in breaks and holes in

structures. As a result, pixel-based approaches are not a good option for skin

lesion segmentation.

2. When taking into account the local relationship between pixels, image inten-

sity values have two basic properties: discontinuity and similarity. The edge-
based segmentations are based on the former, in which the boundary is found

where discontinuities (or abrupt changes) in features take place. Because region

boundaries and image edges are closely related, the first step of edge-based seg-

mentation normally involves image edge detection using various edge filtering

techniques like Canny and Prewitt. Based on the filter output, pixels can be

classified as edge or non-edge and pixels which are not separated by an edge

are allocated to the same category [74]. The most popular and advanced edge-
based segmentation approach is the ‘Snake’ or active contour model [75]. It

also belongs to the deformable model based segmentation category that we will
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discuss later. The ‘snake’ is in fact a spline that moves within images to find

object boundaries. It is pulled towards the object boundary by both internal

(e.g., spline bending) and external forces. The external forces are image related

and are often generated based on the image gradient. Recently, a new type of

Snake that is referred to as the Gradient Vector Flow (GVF) Snake has become

attractive in the field. The movement of the GVF Snake is determined by a field

of forces that is calculated as a spatial diffusion of the gradient of an edge map

derived from the image. Tang [76] presented a segmentation algorithm using a

multi-directional GVF Snake and applied it on the pigmented skin lesion. They

concluded that the performance of the approach was close to human segmenta-

tion. Zhou et al. [77] combined local GVFs with a mean shift strategy to derive

a dynamic energy force for snakes. The experiments showed that their method

was capable of accurately determining skin lesion borders in dermoscopy im-

ages. However, it is not clear which kind of lesion information (e.g., greyscale

intensity or colour) was used in the segmentation scheme. The foundation of

the edge-based segmentation is to utilize image gradient related information to

identify object boundaries. This kind of method works well when there is a sharp

variation in intensity at the region boundaries, but it fails when the boundary be-

tween structures is blurred. The latter is a common situation for non-pigmented

lesions. On the other hand, as being highly localized image information, the im-

age edge has been found to be very sensitive to image noise [78]. Moreover, it

is not convenient to incorporate multiple image cues in the edge-based segmen-

tation. As a result, neither of the pixel-based nor edge-based segmentations are

competent for all skin lesion segmentations.

3. The region-based approaches come from the observation that quantifiable pre-

defined features inside a structure tend to have visual similarity and strong sta-

tistical correlation. The main advantage of the region-based segmentation in

contrast to the pixel-based and edge-based segmentation is that it tends to be

less sensitive to noise. This explains why it is the most popular method for med-

ical image segmentation [71]. For particular applications like skin lesions whose

edge information is ambiguous, partitioning using regional-based scheme seems

to be more appropriate. In general, the procedure of region-based segmentations

involves: 1) choose a proper set of features which can identify the same-content

regions and simultaneously differentiate different-content regions and 2) apply a
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segmentation model to the chosen features to achieve a segmentation map [79].

The most commonly used segmentation model is based on clustering techniques,

which perform clustering in a feature space. This kind of method normally op-

erates iteratively by grouping together pixels which are neighbours and have

similar values and splitting groups of pixels which are dissimilar in value [74].

Commonly used algorithms are region growing, Watersheds [80] and k-means,

etc. In [81], Iyatomi et al. proposed a dermatologist-like lesion region extraction

algorithm based on the region-growing approach and brought the extraction re-

sults closer to those determined by dermatologists for both XLM (oil immersion

and cross polarization mode of epiluminescence microscopy (ELM)) images and

TLM (side transillumination mode of ELM) images. Yuan et al. [82] proposed a

novel multi-modal skin lesion segmentation method based on region fusion and

narrow band energy graph partitioning. Comparisons showed that their method

outperformed the state of the art methods. Their approach only used intensity

features and an extension to incorporate colour and texture features was consid-

ered as future work.

4. More recently, deformable models (or active contours) have been intensively

investigated and applied to segment medical images because they are very flex-

ible and can be used for complex segmentations and produce promising re-

sults [83, 84, 71]. The basic idea is to allow the contour to deform so as to opti-

mize a given energy function and the structure boundary is therefore the final sta-

tus of the initial contour. In medical application, the deformable models based

segmentations have been particularly focused on region-based flows, because of

many advantages when compared to edge-based methods including robustness

against initial curve placement and insensitivity to image noise [71]. While the

edge-based active contour (e.g., Snakes) is evolved by fitting to local edge infor-

mation, the region-based deformable model attempts to fit models to intensity,

colour, texture or other sophisticated shape and appearance features within each

of the separated regions and finding an energy optimum where the model best fits

the image. Some of the most well-known and widely used region-based active

contour models assume the various image regions to be of constant intensity. For

example, the Chan-Vese algorithm used the classical Mumford-Shah functional

and found a uniform smooth approximation of each region [85]. However, as

one can see, the appearances of structures in medical images, e.g., skin lesions,
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are usually highly textured and have considerable variances within the same re-

gion (as in Fig. 4.1a). Therefore, although most feature extraction methods are

designed to extract a uniform response for all pixels in one class, the features

often vary due to a non-stationary distribution of pixels in the same region or

the existence of noise in the image [79]. Hence, unless objects have distinct

features (e.g., colours) and are well separated, otherwise, this type of method

can encounter problems when there are many complex objects with less distinct

features or there exists gradual variation in colour, illumination, shading and tex-

tures [78]. As a result, more advanced techniques should be considered. One of

the most successful developments is to incorporate statistical region-based mod-

els. This method attempts to model regions by known distributions, intensity

histograms, texture maps, or structure tensors. In practice, the method also en-

ables the incorporation of professional knowledge such as anatomical structures

and the spatial relationship [71]. As a result, we choose to perform the skin

lesion segmentation using the statistical region-based deformable model.

The key to the deformable model is the energy function, based on which the

contour evolves to an optimum. According to the way that different functions are

built, deformable models can be further classified as parametric and geometric

models [71]. Currently, the latter tends to replace the former because it is able to

resolve several drawbacks encountered in the parametric models, such as failing

when undergoing topological changes. More details can be found in [86].

For building the geometric models, we have chosen to look at the level-set frame-

work which has become widely used in the vision community [70]. In the subject

of segmentation, except for dealing with the topological changes problem, it also

has these advantages: 1) being generally effective, 2) yields an informative rep-

resentation of regions and their boundaries on the pixel grid without the need of

complex data structures, 3) simplifies the optimization for deformable models

as standard numerical methods can be employed and 4) increases the flexibility

of the deformable model and allows the use of various kinds of features, shape

knowledge, etc [87]. In the level-set framework, contours are implicitly repre-

sented as the (zero) level-set of some embedding function (e.g., φ). For the sta-

tistical region-based segmentation, one can define a cost function (or an energy

function) that reflects regional forces based on parametric models of features (of-

ten a Gaussian because of mathematical tractability). The corresponding Partial
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Differential Equation (PDE) of the function is then derived using the Euler equa-

tions. Based on the PDE, which can be solved using a gradient descent method

for the embedding function φ, the contours evolve in the direction of a negative

energy gradient [86]. The parametric model of PDEs and the segmentation are

computed jointly.

4.2.2 Segmentation Information

Since a computer-based lesion diagnostic system plays the role of a ‘clinical eye’ that

mimics the clinician, a good ‘clinical eye’ is fundamental. However, as current seg-

mentation approaches are refined and new techniques are developed, one stumbling

block that remains is the lack of comprehensive vision information. Our concern is

how can computers make good and comparative decisions to those given by human

being if they are not provided with the same source of information? We believe that the

input to the computer-based segmentation systems should be human perception-based

information and have the characteristics of correctness and comprehensiveness.

Grey Value
So far, grey value-based descriptors have been widely used. Some of them are certain

component of a colour space. Others are obtained by converting a colour image to

greyscale. For example, in [88], the segmentation is based on a greyscale image that

is calculated as the lightness component of the HSL colour space. In [35], the author

introduced two segmentation methods that were operated on a single colour channel

(e.g., R) or a greyscale channel derived from the RGB colour space which was pre-

processed to enhance the colour contrast. The lack of discriminative cues obviously

limits the power of segmentation algorithms of producing high quality results. To in-

crease the discriminative power, other descriptors like colour, depth and texture should

be taken into account [89].

Colour
It is well known in the field that colour information is very important for the visual

and the computer-aided diagnosis of melanoma [36] as well as for other lesion types.

Colour images contain far more information than grey-scale images. They enable a

more accurate and detailed assessment of the appearance of lesions and therefore, they

should lead to a higher quality segmentation [90]. The question emerges as how to

represent colour information in terms of features. Generally, colour features can be

extracted as different channels from various colour spaces, such as RGB, HSV and
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CIE Lab. RGB is an obvious choice as it needs no transformation and is directly ac-

quired by the imaging system. Particularly, skin lesions are often more prominent in

channel B [69]. But one problem of RGB is that each component often has high cor-

relation with the others. On the other hand, their absolute values are environmentally

dependent. Both CIE Lab and HSV are nonlinear transformations of the RGB colour

space. Their common advantages are 1) they yield perceptually uniform spacing of

colours, and show consistency to human vision systems, 2) They are capable of hand-

ing brightness and chromaticity information separately. By discarding the brightness

component it is possible to make the analysis independent from the intensity variations

of the environmental illumination and achieve the actual colour information. For ex-

ample, in HSV colour space, V describes the intensity of brightness. It is independent

from the chromatic ones; while H (hue) and S (saturation) colour models are scale-

invariant and shift-invariant with respect to the light intensity. In addition, these two

components are closely related to the way in which the human visual system (HVS)

perceives colour [36, 91]. However, no dominating advantage of one colour space or

one channel has yet been found [90]. The choice of colour space and colour channel

should be application dependent. Garnavi et al. [31] proposed an automatic border

detection method which integrated the optimal colour channels selection. The op-

tional colour channels were 25 colour features extracted from six colour spaces. Their

segmentation performances were evaluated by comparing to the dermatologist-drawn

borders based on various metrics (e.g., accuracy, precision, sensitivity, specificity, and

border error). The optimal colour channels were chosen as the input to a hybrid thresh-

olding based segmentation approach. The final border was the combination of the

segmentation results obtained using individual colour channels based OR operation.

The authors claimed that the method was highly competitive with three state-of-the-art

border detection methods and potentially faster, since it mainly involved scalar pro-

cessing as opposed to vector processing performed in the other methods. However,

as the colour feature selection is simply based on the ranking results without taking

into account the correlation between individual colour channels, it is doubtful that the

combination of the segmentation results using those chosen colour features based on

OR operation would produce an overall optimal segmentation result.

Depth
Current lesion segmentation algorithms are mostly designed for pigmented lesions,

e.g., melanoma and melanocytic nevus. For these lesions, the chromatic attributes are

often adequate for distinguishing different regions. However, if we consider a broader
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lesion field like non-pigmented lesions, the chromatic attributes are obviously far from

sufficient as most of these lesions do not have distinct colour features. Therefore,

features from other cues are worth exploring.

Visual inspection reveals that most lesions have observable superficial geometric

variation, e.g., elevation from the adjacent skin. As it can be seen from Fig. 4.7c, there

is significant shape variation in the 3D data, but the corresponding left-hand region

does not have correlated colour variation, as shown in Fig. 4.7a and 4.7b. From the

regional distributions in Fig. 4.7d, one can see that the two regions can hardly be dis-

tinguished from each other along the x-axis (representing colour property), but they are

more separable in the y-axis (representing depth property). Unfortunately, because of

the lack of 3D imaging system, segmentations using lesion surface shape information

has been little investigated to the best of our knowledge.

Texture
Texture is another important property for skin lesions since many of them are highly

textured (e.g., Seborrheic Keratosis) and the underlying texture property distributions

are different for different regions (e.g., lesion and healthy skin). The problem is that

texture attribute extraction is a fairly difficult topic. There is even no clear definition of

what texture is. Therefore, no principled answers exist on how to texture-label pixels,

but there are some ad-hoc suggestions [92]. The most widely used texture features

are filter based, e.g., the ones extracted using the Gabor filters. However, these filter-

based features have the common drawback of leading to a high dimensional feature

space. In practice, handling large dimensional data is difficult. Also, there is usually

a significant amount of redundancy among these filtering responses [93]. Even though

the dimensionality problem can be resolved using some dimension reduction operation

like Principal Component Analysis (PCA), these operations themselves can introduce

additional complexity e.g., parameters need to be tuned. As in lesion images, the local

repetition of the lesion structure provides the basis for the appearance of a texture pat-

tern in the neighborhood region, the co-occurrence matrices based feature is also con-

sidered in representing lesion texture. In [94], Dhawan et al. described a multichannel

segmentation algorithm which used both grey-level intensity and co-occurrence ma-

trices based features for region extraction. They concluded the incorporation of grey-

level intensity and texture feature produced better result than that obtained using the

grey-level intensity feature alone. However, as a separate co-occurrence matrix has to

be calculated for each pixel based on pixels around the original pixel, the calculation of



4.3. Uniform Segmentation 57

textural feature is very computational expensive. An alternation could be the nonlinear

structure tensor based descriptor which only involves the calculation of the first partial

derivatives at each pixel and produces good properties for texture discrimination. This

textural descriptor has become popular in texture representation recently [86].

In the next section, we will give a detailed description of the implementation of

our segmentation approach, covering the general formulation, lesion descriptors and

some variants of statistical region models. In order to distinguish this first algorithm

from the latter development based on a hierarchical strategy (in Section 4.4), we call it

‘Uniform segmentation’.

4.3 Uniform Segmentation

Through the literature review and concrete visual analysis of skin lesions, we have

chosen to utilize the deformable model based segmentation algorithm and implement

it within a level set framework. The corresponding energy function is built upon the

statistical region-based models.

4.3.1 Method

From a pattern recognition point of view, segmentation is also a classification prob-

lem. Hence, it is convenient to borrow the concepts from Bayesian inference theory

which estimates the conditional probability of a hypothesis being true based on some

forms of evidence. The energy function of the deformable model is designed in a

probabilistic formulation using Bayesian inference theory. Mathematically, it is equiv-

alent to maximize the a posteriori (MAP) probability. The segmentation is found as

the most possible partition, T , of the image domain Ω that maximizes the conditional

probability of lesion information I. The general formulation is:

T ∗ = argmax
T∈Ω

p(T |I). (4.1)

According to the Bayesian Chain Rule, the a posteriori probability can be further ex-

pressed as

p(T |I) = p(I|T ) · p(T )
p(I)

, (4.2)

where, p(I|T ) is the likelihood function, referring to the conditional probability of the

observation of I. The prior probability of the segmentation that is inferred before any

evidence becomes available is represented by p(T ). The marginal probability of image
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observation is denoted as p(I). Because it does not vary with respect to any solutions

of T , therefore, it is considered as a constant and can be ignored. This leads to:

p(T |I) ∝ p(I|T ) · p(T ). (4.3)

As maximizing the a posteriori probability is equivalent to minimizing its negative

logarithm, our energy function can be further expressed as:

E =− log{p(I|T ) · p(T )}=− log p(I|T )− log p(T ) = E1 +E2. (4.4)

In the following, we will specify the individual terms in Eq. 4.4, respectively.

1. Image Based Term
E1 is an image based term that corresponds to the likelihood function:

E1 = − log p(I|T ). (4.5)

One can assume that: 1) the image partition T is composed of two non-overlapping

regions {Ω1,Ω2} (where Ω1 ∪Ω2 ≡ Ω and Ω1 ∩Ω2 = /0. Note, we only con-

sider the binary skin lesion segmentation), 2) no correlation between labelings

(i.e., pixel-wise independent assumption) 1 and 3) values at different locations

of the same region can be modeled as independently and identically distributed

realizations of the same random process. Based on these assumptions, the like-

lihood function can be extended as following [86]:

p(I|T ) =
2

∏
i=1

pi(I|Ωi) (4.6)

=
2

∏
i=1

∏
x∈Ωi

pi(I(x)|Ωi). (4.7)

Hence,

E1 = − log ∏
x∈Ω1

p1(I(x)|Ω1)− log ∏
x∈Ω2

p2(I(x)|Ω2) (4.8)

= − ∑
x∈Ω1

log p1(I(x)|Ω1)− ∑
x∈Ω2

log p2(I(x)|Ω2). (4.9)

The level-set formulation of the above equation is:

E1(φ) =−
∫

x∈Ω

[H(φ(x)) log p1(I(x)|Ω1)+(1−H(φ(x))) log p2(I(x)|Ω2)]dx.

(4.10)
1Further discussion on this assumption is given in the next section: Prior Information Based Term.
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In Eq. 4.10, the two terms model the areas inside and outside the lesion boundary,

respectively. p1/p2 are their corresponding probability density functions (pdf s).

H(φ) denotes the heaviside step function,

H(φ) =

{
1 φ(x)≥ 0,x ∈Ω1,T (x) = 1

0 φ(x)< 0,x ∈Ω2,T (x) = 0.
(4.11)

Considering the associated Euler-Lagrange equation for φ, the minimization of

the energy functional by a gradient descent of the embedding function φ is:

∂φ(x)
∂t

= −∂E1(φ)

∂φ
(4.12)

= δ(φ(x))
(

log
p1(I(x)|Ω1)

p2(I(x)|Ω2)

)
. (4.13)

δ(φ) = dH(φ)
dφ

has value 1 at the lesion boundary and 0 elsewhere. According

to Eq. 4.13, the level set function φ tends to be stable at the position where the

likelihood probabilities corresponding to the lesion and skin models are equal.

If the likelihood probability at x is larger under the lesion-based model, then the

zero level-set evolves towards the skin direction so that x is included in the lesion

region; otherwise, φ(x) = 0 evolves in the lesion direction and x is included in

the skin region. From the pattern recognition point of view, this procedure is

similar to a supervised probabilistic classification. At each iteration, the training

data are related to the current position of the contour. The two classes inside and

outside the contour are modeled as p1 and p2. The test data are the ones on the

lesion boundary. Their belongings are determined by the discriminative function

log p1(I(x)|Ω1)
p2(I(x)|Ω2

. Based on this categorization result, the components of different

classes in the training data are adjusted at the end of each iteration. This is

reflected as the involvement of the boundary in segmentation. The iteration will

not stop till the contour evolves to the discriminative boundary.

There are two concerns about Eq. 4.13: 1) how to choose a statistical model (pi)

to fit the density distribution of image information I and 2) how to represent the

image information in terms of features or properties f (x). They will be addressed

in details in Section 4.3.2 and Section 4.3.3, respectively.

2. Prior Information Based Term
E2 = − log p(T ) denotes a prior information related term. Ma et al. [71] pro-

posed that information used for lesion image segmentation did not only come
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from lesion appearances but also from some prior knowledge. Hence, this term

is important for designing an effective algorithm. Taking into account prior in-

formation will allow us to cope with the missing low-level information and ap-

pear to be especially helpful in the applications where the data are influenced

by noise or partial volume effects. Two kinds of priors are popular: the generic

priors (also called geometric priors) and the object specific priors [86]. The for-

mer are commonly represented as a regularization constraint that favors a short

length of the contour. The latter often incorporate a shape model that is sta-

tistically learnt from a set of samples. However, in our work, we will use this

term to model the label distribution so as to relax the second assumption made

in Eq. 4.7. In Eq. 4.7, it is assumed that the likelihood probability is independent

of the neighborhood at each pixel location, but in practice, this assumption is

not valid because it is often the case that the segmentation (denoted as T ) has

underlying spatial correlations [1].

In order to model the spatial correlations, we assume that the random field T

fulfills a Markov condition with respect to the local region. According to the

Hammersley-Clifford theory, the Markov Random Field (MRF) T can be mod-

eled in the form of the Gibbs distribution as the following [79]:

p(T ) =
1
Z

exp{−1
τ

U(T )}, (4.14)

where, τ is a positive constant and Z is defined in the form:

Z = ∑
T

exp(−U(T )
τ

). (4.15)

U(T ) is an energy function that incorporates the neighborhood relationship (de-

pends solely on the pairwise interactions) and can be defined as

U(T ) =−∑
x∈Ω

∑
y∈Nx

V (T (x),T (y)), (4.16)

where, y is within the neighboring region of x (Nx). When embedding the local

homogeneity relationship into V , we have

V (T (x),T (y)) = γxy× (T (x)T (y)+(1−T (x))(1−T (y))). (4.17)

Here, γxy weights the contribution of the neighborhood pixel y to the position

x. Normally, larger values are assigned to the closer neighborhood pixels, with



4.3. Uniform Segmentation 61

smaller values assigned to the distant pixels. As a result,

E2 = − log p(T ) (4.18)

= − log{ 1
Z

exp{−1
τ

U(T )}} (4.19)

=
U(T )

τ
+ logZ (4.20)

= −1
τ

∑
x∈Ω

∑
y∈Nx

V (T (x),T (y))+ logZ. (4.21)

Because Z is defined over all possible configurations on T and is impractical to

evaluate, it can be considered as a constant like τ [1, 79]. Hence, we have:

E2 = −1
τ

∑
x∈Ω

∑
y∈Nx

V (T (x),T (y)) (4.22)

= −1
τ
[ ∑
x∈Ω1

∑
y∈Nx

V (T (x) = 1,T (y))+ (4.23)

∑
x∈Ω2

∑
y∈Nx

V (T (x) = 0,T (y))]. (4.24)

Its level-set representation can be expressed as

E2 = −1
τ

∫
x∈Ω

{H(φ(x)) ∑
y∈Nx

V (T (x) = 1,T (y))+ (4.25)

(1−H(φ(x))) ∑
y∈Nx

V (T (x) = 0,T (y))}dx (4.26)

= −1
τ

∫
x∈Ω

[H(φ(x)) ∑
y∈Nx

γxy×T (y)+ (4.27)

(1−H(φ(x))) ∑
y∈Nx

γxy× (1−T (y))]dx (4.28)

= −1
τ

∫
x∈Ω

[H(φ(x)) ∑
y∈Nx

γxy× (2×T (y)−1)+ (4.29)

∑
y∈Nx

γxy× (1−T (y))]dx. (4.30)

The evolution equation of the level set function φ(x) is derived as:

∂φ(x)
∂t

=−∂E2(φ)

∂φ
=

1
τ
×δ(φ(x))

(
∑

y∈Nx

γxy× (2×T (y)−1)

)
. (4.31)

The above equation only takes into account the pairwise spatial interaction. Tak-

ing the simplest situation where weights γxy are uniform for instance, the itera-

tion terminates at the segmentation boundary where the labeling for lesion and

skin in the neighborhood region of x are identical. If there are more lesion la-

belings than skin, it indicates that x has a larger chance of being a lesion pixel.
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Therefore, a force proportional to 2× T (y)−1 will drive the zero level set to

move towards the skin region and vice verse.

In our implementation, we simplify the model by defining the neighborhood Nx

of each pixel position x as a circular area with radii of 5. All the weights γxy to

individual neighborhood pixels are set to 1.

The complete energy function is equivalent to

∂φ(x)
∂t

= δ(φ(x))

(
log

p1(I(x)|Ω1)

p2(I(x)|Ω2)
+

1
τ
× ∑

y∈Nx

(2×T (y)−1)

)
. (4.32)

For the convenience of further analysis, we modify the Eq. 4.32 by replacing the weight

parameter 1
τ

with β, which now weights the image based term. Hence, the final level-

set evolution equation is:

∂φ(x)
∂t

= δ(φ(x))

(
β× log

p1(I(x)|Ω1)

p2(I(x)|Ω2)
+ ∑

y∈Nx

(2×T (y)−1)

)
. (4.33)

In Eq. 4.33, the only parameter that needs to be determined is weight β. It adjusts

the contributions of the image information based component and the regional labeling

component to the whole system. β is normally set as a constant, but the authors in [79]

argued that inappropriate setting of this constant can result in three consequences:

1) inaccurate use of regional image information using small β, 2) ignorance of the

prior information based term like spatial relationships with large β and 3) the result

converges to a locally but not globally optimal solution when using a balanced β. They

resolved the issue by introducing a variable weighting parameter β(t) = c1×0.9t +c2.

This implementation scheme may enable the system to converge to a global optimal

(i.e., an accurate estimation of regional models) at the beginning and then refine the

result by taking into account the spatial relationship information. Another advantage

of this strategy is it makes the segmentation less sensitive to the initial contour. In the

experiment, we set c1 = 80 and c2 = 1 empirically (β(t) gradually converges to β = 1).

4.3.2 Image Properties

The essential factor for the success of lesion segmentation is how well the features can

characterize lesion and distinguish it from the adjacent skin. Hence, the question arises

as which kind of image cues can be used to represent the lesion image I and how to

describe them in terms of features { fi}.
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In this section, we will group the human-perception based information into 3 cate-

gories: colour, depth and texture and discuss them respectively.

Colour
In our work, instead of using features from a particular colour space, we consider

all three colour spaces: RGB, HSV and CIE Lab, though only colour descriptors that

are invariant to changes of lighting conditions are considered. This is because of the

concern that medical images are often severely affected by lighting conditions [89].

In this context, L and V in the CIE Lab and HSV colour spaces do not qualify be-

cause they directly relate to the illumination parameter. For the properties in the

RGB colour space, we perform a normalization operation to remove the influence

of the illumination variation and obtain three chromatic-based substitutions as r,g,b

(e.g., r = R
R+G+B ). On the other hand, it is worth noting that H in the HSV colour

space cannot be directly used as a feature referring to a pure colour. Because a hue is

an element of the colour wheel, which starts at red primary at 0◦ and wraps back to

red at 360◦. Thereby, similar colours belonging to the red category can be assigned to

two extremely different values along the intensity interval (e.g., one as 0◦, whereas the

other as 360◦). This is particularly tricky for skin lesion colour representation as the

majority lesion pixels have the hue of red. To solve this problem, we modify the hue

channel using a shifting method, the details of which can be found in Appendix A. We

denoted the modified hue as Ĥ. Hence, the full list of colour feature set is

1. the chromacity component r from the normalized RGB.

2. the chromacity component g from the normalized RGB.

3. the chromacity component b from the normalized RGB.

4. the modified Hue (Ĥ) of HSV

5. the Saturation (S) of HSV

6. the a∗ of CIE Lab

7. the b of CIE Lab.

In order to reduce the feature dimension and avoid the redundancy between colour-

based properties, we propose a feature selection procedure which is detailed in Section

4.4.3. The final choice of colour-based properties are
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1. the modified Hue (Ĥ) of HSV

2. the Saturation (S) of HSV

3. the a∗ of CIE Lab

4. the chromacity component b from the normalized RGB.

For each colour feature image, image smoothing based on adaptive anisotropic

diffusion (detailed in the texture section) is applied to reduce the influence of arti-

facts like hair and intrinsic cutaneous features (e.g., blood vessels, skin lines). In this

context, each image position x is associated with a colour-valued feature vector, as

Icolour(x) = ( fhue(x), fsaturation(x), fa∗(x), fblue(x))T . As shown in Fig. 4.1, 4.2, the le-

sion areas are enhanced compared with the conventional RGB representation for both

pigmented and non-pigmented cases. In addition, the colour space transformations

help to remove the influence of the imaging noise arising from specular reflection. For

example, the high reflection spots in Fig. 4.1a, 4.1b, 4.1c and 4.1d are removed in

Fig. 4.1e, 4.1f, 4.1g and 4.1h. We refer to these four colour-based properties as C.

(a) case D364 (b) red channel (c) green channel (d) blue channel

(e) hue channel (f) saturation channel (g) a∗ channel (h) normBlue channel

Figure 4.1: Colour properties for non-pigmented lesion case D364. (b)-(d): properties

directly from RGB colour channel. (e)-(h): properties extracted and selected in our work
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(a) case D715 (b) red channel (c) green channel (d) blue channel

(e) hue channel (f) saturation channel (g) a∗ channel (h) normBlue channel

Figure 4.2: Colour properties for pigmented lesion case D715. (b)-(d): properties di-

rectly from RGB colour channel. (e)-(h): properties extracted and selected in our work

Relative depth We hypothesise geometric attributes should provide some complemen-

tary information to assist the segmentation. The question arises as how to extract depth

feature from the data.

As our stereo imaging system obtains the superficial geometric information in

terms of a 3D point cloud, the resulting data cannot be directly used in our segmenta-

tion model. In order to make them applicable, some specific processes are necessary:

1. Fit the lesion surface with the 3D point cloud as Surf3D. The surfaces are shown

in Fig. 4.3(a) and 4.4(a).

2. Rotate the lesion surface so that it would face the viewer. This involves 1) finding

the 3D coordinate basis of the lesion surface (3 orthonormal vectors denoted as

xlesion,ylesion,zlesion) and 2) performing transformations so as to align the 3D

lesion coordinate axis with the 3D coordinate axis associated with the imaging

system (x,y,z), in which the z-axis faces the viewer. The 3D coordinate basis of

the lesion surface at a point (e.g., the center point of the surface, denoted as O) is

derived using the global normal of the surface, which is estimated as the normal

to a plane fitted using the 3D points of the lesion surface. This normal is thereby

considered as the z-axis of the lesion surface (zlesion). The x-axis (xlesion) is taken

as a random vector in the fitted 3D plane which passes O. The cross product of

the z-axis with x-axis defines the y-axis (ylesion). The rotation matrix can be
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(a) Surf3D (b) SurfRot (c) SurfBgd (d) SurfStretch

z

(e) Original 3D data (f) Rotated 3D data (g) Body curvature surface (h) Flattened 3D data

Figure 4.3: 3D data transformation of the non-pigmented lesion case D364. (a), (b),

(c) and (d): colour textured 3D model at each transformation step. (e), (f), (g) and (h):

corresponding depth image

(a) Surf3D (b) SurfRot (c) SurfBgd (d) SurfStretch

z

(e) Original 3D data

rot

(f) Rotated 3D data (g) Body curvature surface (h) Flattened 3D data

Figure 4.4: 3D data transformation of the non-pigmented lesion case D570. (a), (b),

(c) and (d): colour textured 3D model at each transformation step. (e), (f), (g) and (h):

corresponding depth image
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thereby obtained as R = [x y z]×[xlesion ylesion zlesion]−1. Hence, the x,y and z

coordinates of the point cloud of the lesion surface can be rotated using R. The

rotated surface is denoted as SurfRot and demonstrated in Fig. 4.3(b) and 4.4(b).

3. Flattening the surface to remove the influence of the body curvature. The ‘flat-

ten’ is achieved by a differencing operation between the rotated surface SurfRot

and a background surface that denotes as SurfBgd. SurfBgd accounts for the

local surface shape (shown in Fig. 4.3(c) and 4.4(c)). It is fitted as a quadric

surface using only the 3D points on the normal skin region (This skin region lies

outside the dilation of the initial contour (manually outlined) which is displayed

in Fig. 4.3e and 4.4e in white). Mathematically, the resulting flattened surface

SurfStretch = SurfRot - SurfBgd. Examples of the flattened surfaces are shown

in Fig. 4.3(d) and 4.4(d).

From the above figures, it can be seen that this pre-processing of the 3D data is neces-

sary in the light of highlighting the shape variations. If we project the SurfStretch onto

the x-y axis plane, it results in a depth image (e.g., Fig. 4.3(h) and 4.4(h)) which repre-

sents the height information at each lesion pixel. After applying spatial filtering using

the adaptive anisotropic diffusion, one can obtain a smoother depth image, which can

be directly used in the segmentation. We refer to this as the depth-based feature and

denote it as D. It is worth emphasizing that D is selected in the 3rd place in the greedy

feature selection procedure when we add it as an additional modality to the property

pool. This supports our claim that geometric property does provide extra information

for lesion separation and improves the segmentation result.

Texture

Currently, local texture descriptor based on the gradient structure tensor has a good

reputation because of its good properties for texture discrimination [86]. Therefore,

we choose it as our textural feature. The gradient structure tensor is a matrix of first

partial derivatives and has the form as J =

(
I2
x1 Ix1Ix2

Ix1Ix2 I2
x2

)
. The matrix J yields

three different texture properties at each image location x. Often, the matrix J is re-

placed by its square root. This normalization step ensures that all feature channels have

approximately the same dynamic range and generates three texture properties as [92]

f (x) = (J1,J2,J3) =

(
I2
x1
|∇I|

,
2Ix1Ix2

|∇I|
,

I2
x2
|∇I|

)
. (4.34)
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The first derivatives (Ix1 and Ix2) of an image are not rotationally invariant. To com-

pensate, we adopt the steerable Gaussian filter proposed in [95] to calculate the di-

rectional derivative Ix1 oriented at angle α with respect to the x-axis and Ix2 at degree

α+ 90o. α starts at 0o degrees and increases by 15o until 75o. The texture property

at each image location is the average. Hence, Ix1 = {Ix1(α),α = 0,15, . . . ,75} and

Ix2 = {Ix2(α+90),α = 0,15, . . . ,75}. Next, we condense the texture feature by

1) collecting only the maximum tensor of the individual property channels (i.e., the

four colour and one depth). For example, J1 = I2
x1 = max{ I2

ix1
|∇Ii| , i = {1, . . . ,M}}, M is

the number of colour and depth features. Here, M = 5.

2) collecting only the maximum tensor of the three channels (i.e., J1,J2,J3). This is

in the interest of reducing the feature space redundancy and improving the rotation

invariance property. Thus, we have

fST (x) = max{J1,J2,J3}. (4.35)

Furthermore, for the structure tensor based features, a nonlinear edge preserving smooth-

ing process is often coupled in order to deal with noise and outliers in the data and

ease further processing. Thereby, an adaptive anisotropic diffusion method is applied

to smooth homogeneous regions while inhibiting diffusion in highly textured regions.

For a given texture property image (e.g., I = fST ), the filtering process is implemented

as:
∂I
∂t

= ∇ · [c(|∇Iσ|)∇I], I(t = 0) = fST . (4.36)

The diffusion conductance c is image dependent and varies as a function of the deriva-

tive of the image Iσ (the Gaussian-smoothed version of I) at time t. In order to control

the diffusion near the edges, Perona and Malik [96] defined c(x) = exp
(
− x2

P2

)
, where

the constant P was determined empirically. The function value is small where the

gradient of the property image is large, resulting in lower diffusion near the textured

locations like boundaries [97]. In other words, diffusion across the textures can be

prevented while allowing diffusion along the texture. Hence, this anisotropic diffusion

prevents the edge from being smoothed during the filtering process. Two modifications

are applied to improve the performance of the diffusion filter. First, the property image

is smoothed by a Gaussian filter with parameter σ decreasing at each iterations rather

than a fixed σ value. In Perona and Malik’s work [96], the reason that they calcu-

lated the gradient of the image based on the smoothed version Iσ rather than directly

on I is to solve the ill-posed problem (the gradient measurements on I is not reliable

because of noise, e.g., where images close to each other could produce divergent so-
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lutions and very different edges). However, with the image (I) is getting smooth, the

non-informative noise diminish faster than useful edge information, the gradient mea-

surements calculated on I become more reliable and more informative. To account for

this, the Gaussian smoothing parameter σ should evolve (decrease) with the time (t)

as σ = σ0× (1−1/(T +1))t , where σ0 = 0.5 and T denotes the time duration for the

evolution of the diffusion function and it is determined experimentally as 20 iterations.

Second, P is computed adaptively as a function of time - large in the beginning and

get smaller gradually (i.e., P = P0× (1−1/(T +1))t ,P0 = 1). This allows the noise

to be reduced significantly at the beginning of the filtering process and the edges with

different level of gradient to be enhanced at different times in the evolution [97]. The

diffused structure tensor images are given in Fig. 4.5c and 4.6c. The textural difference

can be seen between the lesion and its surrounding skin.

(a) colour (b) depth (c) structure tensor (d) texture scale

Figure 4.5: Texture properties for non-pigmented lesion case P299

(a) colour (b) depth (c) structure tensor (d) texture scale

Figure 4.6: Texture properties for non-pigmented lesion case D374

However, the structure tensor based features only hold the information of the ori-

entation and magnitude of a texture. The local scale information is missing. Brox et

al. [92] pointed out that the scale was also an important aspect in discriminating le-

sion and healthy skin as textures were observable on different ranges of scale. In this
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context, we include a local scale feature to our property pool using the measurement

technique introduced by Brox et al.. In their work, a region based local measure is

calculated based on the assumption that pixels change their value with a speed that is

inversely proportional to the size of the region they belong to. More details can be

found in the paper [92]. Examples are shown in Fig. 4.5d and Fig. 4.6d. This feature

is denoted as fscale. Hereby, we have

Itexture(x) = { fST (x), fscale(x)}. (4.37)

We refer the texture-based feature as T .

For the purpose of quantitatively representing the local texture information of skin

lesions, we also apply the Histogram of Oriented Gradient (HOG) descriptor. This de-

scriptor captures the local coherence of object appearance. HOG was first introduced

by Dalal et al. in 2005 for detecting humans in static imagery [98]. Since then, HOG

has been extensively used in computer vision and image processing for object detection

and segmentation. It has become the state of the art in these tasks [99]. The essential

idea behind the Histogram of Oriented Gradient descriptors is that local object ap-

pearance and shape within an image can be described by the distribution of intensity

gradients or edge directions [99]. Thereby, the implementation of HOG is based on the

technique that counts occurrences of gradient orientation in localized portions of an

image. The details can be summarized in the following steps: 1) divide the image into

small connected regions, referred to as cells, 2) for each cell, compile a histogram of

gradient directions or edge orientations for the pixels within the cell and 3) normalize

and combine these histograms to represent the descriptor. For extending the HOG de-

scriptor to multiple channel data, one can compute the gradient in each of the channels

(colour or depth), respectively, and then select the response with greatest magnitude.

Full detailed description of the HOG can be found in [98]. As HOG can derive a dense

grid of uniformly spaced cells, we adapt the HOG descriptors by defining the cell as

the neighborhood region of each image location so that each pixel corresponds to a

high dimensional histogram vector. We therefore treat it as a single texture feature and

denote it as fHOG.

Hence, the texture feature vector at each pixel x can be extended to

Itexture(x) = { fST (x), fscale(x), fHOG(x)}. (4.38)

We have now obtained a property vector with colour (C), depth (D) and texture

based properties (T ). So far, these three categories of features are only defined by
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the available image sensors and the intuitive feeling based on the visual observation,

but not by the requirements of an optimal segmentation. An intensive analysis of the

contributions of different characteristics, particularly focused on the impact on the

3D-based lesion information will be demonstrated through multiple experiments in

the following Section 4.3.4. First, we need to consider how to model these features

statistically.

4.3.3 Distribution Models

The features in different regions have different underlying distributions. They can be

modeled by different Probability Density Functions (pd f ). Deng et al. [79] addressed

the fact that region based segmentations were highly dependent on these regional mod-

els. Generally, the pd f s can be represented parametrically or non-parametrically. We

prefer the former because it is more mathematically tractable and has been popular in

the field. Hence, the pd f s pi(I|Ωi) in Ωi can also be represented as pi(I|θi). For a

particular choice of parametric density model, θ is estimated from the feature space of

the associated regions and updates with the evolution of the contour.

In the following, we will introduce different parametric density models, from which

we can choose the best one for our application.

1. Multivariate Gaussian Mixture Model (GMM)
Visual inspection reveals that the lesion region usually has inhomogeneous con-

tents due to inherent nature, especially for BCC and SCC (this is also the case for

the background normal skin region because of hairs and skin markings). Hence,

the distribution of a property often has multiple peaks as shown in Fig. 4.7. For

display purposes, we only show the two-dimensional histogram based on the

saturation and depth feature values. This inhomogeneity can be resolved using

a Gaussian mixture model (GMM). In Fig. 4.7g and 4.7h, the lesion region is

modeled using a three component GMM; while the skin region is modeled using

a four component GMM.

The parameters of a GMM (θi = µi j,Σi j, pi j, j = 1, . . . ,Ki) are estimated using

the approach proposed by Ma et al. [100], who used a dynamic merge or split

learning strategy to determine the mixture component number and other corre-

sponding parameters adaptively.

Comparatively, the GMM seems to be the best option to model the density dis-
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(a) Lesion case P490 (b) Saturation channel

(c) Depth Image
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Figure 4.7: The bivariate density distribution of the lesion and skin regions using the

saturation (b) and depth (c) channels
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tribution of both lesion and skin regions. However, because of its heavy calcula-

tion, some simplifications are considered.

2. Multivariate Gaussian Model (MGM)
In practice, even though the distribution of data is not a Gaussian, the Gaussian

density can still be used to approximate it, since a unimodal distribution is ex-

pected [79]. Therefore, we assume that the feature space follows a multivariate

Gaussian distribution. The parameters of the model, a vector mean and a co-

variance matrix are determined as the maximum-likelihood estimators from the

observations in individual regions:

µi =

∫
Ωi

I(x)dx∫
Ωi

dx
(4.39)

Σi =

∫
Ωi
(I(x)−µi)(I(x)−µi)

T dx∫
Ωi

dx
. (4.40)

Hence, the PDE in Fig. 4.13 can be extended as

∂φ(x)
∂t

= −∂E1(φ)

∂φ
(4.41)

= δ(φ(x))
(

log
p1(I(x)|Ω1)

p2(I(x)|Ω2)

)
(4.42)

= δ(φ(x))
(

log
p1(I(x)|µ1,Σ1)

p2(I(x)|µ2,Σ2)

)
(4.43)

= δ(φ(x)) log
|Σ1|−1/2 exp(−1

2(I(x)−µ1)
T Σ
−1
1 (I(x)−µ1))

|Σ2|−1/2 exp(−1
2(I(x)−µ2)T Σ

−1
2 (I(x)−µ2))

.(4.44)

From the pattern recognition point of view, this can be considered as a Quadratic

Discriminant Analysis (QDA) between two classes (i.e., lesion and skin). The

separating surface is quadratic. The likelihood ratio associated with the regional

competition result between the two classes leads to the force that drives the level-

set evolution.

3. Independent Feature Model (IFM)
When the off-diagonal elements of the covariance matrix (Σ) in MGM are forced

to be 0, the features are considered as uncorrelated and independent. The mul-

tivariate density distribution are further simplified as a naive Bayes probability

model:

pi(I(x)|µi, Σ̂i) =
exp(−1

2(I(x)−µi)
T Σ̂i
−1
(I(x)−µi))

(2π)
dim

2 |Σ̂i|
1
2

(4.45)
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=
dim

∏
j=1

exp(−1
2( f j(x)−µi j)

2/σ2
i j)√

2πσ2
i j

(4.46)

=
dim

∏
j=1

pi( f j(x)|µi j,σi j), (4.47)

where, pi( f j(x)|µi j,σi j) describes the jth feature in a region Ωi and

Σ̂i
−1

=

∣∣∣∣∣∣∣∣∣∣∣∣

1
σ2

i1
0 · · · 0

0 1
σ2

i2
· · · 0

...
... . . . ...

0 0 · · · 1
σ2

idim

∣∣∣∣∣∣∣∣∣∣∣∣
.

In spite of the fact that this independence assumption is too strong and is of-

ten invalid in practice, this density model has the advantages of simplicity and

low sensitivity to not-informative variables (i.e., noise) [101]. Therefore, it has

worked quite well in many complex real-world situations [79], e.g., the naive

Bayesian Classifier in the pattern recognition field. In our application, the ex-

tracted features are associated with different types of lesion characteristic and

are properly selected (for the four colour features). We can therefore assume

that they have low correlation and fulfill the independent requirement and can be

modeled in this way.

4. Mumford-Shah Model (MSM)
If we further strengthen the assumption by forcing all the features to carry the

same variance σ = σi j, ∀ i, j in the covariance matrix

Σ̂i
−1

=

∣∣∣∣∣∣∣∣∣∣∣

1
σ2 0 · · · 0

0 1
σ2 · · · 0

...
... . . . ...

0 0 · · · 1
σ2

∣∣∣∣∣∣∣∣∣∣∣
,

then we assume they are standardized and uncorrelated. The probability model

of region Ωi becomes:

pi(I(x)|µi, Σ̂i) =
dim

∏
j=1

exp(−1
2( f j(x)−µi j)

2/σ2)
√

2πσ2
(4.48)

=
dim

∏
j=1

pi( f j(x)|µi j,σ). (4.49)
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This leads to a PDE as

∂φ(x)
∂t

= −∂E1(φ)

∂φ
(4.50)

= δ(φ(x))
(

log
p1(I(x)|Ω1)

p2(I(x)|Ω2)

)
(4.51)

= δ(φ(x))
(

log
p1(I(x)|µ1,σ)

p2(I(x)|µ2,σ)

)
(4.52)

= δ(φ(x)) log
dim

∏
j=1

exp(−( f j(x)−µ1 j)
2/2σ2)

exp(−( f j(x)−µ2 j)2/2σ2)
(4.53)

= δ(φ(x)) log
dim

∏
j=1

exp
−( f j(x)−µ1 j)

2 +( f j(x)−µ2 j)
2

2σ2 (4.54)

= − 1
2σ2 δ(φ(x))

dim

∑
j=1

[( f j(x)−µ1 j)
2− ( f j(x)−µ2 j)

2] (4.55)

=
1

2σ2 ×δ(φ(x))[(I(x)−µ2)
2− (I(x)−µ1)

2]. (4.56)

As 1
2σ2 is only a constant ratio in each iteration, it can be ignored. It turns out

that Eq. 4.56 is equivalent to the PDE used in the Chan-Vese algorithm which is

derived from the Mumford-Shah functional [85]. The smooth approximations of

individual regions are in fact µ1 and µ2. From another point of view, the Chan-

Vese algorithm is the most simplified version in the statistical regional-based

segmentation. As mentioned before, this approach has been very commonly

used in the field. It works well in the situations where the features are piece-

wise constant, which is obviously not true in our application. We will therefore

use it in our experiment as a baseline model.

4.3.4 Experiments and Results

The 50 test images used in our comparison are randomly selected from our lesion

database including five different classes of lesions: SCC (Squamous cell carcinoma),
ML (Melanocytic nevus), BCC (Basal cell carcinoma), AK (Actinic Keratosis) and

SK (Seborrhoeic Keratosis). 21 of them are pigmented lesions2; while the other

29 are non-pigmented. The separation of pigmented and non-pigmented lesions is

done by Dr. Ben Aldridge. Pigmented lesions have browny colour and non-pigmented
2There are two reasons for lesions being pigmented. It is either due to melanocyte hyper prolifera-

tion, such as in a melanoma or a melanocytic nevus or, alternatively, as in a seborrheic keratosis when
the number of melanocytes is normal but they seem to produce too much melanin.
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lesions are light-coloured. The manual segmentations of these lesions were given by

eight dermatologists from the Dermatology department of Edinburgh University and

are used for performance evaluation. A Standard Tumour Area (STA) is defined as

the region determined using our ground truth estimation method, LSMLP, which is

proposed in Chapter 3. An extra manual segmentation by a 9th dermatologist is used

for comparing against the computer-based results.

The standard deviation (SD) of lesion areas derived from the eight manual seg-

mentations is calculated for each lesion image. To make them comparable over 50 test

images, the value is normalized by the corresponding STA. The average SD over our

50 test images is 14.26%. This result confirms the conclusion in Chapter 3 that there is

large variation between manual segmentations. Further analysis also shows that there

is more variation in clinical opinion of lesion boundaries for non-pigmented lesions

(SD = 18.28%) than pigmented ones (SD = 8.71%). An example of the human seg-

mentations of a non-pigmented lesion is shown in Fig. 4.8. This indicates the difficulty

for non-pigmented lesion segmentations.

(a) Segmentation 1 (b) Segmentation 2 (c) Segmentation 3 (d) Segmentation 4

(e) Segmentation 5 (f) Segmentation 6 (g) Segmentation 7 (h) Segmentation 8

Figure 4.8: Manual segmentations of case D647

For each lesion data, the uniform segmentation method described in Section 4.3 is

performed four times using different property combinations as follows 3:

3In this thesis, we only compare the following four feature combinations in which the colour plays
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colour (C):

IC = ( fhue, fsaturation, fa∗, fblue)
T .

colour + depth (C+D):

ICD = ( fhue, fsaturation, fa∗, fblue, fdepth)
T .

colour + depth + texture (C+D+T ):

ICDT =
(

fhue, fsaturation, fa∗, fblue, fdepth, fST , fscale
)
.

colour + depth + HOG (C+D+HOG):

ICDT (hog) =
(

fhue, fsaturation, fa∗, fblue, fdepth, fHOG
) 4.

For each property combination, the distribution models (detailed in Section 4.3.3) are

fitted on the data. It is worth noting that the original colour-based feature set is nar-

rowed down to four components using a greedy property selection method. The se-

lection is based on the segmentation error rate criterion. The number of features is

determined by the change of the error criterion (e.g., XOR), which decreases at the

beginning and increases after the 4th feature is added (see Fig. 4.9). This strategy on

one hand reduces the redundancy between features and on the other hand, keeps only

the most representative and informative features for segmentation. As we consider this

property selection step as a parameter tuning process, we do not split the data into

training and testing sets. Nevertheless, the feature selection result is found consistent

because the feature set selected using the 50 data set (details can be found in Section

4.3.4) and 20 data set (our previous segmentation data set used in [22]) are identical.

In addition, for deformable model based segmentations, an initial contour is al-

ways needed. Good initial contour location is helpful for the statistical regional based

approaches as the final result is sensitive to the initial setting. Normally, the contour

is drawn manually by users, therefore, most methods are semi-automatic. In order to

achieve fully autonomy, we perform a clustering based approach to pre-segment the

lesion in order to obtain the initial contour. Because different regions of the lesion

are represented using the selected properties, which, in turn, have different statistical

distributions, we roughly model them as two components of a Gaussian mixture model

using the Expectation Maximization (EM) algorithm. By comparing the density val-

the dominant role because 1) colour has been proved as the most important information for lesion anal-
ysis [36] and should not be neglected in the segmentation task, 2) the aim of the chapter is to address
whether the depth data will further improve the lesion segmentation when it is integrated with the colour
data (in other words, to demonstrate whether the segmentation using C+D will exceed C) and 3) the
depth or the texture or the combination of the two fail on certain lesion data which are flat and smooth
(e.g., junctional nevus)

4For the HOG based features, instead of putting it together with the structure tensor and scale based
texture properties, we treat it as an independent texture descriptor because we would like to evaluate its
capability to represent the texture information of skin lesions
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Figure 4.9: Greedy colour property selection. The segmentation error rate decreases

at the beginning with the additional property selected using the greedy strategy and

increases when more than four properties are used

ues of each pixel to the two Gaussian components, the lesion image is labeled as a

binary image. The lesion region (foreground) can be defined as the region with less

position (x,y coordinate) deviation considering the lesion pixels are normally grouped

at the center of the data. Two examples are shown in Fig. 4.10 (a) and (b). However,

this strategy may fail in a few cases (e.g.,84 out of 867 lesion data cannot obtain a

correct initial segmentation using this method. Some examples of failures as shown in

Fig. 4.10 (c) and (d)), because of the complexity of lesions: 1) artifacts or intrinsic

cutaneous features like hairs and bloody vessels, 2) the nature of lesions (e.g., non-

pigmented, bad growing positions). Human interaction is necessary in those cases.

To evaluate computer-based segmentations, a quantitative metric is important. Some

recent works have proposed to use the (Normalized) Probabilistic Rand Index - (N)PRI.

The (N)PRI evaluates the divergence of a segmentation (S) from the ‘ground truth’

(GT ) by measuring the fraction of GT that agree with S on labeling a pair of distinct

pixels differently or identically [64, 70]. However, after several cases study, Peserico

et al. [102] concluded that (N)PRI suffered from certain shortcomings (due to its non-

monotonicity with the fraction of misclassified pixels) and raised doubts on adopting

the (N)PRI over the simpler and established metrics XOR (or Error rate). They con-

cluded that XOR was preferable for the evaluation of lesion segmentations. Thereby,

XOR is chosen as our evaluation tool in the following analysis and has the format as

XOR= Area(GT⊕SEG)

Area(GT+SEG)
(GT is the ground truth and SEG denotes the computer-based

segmentation result). Based on it, we performed a comparison study of the segmenta-

tions using four different combinations of properties as follows:

The segmentation results of the feature combinations are shown in Table. 4.1. Both
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(a) Contour 1 (b) Contour 2

(c) Contour 3 (d) Contour 4

Figure 4.10: Initial Contour. (a)-(b): successful examples; (c)-(d): failed examples

the error rate and the variation are given. It shows that:

1. Based on the overall error rate, the worst uniform segmentation result is obtained

when using only C. The feature set that integrates colour and depth information

outperforms colour alone and improves the error rate from 7.80% to 6.78%.

This convincing gain suggests that the depth descriptor is complementary. Oth-

erwise, overall performance would not have improved significantly. It is also

worth mentioning that although we only did forward feature selection on the

colour features, when we add depth to the pool, it is also selected as a valuable

feature. This reflects that the segmentation of lesions benefit from the additional

depth property.

2. The best uniform segmentation result (average error rate of 6.62%) comes from

the feature set that integrates all the properties derived from colour, depth and
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Error Rate %(XOR) Overall Pigmented Non-pigmented

Uniform method (C) 7.80(±5.35) 5.34(±3.18) 9.59(±5.91)

Uniform method (C+D) 6.78(±3.05) 5.87(±2.43) 7.44(±3.32)

Uniform method (C+D+T) 6.62(±2.60) 5.89(±2.46) 7.15(±2.61)

Uniform method (C+D+HOG) 7.59(±3.23) 6.21(±2.50) 8.58(±3.41)

9thDermatologist 7.02(±5.23) 5.30(±3.60) 8.08(±5.61)

Lowest Error Rate Combination 5.66(±2.48) 5.25(±2.09) 5.95(±2.97)

Uniform method (GMM) 6.62(±2.60) 5.89(±2.46) 7.15(±2.61)

Uniform method (MGM) 7.26(±3.84) 6.09(±2.78) 8.11(±4.29)

Uniform method (IFM) 7.53(±4.38) 5.87(±2.37) 8.72(±5.09)

Uniform method (MSM) 13.25(±3.88) 8.40(±5.49) 16.77(±9.22)

Table 4.1: Average segmentation error rates and their standard deviations. See text for

discussion of different values

texture information. It produces the lowest error rate as 6.62%. However, when

representing the texture characteristics using HOG, the result is not ideal. The

failure in the HOG property might because of 1) the inappropriate selection of

HOG scale, 2) the regional model for the HOG is not suitable and 3) it is also pos-

sible that HOG does not even fit the lesion segmentation application. However,

C+D+HOG still outperforms the feature set using only C. Therefore, we have

a reason to believe that the texture also provides complementary information for

segmentation. Fig. 4.11 shows contours obtained using different segmentation

methods of several non-pigmented lesions. The error rate improves significantly

by the integration of depth and texture information.

3. The dermatologist performs the best in segmenting the pigmented lesions, but

there are large variations in clinical opinion of lesion boundaries for non-pigmented

lesions, on which both C+D and C+D+T based segmentations perform better.

In addition, the computer-based methods give more consistent results according

to the lower standard deviation on both pigmented and non-pigmented lesions.

This is a desired property for medical applications.

4. If we choose for each lesion the combination of properties with the lowest XOR

measure, one could obtain an overall segmentation error rate as low as 5.66%.

One can find that the choice of property combination is scattered and does not

consist of a particular combination like C+D+T . Furthermore, if we consider

the pigmented and non-pigmented lesions independently, one can find that the

additional depth and texture information mainly makes contributions to the latter.
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(a) P490 (b) P41

(c) D647 (d) D550

Figure 4.11: Integrating depth and texture information improves the segmentation re-

sults

The segmentations for non-pigmented lesions are significantly improved, but

this is not the case for the pigmented lesions. Generally, the segmentation for

the pigmented lesion using the depth data has a broader lesion region than that

obtained by only using colour data. The lesion region is extended slightly to the

adjacent region whose colour pigmentation has not been affected by the lesion.

This is mainly because of the limited resolution of 3D data. Current 3D building
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techniques have not matured to a stage to capture all the details of the objects (a

primary system accuracy test experiment is described in Appendix B). Certain

levels of fine textural information like the adjacent region between the lesion

and skin is blurred in the reconstruction step. However, this phenomenon might

also be because of the development order of a lesion. For example, a lesion

could first grow vertically and then exhibit pigment variation. For either reason,

integrating depth information reduces the average error rate of the pigmented

lesion segmentation based on the evaluation result. The lowest error rate for

pigmented lesions are in fact produced by only using colour properties (e.g., the

segmentation for case P152 in Fig. 4.12). This reflects a conjunction between

the lesion appearance (e.g., pigmented or non-pigmented) and the choice of best

properties for segmentation. In the next section, we will further explore this

finding.

Figure 4.12: Integrating depth and texture information degrades the segmentation re-

sults for the lesion P152

5. We also compare the performances of different density models so as to de-

termine the best statistical density model for representing the regional proper-

ties. The optional models include the Multivariate Gaussian Mixture Model
(GMM), the Multivariate Gaussian Model (MGM), Independent Feature
Model (IFM) and Mumford-Shah Model (MSM). Their respective perfor-

mances using C+D+T features are listed in the bottom of Table. 4.1. It can

be seen that the GMM provides the best result. For the purpose of reducing

computational expenses, the MSM assumes that each region can be modeled
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using a single Gaussian component, but this simplification reduces the model’s

capability of representing the complexity of real world lesions. The feature inde-

pendent assumption in IFM further degrades the model performance. As proved

before, the MSM is equivalent to the Chan-Vese algorithm [85] derived from

the Mumford-Shah functional. In MSM, only the first order statistic (i.e., mean)

is taken into account, while all higher order statistics are ignored. MSM there-

fore over-simplifies the density distribution of lesion properties and does not suit

the application. It achieves the worst result. We conclude that, for the complex

components constitution of lesion data, the GMM is the optimal solution for

modeling the regional characteristic based on both visual analysis and experi-

mental results.

6. We conducted a statistical significance analysis of the segmentation results ob-

tained using different properties based on the paired one-tailed t-test. The null

hypothesis is that: the error rate (XOR) provided by the C +D+ T and C

based segmentations are the same. The alternative is that the former has a
lower mean that the latter. The resulting p-value on 50 trials is 0.0811. Under

significance level 10%, the null hypothesis can be rejected, which means that the

segmentation using C+D+T provides improvement over that using C. Partic-

ularly, for the non-pigmented lesions, the improvements from C to both C+D

and C+D+T are significant under a significance level 5%. The corresponding

p-values are 0.0479 and 0.0231.

4.4 Decision Tree Based Segmentation

4.4.1 Method

In the uniform method, we treat all properties equally and simply stack them into a

high-dimensional vector. As not all the derived properties are useful for every lesion,

the irrelevant and redundant properties containing useless ‘noise’ could make the algo-

rithms unstable and likely to converge to local minima. For example, even though the

depth could provide extra information about the location of the lesion in general, there

are cases for which the depth might be deemed as additional noise rather than useful in-

formation, e.g., flat lesions. For such lesions, the colour and texture properties are good

enough for segmentation. As a result, the question of how to pair different types of le-

sions with different combination of properties arises. As mentioned previously, there is
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a relationship between the lesion appearance (e.g., pigmented or non-pigmented) and

the choice of best properties for segmentation. We therefore combine pattern analysis

techniques with the segmentation properties selection task. In this context, we propose

a hierarchical strategy based segmentation algorithm.

4.4.2 Hierarchy

The decision-tree-based segmentation strategy aims to use different feature subsets

based on an initial discrimination analysis between different lesion appearances. For

a particular lesion, an automatic pre-categorization based on the lesion appearance is

conducted according to a hierarchical tree structure. The tree leaf that it ends up shows

the property combination (or subset) f (x) that it should use for segmentation, which

could be C or C+D or C+D+T . The procedure is as follows:

1. As found in the previous section, for pigmented (brownly coloured) lesions,

colour information can produce good segmentations, even better than integrating

any other information. Therefore, in the first layer of the hierarchical structure

(see Fig. 4.14a), colour is used to split different categories of lesions. For repre-

senting lesion colour information, we stick to the colour features used in lesion

segmentation. The split criterion is based on the dissimilarity of regional colour

values between the lesion and skin regions. The dissimilarity is calculated using

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7
0

0.5

1

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5
 

Saturation of HSV

 

b
 o

f 
R

G
B

a of LAB

PIGMENT Lesions

NON−PIGMENT Lesions

Centroids

PIG cluster

NONPIG cluster

Figure 4.13: Pre-categorization of lesions based on colour properties

the Euclidean distance between the mean colour value of the lesion and skin

regions (i.e., |{ fhue, fsaturation, fa∗, fblue}lesion − { fhue, fsaturation, fa∗, fblue}skin|).
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For a particular lesion, its dissimilarity value is compared to a pre-set thresh-

old, based on which the lesion can be allocated to a corresponding category.

This threshold is determined in a prior lesion pattern analysis and is equal to the

midpoint between the 2 clusters found by using k-means (k=2) over the train-

ing data. Fig. 4.13 demonstrates the pattern analysis results. The two cluster

centroids are highlighted with black crosses (X). Their corresponding compo-

nents are highlighted using circles, where yellow is for lesions classified as non-

pigmented and green for pigmented. The real category is also demonstrated.

The pigmented lesions are shown as red spots and the non-pigmented ones as

blue spots. According to Fig. 4.13, the clustering result and the truth are highly

correlated. This indicates the goal of splitting the pigmented and non-pigmented

lesions in the first layer of the hierarchical tree structure can be achieved.

2. The second layer uses depth information to split non-pigmented lesions into flat

and non-flat categories (see Fig. 4.14b) based on the difference in depths between

the lesion and normal skin. The threshold is chosen in a manner similar to the

colour threshold.

4.4.3 Experiments and Results

According to the hierarchical structure, the two splitting criteria could pre-categorize

the lesion type, after which the corresponding optimal choice of feature properties

should be applied for the segmentation. The results are summarized in Table. 4.2. It

shows:

Error Rate %(XOR) Overall Pigmented Non-pigmented

9thDermatologist 7.02(±5.23) 5.30(±3.60) 8.08(±5.61)

Uniform method (C+D+T) 6.62(±2.60) 5.89(±2.46) 7.15(±2.61)

Uniform method (PCA) 7.12(±3.96) 6.02(±3.41) 7.92(±4.19)

Hierarchical method (one layer) 6.56(±2.75) 5.03(±2.79) 7.05(±2.59)

Hierarchical method (two layers) 6.15(±2.58) 5.03(±2.79) 6.50(±2.44)

Table 4.2: Average segmentation error rates and their standard deviations

1. The one layer colour-based decision-tree-based segmentation reduces the error

rate of the best uniform segmentation from 6.62% to 6.56% and the two layer

colour and depth-based decision-tree-based segmentation achieved the lowest

error rate of 6.15%. Though their overall improvements are not statistically
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(a) One layer hierarchical structure

(b) Two layers hierarchical structure

Figure 4.14: Hierarchical structures

significant, the improvements on pigmented lesions are significant with the sig-

nificance level of 5%.

2. To reduce the data dimensionality and find the most discriminative properties,

Principal Analysis (PCA) is the most commonly considered solution. Thereby,

we apply PCA to obtain the top three principal components from the original

full property pool. The segmentation based on these three component is com-

pared with the hierarchical strategy. It shows that the latter outperforms the PCA
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approach which produced an error rate of 7.12%. In fact, the PCA based result

is even worse than the best flat approach. This might be caused by the lost of

discriminating information during the projection.

3. Pigmented and non-pigmented are two terms defined by dermatologists in or-

der to separate different lesions. They do not influence the selection of fea-

tures. They are only used here to evaluate the performances, i.e., to tell the per-

formances of segmentation methods on two lesion types (pigmented and non-

pigmented). The reason I am doing this is to tell the impact of depth data on

pigmented and non-pigmented lesions separately. Pigmented lesions have been

widely studied in the field while non-pigmented lesions have been rarely dis-

cussed. In our work, we prove that the depth data is more meaningful for the

non-pigmented lesions. In Table. 4.1 and Table. 4.2, features used for segmenta-

tion are selected using different strategies. In Table. 4.1, colour features are used

for segmentation. In Table. 4.2, the features to be used for segmentation depend

on the pre-category of the lesions. The pigmented lesions might be selected to

the group that only uses colour features for segmentation, but they might also be

automatically selected to other groups which use other features.

The pseudocode for both Uniform segmentation and Decision-tree-based seg-
mentation is given in Appendix C.

4.5 Conclusion

Lesion segmentation is important as the classification rate depends highly on the ac-

curate extraction of the lesion area. According to a study in [20] that evaluated the ef-

fectiveness of different lesion region extraction methods for the diagnostic accuracy, a

good segmentation resulted in significantly improved diagnosis. However, obtaining a

good segmentation result is a challenging task. The segmentation of non-pigmented le-

sions, which have been rarely considered in the literature but are included in our work,

is especially difficult [52]. A good segmentation algorithm should produce segmenta-

tions with the characteristics of accuracy and consistency. In this chapter, we attempt

to incorporate diverse image cues (i.e., colour, depth and texture) to the segmentation

model so that we can investigate whether or not the extra information would lead to

better results. To build an experimental platform for comparison, we first presented a

uniform segmentation algorithm. It is a region-based probabilistic formulation of the
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deformable model that is implemented within the level-set framework. Colour, depth

and texture features are measured at each image point. Their regional statistical param-

eters are estimated and used to characterize the respective lesion structures (i.e., lesion

and skin) with the density distribution model. We derive several density models and

prove that the well-known Chan-Vese segmentation [85] is in fact equivalent to the

most simplified version in the statistical regional-based segmentation. The GMM is

selected as the best way to model the complex density distribution of properties upon

comparison for our lesion segmentation application. In order to take into account the

prior knowledge of spatial relationships, we further introduce the local spatial depen-

dency term, which is modeled by MRF in the form of a Gibbs distribution.

The discriminative ability of various lesion information on separating lesion from

skin is analyzed according to the segmentation accuracy metric XOR. Upon compari-

son, they all contribute to the region discrimination. Colour properties enable a close

segmentation to the dermatologists on pigmented lesions. Integrating depth and texture

properties results in an overall improvement of segmentation, in terms of both accu-

racy and consistency. The error rate is reduced from 7.80%±5.35% to 6.62%±2.60%.

This convincing gain suggests that the depth and texture descriptors are complemen-

tary. The depth and texture information is particularly meaningful for non-pigmented

lesions as they have less colour variation over different regions. As a result, we have

proved our claim that the depth information improves lesion segmentation.

As the analysis reveals that different information has specific importance for dif-

ferent types (e.g., pigmented and non-pigmented) of lesions, we believe that only dis-

criminative and useful properties should be chosen for each lesion according to their

appearances, instead of using all the properties derived from all kinds of information

for every lesion. Hence, we propose a novel hierarchal segmentation strategy. This

segmentation approach is hierarchical in the sense that it uses different feature sub-

sets within a hierarchical structure determined by the discrimination between different

lesion appearances. The experiments show that both our one layer hierarchical ap-

proach based on colour and the two layer hierarchical approach based on colour and

depth further improve the segmentation results compared to the uniform segmentation

approach.

The novelties of our work are 1) we consider both pigmented and non-pigmented

lesion data which increases the difficulty of our problem. The latter has rarely be

considered in the literature as far as we can tell. 2) We comprehensively evaluate

the contribution of various information on lesion segmentation, particularly focusing
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on the depth information based on the comparatively large and carefully validated le-

sion database. This has not been found in the literature. 3) We further incorporate

pattern recognition techniques and propose a decision-tree-based segmentation struc-

ture which further improves the segmentation accuracy. 4) We prove the relationship

between the segmentation model derived from the Mumford-Shah functional and the

statistical regional-based segmentation model.

In the future, there are several potential improvements and follow-up work to be

considered:

1. Our hierarchical structure is built up in an ad-hoc way according to some kinds

of prior knowledge. In the future, a more sophisticated hierarchical structure can

be built based on a better definition of the hierarchical layer splitting parameters.

2. On the other hand, in the process of finding the splitting parameter threshold,

the segmentation data are not split into training and test sets. The test data

themselves influence the value of the splitting threshold. This may result in

that the threshold overfits the test data and loses universality especially when

the database is of small size. A more proper way is to split data into training

and test sets so that the lesion pre-categorization and the segmentation steps are

separated. Additional lesion data with ground truth segmentations should allow

more extensive development and testing.





Chapter 5

Classification

This chapter attempts to investigate the contribution of 3D information to lesion diag-

nosis through extensive and rigorous tests on both human and computer based classifi-

cations. First, Section 5.2 reviews each component in the lesion classification pipeline

including feature extraction, feature selection and classifiers, followed by a prior study

of the influence of 3D data in human diagnosis in Section 5.3. The investigation of

the contribution of 3D data to a computer based five non-melanoma skin lesion classi-

fication task is presented in Section 5.4 based on a comparison between using colour

features only and using both colour and depth features. Experiments and results in

Section 5.5 show that adding the 3D-based features gives an improved classification

rate compared to only using colour features.

5.1 Introduction

Segmentation allows computers to locate the problem skin region (i.e., lesion). Classi-

fication enables computers to tell what the problem it is. As a high level data analysis

procedure, classification is usually the final stage in the development of a computer

aided diagnosis system. It often involves two steps: 1) representing lesion structures

using a feature set that is extracted based on the segmentation results (i.e., feature

extraction) and 2) inputing the feature set into classifiers which can automatically rec-

ognize lesion patterns through machine learning techniques (i.e., pattern recognition).

As an early and correct diagnosis enables a timely treatment which reduces the

potential risks (e.g., metastasis, disfigurement) of lesions, the possibilities of increas-

ing the accuracy of lesion classification have been widely discussed in the computer

aided skin lesion analysis field. Many works have been proposed over the past 25

91
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years [4, 91, 10, 56, 21]. One strategy is to employ advanced screening equipment

(e.g., dermoscopy) as it could enhance the visualization of lesion structures and allow

the observation of more lesion details. Most importantly, these systems could provide

additional diagnostic features. For example, the ABCD rules [103] and 7-point Check-

List [44] based features are associated with dermoscopy and these features largely im-

proved the differential diagnosis rate of pigmented skin lesions (i.e., melanoma against

melanocytic nevus). The other strategy is to develop new computer vision-based tech-

niques (i.e., machine learning algorithms). In our opinion, the former is essential, as

no classifier can work well with poor quality and insufficient lesion descriptors. There-

fore, in order to improve the diagnosis accuracy of lesions, the top priority should be

including more features carrying complementary diagnostic information.

So far, dermoscopic images are commonly used in the field. Many researches

reported that this screening technique improved the diagnostic accuracy of both ex-

perienced dermatologists and computer algorithms for pigmented lesions, though it

appeared to be less helpful for inexperienced clinicians [7]. The fundamental advan-

tage of dermoscopy is that it enables the assessment of the sub-surface structure of

skin through a magnification process. However, as far as the information source is

considered, the dermoscopy could not produce any additional information other than

the colour compared to the conventional 2D imaging systems. As a result, dermoscopy

is mostly reported helpful in diagnosing pigmented lesions, for which the colour car-

ries the most important discriminative message. However, when a broader range of

lesions (e.g., non-pigmented) are taken into account, extra morphological information

is worth exploring.

As discussed previously (in Section 1.1), skin is the outermost tissue of the human

body whose surface is characterised by polyhydric mesh structures representing the

three dimensional organisation of the dermis and the subcutaneous tissue [13, 14].

Normally, this topical structure is highly regular when the skin is healthy, but be-

comes irregular when skin problems arise. Due to different pathogenic of different

skin problems, such as the cell of origin, the outermost surface usually has different

topographical appearances. For example, typical keratinocyte derived tumour Basal

Cell Carcinoma (BCC) has persistent, non-healing, eroded areas with poorly defined

borders. These characteristics make them very different from the unruffled, circular

or oval shaped smooth landscapes of common moles. These observations suggest that

the topography of the skin surface can be considered as a mirror of the functional skin

status [16]. It should be deemed as another important skin descriptor in addition to
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colour, revealing delicate differences within lesions and playing an important role in

dermatological diagnosis. As a result, we hypothesize that the 3D shape of skin lesions

embodies complementary features that serve to improve lesion identity recognition.

To date, the relative reports on the application of 3D imaging systems to skin le-

sion diagnosis are very rare. There is even less reliable study of the usefulness of this

addition information (e.g., depth). To fill in the blank in the literature, the goal of this

chapter is to give a comprehensive evaluation of our claim through the development of

a multiple class lesion classification system which involves feature extraction, feature

selection and pattern recognition. A stereo imaging system is applied for lesion data

collection. This new sensor allows the simultaneous acquisition of 3D geometric and

2D colour information of the lesion surface. The two databases (DATABASE I and

DATABASE II, detailed in Appendix D) collected from the Dermatology Department

of Edinburgh University using this sensor are used in the experiment. There are five

classes of lesions taken into account, including two types of skin cancers BCC (Basal

Cell Carcinoma), SCC (Squamous Cell Carcinoma), as well as three kinds of benign

lesions, AK (Actinic Keratosis), ML (Melanocytic nevus) and SK (Seborrheic Kerato-

sis). The deadly form of skin cancer - melanoma, however, is not included because

of the shortage of samples. None of the considered cancers are as life-threatening as

melanoma. However, as they are mostly exhibited by patients in clinic, some concerns

about them have caused the patient to make an inquiry. Identifying these common skin

lesions optimizes the lesion selection for biopsy and pathology review and enables the

correct course of action. So far, there has been almost no image analysis about these

lesion conditions (BCC, SCC, AK, SK) considered in our work [56]. Besides, most

works are limited to the binary discrimination problem of melanoma and benign pig-

mented lesions. Taking into account the inter-similarity and intra-variability between

lesions, including multiple dermatologic conditions makes the correct diagnosis even

more challenging [104]. From this point of view, adding extra diagnostic information

appears to be more meaningful.

In the following sections, we will show that the addition of depth data increases

the diagnostic accuracy for both human and computer based classifications. The per-

formance of human diagnosis has a significant increment of 8.5% on the 3D images

relative to the 2D images (Section 5.5.1). By combing depth, colour and texture fea-

tures (Section 5.4.1) in a Support Machine Vector classifier (Section 5.4.3), we show

that an improved classification rate of 80.67% compared to that only using colour fea-

tures (75.25%) (Section 5.5.2).
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5.2 Literature Review

5.2.1 Computer Based Skin Lesion Classification Systems

For the purpose of achieving an objective, consistent, quantitative and cheap diag-

nosis, Computer based Skin Lesion Diagnosis (CSLD) systems have been developed

to mimic the presumptive diagnosis process given by dermatologists. These systems

translate knowledge of dermatologists into a computer program as the means of apply-

ing medical image analysis techniques to the quantitative measurement of pathological

alternations of human skin [5]. A review of the history and the development of CSLD

systems can be found in Section 2.1 and Section 2.2.3.

The current progress is very encouraging. However, it must be noted that these re-

sults are obtained conditionally. First, almost all CSLD systems perform the diagnosis

on a pre-selected image set. The selection is normally based on two principles: 1) only

the data with acceptable image quality will be considered in the database. For example,

if the images have heavy hair or the size of the lesion is too big to fit in the image or if

there is insufficient contrast between the lesion and the healthy skin, the corresponding

cases would be ignored [10]. As many such cases could correspond to the uncommon

situations (or outlier) of certain lesion types, this pre-selection step may reduce the

degree of difficulty to some extent. Though, because that the image quality heavily

influences the computer aided diagnostic accuracy, this step appears to be necessary in

all image based analysis systems. 2) The type of lesions considered in the CSLD sys-

tems is always very limited. In most cases, only pigmented (or melanocytic) lesions

are taken into account in the lesion pool (e.g., [20]). The aim of the CSLD systems

is merely to distinguish melanoma (malignant) and melanocytic nevus (benign) [21].

Many non-pigmented lesions that are frequently presented in clinics are excluded and

no discrimination of them is considered. At present, there are very few systems able

to distinguish lesions among more than two dermatological types. It is obviously not

fair to compare the computer aided diagnostic result based on such a limited database

to that given by dermatologists who conduct diagnosis using a much broader range of

lesions. Despite the higher performances reported in many works, at this stage, expe-

rienced dermatologists are still believed to produce a most convincing diagnostic rate,

followed by the computer-based algorithms which might serve as a second opinion for

inexperienced clinicians [7].

On the other hand, because the input of CSLD systems are mostly dermoscopic

images, the following-up analysis has been only based on 2D colour information. In
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recent decades, with the rapidly growing research in 3D computer vision, the analysis

of objects in 3D space becomes possible. There can be no question that the processes

for depth recovery are a part of the human visual system and that they can be vital for

certain tasks. However, there are arguments on whether depth information is necessary

in recognition. Ultimately the choice of whether to use a 2D or 3D system is one which

can only be determined by the application being researched [18]. Some early works

on applying 3D systems on skin analysis are reviewed in Section 2.3.

In our work, we make improvements through 1) adding more diagnostic features,

2) performing the comparison between 2D and 3D-based features on larger databases,

3) developing a new feature selection method by integrating forward and backward

search in a novel way and 4) investigating the problem using different classifiers and

choosing a more suitable classifier for the task. Besides, we investigate the benefit of

3D data with human tests. In the following section, we give a detailed literature review

on each related sub-topic in the classification process.

5.2.2 Feature Extraction

If one tries to get a computer to classify objects, a sound approach is to measure some

prominent features of each object and to use these features as an aid to classification.

From this point of view, lesion classification is a post process of feature extraction.

Therefore, the extraction of good features is vital for an accurate classification [105,

47].

The feature extraction is normally based on two factors:

1) the captured lesion data (e.g., images) which relates to the computer perception and

determines the kind of source (e.g., colour or shape) to be analyzed. The goal of fea-

ture extraction is to quantitatively characterize the image content by computer vision

approaches, i.e., modifies the data from the lowest level of pixel (or voxel) data into

higher-level representations.

2) the diagnostic criteria. Several diagnostic criteria based on dermoscopy have

been proposed and tested in the clinical practice. The most commonly used criteria

are the ABCD rules and the 7-point checklist (more details of these two criteria can

be found in Section 2.2.2). Both of the above diagnostic criteria are dermoscopic-

image based. Therefore, their derived features can only be colour or colour-texture

based. Frequent research confirmed the importance of these two kinds of features in

obtaining an accurate classification [27]. However, the skin lesion surface is a detailed
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landscape. Its surface shape could also yield a valuable source of features on which

to base classification. Therefore, it is important to assess the vertical growth related

features, as well as the roughness and indented aspect. The limitation of the imag-

ing system makes it impossible to assess this potential diagnostic information. As a

result, very few skin lesion diagnostic applications have considered using the surface

shape properties derived from 3D data, although the authors in [15] noticed the impor-

tance of surface shape variables. They characterized the shape features by irregularity

variables. However, as these properties are extracted on the graphic three-dimensional

pseudoelevation anaglyph developed from the colour image rather than the real depth

image, they were still colour texture instead of topographical structure based features.

A single intensity image proves of limited use, as pixel values are related to surface

geometry only indirectly, that is through the optical and geometrical properties of the

surfaces as well as the illumination conditions. Hence, it is preferred to acquire images

encoding shape directly. Castellini et al. [53] is possibly the first group carrying out

the real 3D measurement of the superficial structure of the skin lesion. As the second

growth phase of the melanoma, vertical growth is considered as an important clinical

prognostic information, the authors were inspired to access the lesion height measured

using a laser triangulation technique, which had the disadvantage of long capturing

time. Even though their 3D measurement system enhanced the knowledge in the field

of measurement and reconstruction of skin characteristics, their work mainly focused

on proving the measuring ability of the system to capture the morphological character-

istics of the lesion. There was no further discussion about the diagnostic value of the

data. The idea of including surface shape based properties into the lesion diagnosis has

been dropped behind because of lack of good 3D imaging systems until recent years.

In [47], the diagnosis criterion was based on the assumption that the melanoma surface

had more irregularity in 3D shape than benign lesions. The photometric stereo allows

the capturing of the shape of lesion in 3D format and allowed the author to investigate

the effectiveness of these 3D-based texture features (in terms of 4 curvature pattern

based properties) in melanoma diagnosis. A test on a small-scale data set comprised of

23 melanoma and 53 benign lesions indicated the effectiveness of the 3D curvature pat-

tern in melanoma diagnosis, though the improvement was without sufficient statistical

proof when compared to the classic 2D features. The author also pointed out that only

using 3D shape the results were not completely reliable and other indicators should

be taken into consideration as well. McDonagh et al. [56] made preliminary investiga-

tions into the simultaneous use of colour plus 3D based-properties for lesion diagnosis.
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Several features were designed to account for the 3D related features, such as height,

roughness, etc. Their experiment showed the 3D based features would be selected in

the greedy forward feature selection process and the classification result suggested that

incorporating topographical features provided better diagnostic results than those ob-

tained merely using colour texture features, though also without sufficient statistical

support. For more information about the features utilized for skin lesion characteriza-

tion, we refer the reader to [2].

5.2.3 Feature Selection

The task of a classifier is to use features to assign the represented object to a category

or class [106]. However, the diagnostic accuracy is not necessarily improved with the

increasing number of the features. With the number of features increasing, the clas-

sification rate of a classifier normally decreases after a peak [2]. A high dimensional

feature set as the input of classifiers may turn them inefficient and even make them in-

applicable, such as the singularity problem in Quadratic Discriminant Analysis (QDA)

when the dimension of features exceeds the number of samples. Besides, redundant

and irrelevant data decreases the classification ability and leads to false conclusions

[49]. In [106], the authors proved the usefulness of feature selection on improving

the classifier robustness and performance through a rigorous empirical study. They

addressed that feature selection helped to focus the attention of a classification algo-

rithm on those features that were most relevant to predict the class and improved the

accuracy, efficiency, applicability and understandability of a learning process and its

resulting model.

Generally, feature selection algorithms can be classified into two main categories

according to their evaluation criteria: filters and wrappers. Filter approaches rely on

general characteristics of the data to select a subset of features without involving any

learning algorithm. Instead, they ‘filter’ out irrelevant and redundant noisy features.

The Principal Component Analysis (PCA) based feature selection belongs to this cat-

egory and it is commonly used in feature set reduction because it can reveal composite

features that are more effective than their individual constituents [107]. For example,

Lyatomi et al. [108] used PCA to reduce a total of 428 image features into 198 orthog-

onal principal components by sub-space projection. However, PCA does not allow one

to observe the relationship between features and the patterns, such as which kind of

features are informative for representing a pattern.
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Wrapper methods are computationally expensive but are better suited to classifica-

tion tasks [10]. They use the prediction performance of a pre-determined learning algo-

rithm to evaluate the goodness of feature subsets [109]. Wrapper feature selection can

be characterized through the search strategy employed. A direct solution would be an

exhaustive search for all possible combinations. However, the main drawback is that it

has complexity of O(2D) for D features [110]. Therefore, finding the optimal combina-

tion generally costs a lot computing time. For example, trying all these feature combi-

nations in a 48 dimensional feature space would result in ∑
48
D=1 choose(48,D)= 248−1

times searches, where D is the size of feature subset. Given 15 seconds per combina-

tion, this is computationally infeasible. A naive simplified approach is to rank the

features and choose the top D to create the best subset. But this procedure overlooks

the possibility of 1) features with poor individual contributions performing better in

combination because of carrying complementary information [106] and 2) top features

performing poorly in tandem because of redundancy. A widely acceptable alternative

is the greedy search strategy, including sequential forward and backward strategies.

The Sequential Forward Selection (SFS) algorithm is efficient but suboptimal. It starts

with an empty feature set and iteratively adds a single feature that could optimize

the classifier performance when combined with all those previously selected features.

SFS continues until a required dimensionality is achieved or an evaluation criterion is

reached. In [56], the feature space was reduced from 30 to 10 using this strategy. It re-

jects statistically negligible features during incremental selection, so that those highly

correlated features are automatically excluded from the feature set. This approach is

very sensitive to the first chosen feature. The Sequential Backward Selection (SBS) is

similar to SFS but works in the opposite direction. It initializes with the full feature set.

At each step, SBS finds a single feature, by removing which the classifier performance

improves the most significantly [110]. Both of these two methods solve the redun-

dancy problem in the naive ranking approach and have much lower computational

burden compared to the exhaustive search approach, especially the SFS. However, the

common problem with these two approaches is they often end up with sub-optimal

results because of the inability to re-evaluate the usefulness of features that were pre-

viously added or discarded. A solution is the Sequential Floating Forward Selection

(SFFS), which dynamically integrates the forward and backward selection in control

of certain evaluation metric. The common SFFS starts with a forward selection. Once

the improvement is less than a pre-set threshold, the backward selection is switched on

as long as a better subset than those of the same size obtained so far is found, or vice
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versa.

5.2.4 Classifiers

The task of a supervised classifier is to use feature vectors to assign the observed object

to a category or class [106]. This is achieved by producing a learning model from a

labeled training set. Various successful techniques have been proposed to solve the

problem. Some classical methods are K-Nearest Neighbour (K-NN), Artificial Neural

Networks (ANN), Discriminate Analysis (QDA or LDA) and Support Vector Machine

(SVM).

K-NN is one of the oldest non-parametric classification algorithms [111]. The test

data (or unknown feature vector) is assigned to the class that occurs most often in

the set of K-Neighbours. The problem of K-NN is that large numbers of training set

patterns are normally required for achieving a low error rate. This leads to significant

storage and computation problems.

A more generalized approach called Bayesian Classifiers is based upon the prin-

ciple of Maximum A Posteriori (MAP). This statistical based method is the most

classical recognition paradigm used in skin lesion diagnosis and its major problem

is the need for large learning samples [2]. But the advantage of this classifier is

that it is straightforward and does not introduce any parameters to be tuned. Given

a problem with K classes {C1, . . . ,Ck}, the label of an unknown sample with feature

X =(x1, . . . ,xN) should be assigned to class i, if p(Ci|X)> p(C j|X), for all j 6= i. Using

the Bayes’s theorem, this could be further simplified as p(X |Ci)p(Ci)> p(X |C j)p(C j).

By extending the probability function (using a Gaussian distribution model), the above

inequality generates the discriminant function or decision rule. One can see that, to find

the class of an object one needs to know two sets of information: 1) the basic probabil-

ity that a particular class might arise (as known as the priori probability p(Ci)) and 2)

the distribution of values of features for each class (also known as the class-conditional

density p(X |Ci)). Each information can be found straightforwardly by observing the

training set. Prior probabilities reveal the frequency of individual cases in the real

world and it can be estimated directly from the training set as the fraction of the train-

ing set data points in each class. However, sometimes, the expected prior probabilities

differ from those represented by the training set (e.g., the dataset where samples in

each class are equally distributed artifically). This often happens in the medical re-

search field where the proportion of disease cases is normally small and needs to be



100 Chapter 5. Classification

artificially increased in order to obtain a good variety for further analysis. In this con-

text, the prior probabilities in the training and testing datasets differ from each other. A

simple solution to compensate for the different priors suggested by Bishop [112] is to

replace the prior probabilities estimated from the training dataset by the ones obtained

from medical statistics in the general population. The distribution of feature values is

often modeled using a multivariate Gaussian distribution, for which two parameters,

the mean and the covariance need to be estimated. Different parameter estimations

result in different discriminant function (e.g., QDA, LDA).

The Support Vector Machines (SVM) is a more advanced method. It is based upon

the idea of maximizing the margin, i.e., maximizing the minimum distance from the

separating hyperplane to the nearest example [111]. To date, SVM is among the most

robust and successful classification algorithms in the field. However, the disadvantage

of SVM is that there are several choices to make, because the effectiveness of SVM

depends on the selection of kernel, the kernel’s parameters and some other parame-

ters(e.g., soft margin).

Both K-NN and Bayesian Classifiers can be directly extended to multiple label

cases. The basic SVM supports only binary classification, but it can be extended to

multiple classifications by reducing the multi-class problem into a set of binary clas-

sification problems through different formulations. A good review can be found in

[113].

For the skin lesion classification, various classifiers have been applied. Dreiseitl et

al. [114] conducted a comparison of the discriminatory power of the six main classi-

fier categories on the task of classifying skin lesions. Their result showed that logistic

regression, ANN, and SVM performed on about the same level, with K-nearest neigh-

bours and decision trees performing worse. However, there has no standard method in

the application of skin lesion diagnosis up to date. Ganster et al. [41] performed a three

category (benign, dysplastic and malignant) lesion diagnosis using a K-NN classifier

with K assigned to 24. McDonagh et al. [56] used a Bayes Classifier with a uni-

modal multidimensional Gaussian model for the multiple lesion classification task. In

[28], the authors put the extracted features into a back-propagation neural network and

achieved 95% diagnostic accuracy in the automatic discrimination between melanoma

and benign lesions (nevus). German et al. [32] performed the learning and classifica-

tion stage using AdaBoost.M1 with C4.5 decision trees which gave promising classifi-

cation results that were superior than those reported in the literature.
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5.3 Prior Study of the Influence of 3D Data on Human

Diagnosis

When asking dermatologists about the usage of the surface shape in lesion diagnosis,

they could not provide a decisive answer 1, although their professional intuition makes

them feel that the shape might be helpful. So far, there has been no related experimental

study on this subject. In this section, we propose an experiment to answer this question

as to whether there is any ‘benefit’ of the 3D data on humans’ diagnosis. The overall

Diagnostic Accuracy (DA) is employed as an evaluation metric, which can be later

used as a baseline to compare with that produced by computer algorithms.

Objects
The experimental objects are 100 lesion images, which have the same size and res-

olution, as well as adequate 3D models. They were evenly selected from five lesion

classes: BCC, SCC, AK, ML and SK. In each experiment, 40 images, two batches of

20 images would be presented to the evaluator. The 20 images in the first half of each

experiment were always different from the second 20 images. Each batch of 20 images

was selected by stratified random sampling so there were four images from each of the

five classes. Users could have interactions with both 2D and 3D images in terms of

rotation and zooming.

Subjects
The experimental subjects are medical students who were undertaking dermatology

course training. But they had not been exposed to any 3D images or attended 3D-

image based diagnosis training before the experiment. These students were organized

in 6 groups and attended the experiment at different time slots. They were also asked

to perform different operations.

1. Group 1
Group 1 is comprised of 50 student volunteers who attended the experiment 1

week before Sept 2010 exam. Each student attempted to diagnose 20 2D images

and then 20 different 3D images. An example of a pair of 2D and 3D images

is shown in Fig. 5.1. In this experiment, the question is whether there is an

improvement on DA by using 3D images.

2. Group 2

1Private discussion with Dr. Jonathan L Rees, the Grant Chair of Dermatology at the University of
Edinburgh
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(a) 3D image

COLOUR : D527b

(b) 2D image

Figure 5.1: 2D and 3D images used in human performance test

Group 2 is comprised of 13 students who attended the assessment on the final

day of 2-week attachment in Nov 2010. They were asked to repeat the Group 1

experiment as the question is raised as whether the findings in experiment 1 will

hold true on a second group.

3. Group 3
Group 3 is comprised of 13 students who also attended the assessment on the

final day of 2-week attachment in Nov 2010. Each student attempted to diagnose

20 3D images first and then 20 different 2D images. This is in fact a reverse

experiment of Group 1&2 experiments. From the result, one can answer whether

the previous findings hold true if they see the 3D images first (or whether the

order of exposure to 2D and 3D images carries an effect on findings).

4. Group 4
This group includes 14 students who attended the assessment on final day of 2-

week attachment Dec 2010. They were asked to diagnose 20 2D images then 20

different 2D images as it is worth knowing that do the students improve on the

second 20 images irrespective of 3D.

5. Group 5
Group 5 is comprised of 14 students who attended the assessment on the final day

of 2-week attachment in Jan 2011. Each student diagnosed 20 2D fixed images

and then 2D images with ability to rotate. This experiment intends to answer
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whether the interaction (here means rotation) of the 3D images but rather than

the 3D images themselves improves their DA.

6. Group 6
The last group is comprised of 15 students who also attended the assessment on

the final day of 2-week attachment in Jan 2011. Each student diagnosed 20 2D

fixed images and then 2D images with ability to zoom. This experiment intends

to answer that does the interaction of the 3D images with respect to scaling

improves the DA.

The diagnostic results of each group were recorded and marked by Dr. Ben Aldridge,

from the Dermatology Department of Edinburgh University.

5.4 Methods

To evaluate whether the addition of 3D depth information would potentially benefit in

the diagnosis rate relative to only using colour information, one needs to develop an

automated pattern recognition system. The three main techniques used for this pattern

recognition process are: 1) extracting morphological features that are indicative of skin

conditions and allow classifying different conditions by type from colour and depth

data, 2) selecting the optimal combination of features from the extracted feature set

and 3) choosing a suitable classification model for lesion recognition.

5.4.1 Lesion Descriptors

The lesion descriptors are extracted based on a preliminary study in our lab, in which a

total of 30 features were extracted from the colour (22 features) and depth (8 features)

image data. More details can be found in [115]. In this work, the feature set is further

extended to a set of 48 comprising of 34 colour and 14 depth properties (see Table. 5.7

for the list of features), which can be summarized into two categories:

1. Global Properties
In the Segmentation Chapter 4, each lesion is decomposed into two sub-regions:

the interior (lesion region) and the outer (healthy skin region) of the bound-

ary. Each region could be characterized by some statistics of its distribution

(e.g., mean and variance per channel in RGB and depth). Hence, a family of

first-order statistics based features called Relative Colour Brightness Features
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(9) are proposed to calculates the ratios of colour intensities within the lesion

relative to the normal skin. They are formed as µa,S
µb,L

, where µ is the mean value of

colour (e.g., R,G,B) channel and {S, L} denote the {skin and lesion} patches, re-

spectively. The Relative Variability Features features (4) are extracted based on

the second-order statistics and have the form of σc,S
σc,L

. This group of properties as-

sesses the variability of colours inside the lesion relative to the normal skin patch

and attempts to automatically compute quantities which emulate the ‘colour’ as-

pect of the ABCD clinical diagnosis rule discussed previously. It could be di-

rectly applied onto the depth image as σd,S
σd,L

. Furthermore, the data (intensity or

depth) distribution of a lesion can be measured using the skewness (the abso-

lute value) and kurtosis properties based on the histogram of each colour chan-

nel or depth image. This family is comprised of Absolute Skewness(Kurtosis)

(|Skewness(Kurtosis)|c,L) (8), Relative Skewness(Kurtosis) ( |Skewness(Kurtosis)|c,L
|Skewness(Kurtosis)|c,S )

(8). These types of feature measure the symmetry and the flatness of the data dis-

tribution and helps to spot irregular surface shape. Another three global features

are the lesion size descriptors, which are also considered as diagnostic criteria in

the ABCD rule. They are area, average height of lesion and volume of a lesion.

The area is calculated based on the detected contour. The volume is calculated

based on the boundary and the height information derived from the 3D data.

As most lesions have a very irregular shape, the average height of a lesion is

only an approximation of the ratio of the volume and the area. In addition, to

characterise the mass distribution of the lesion volume, three 3D Shape Moment

Invariant Features (3) are also implemented.

2. Local Properties
Some localized features of texture and colour distribution were also extracted as

Peak and Pit Density Features (12). Image data is first convolved with a Gaus-

sian filter with a certain scale (σ) to remove fine textures. Based on the smooth-

ing result, a local peak/pit is defined as a pixel whose value was larger/smaller

than the eight nearest neighbours. The ratio #peaksc,σ+#pitsc,σ
Area is computed to ac-

count for the local texture distribution, where c ∈ R,G,B,d and σ ∈ 0.5,1.0,2.0

(denotes the Gaussian filter standard deviation).

Many more features exist in the literature, e.g., the co-occurance features in [50]. How-

ever, our work is not on the issue of exploring as much as features as possible but rather

to investigate the importance of depth related features. Therefore, instead of consid-
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ering more features, we keep using most of McDongh’s features [56] (see Table. 5.7)

and adding some histogram based features. These features form a feature vector which

represents the characteristics of a particular lesion. To avoid the bias caused by the

varying range on different components of the feature vector, a range normalization op-

eration is performed to transform each feature component to be zero-mean and unit

variance over the whole data set.

5.4.2 Feature Selection

The feature vector extracted in the previous section cannot be directly fed to the clas-

sification with respect to factors like redundancy. To reduce the feature dimension

and find the optimal feature subset, we propose a novel selection strategy that in-

tegrated forward and backward selection. As mentioned in Section 5.2.3, in each

backward step, the Sequential Floating Forward Selection (SFFS) strategy finds and

deletes one feature f−, without which the rest of the features can produce better per-

formance when compared with deleting other features. However, in our application,

we found this method could easily fall into a repeating loop. For example, a feature

removed in the backward selection step could be re-selected in the forward selection

step and thereby the selection process does not move forward. To solve this problem,

we propose the Sequential Pair-wise Feature Selection (SPFS) which can enlarge the

search space compared to SFFS. In each backward step, instead of only considering

one feature, a pair of features f+ and f− has to be found. The replacement of f+ with

f− should improve the classifier performance compared to other combinations with

the same feature subset size. The Pseudocode for this approach can be found below:
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Pseudocode of Sequential Pair-wise Feature Selection (SPFS)

While k ≤ K % K is a pre-set feature number

1 Initialize feature set F0 = { /0}, k = 0

% Forward feature selection step

2 Select the kth feature f+ by

f+ = argmaxx/∈Fk [DA(Fk + x)]

3 Update Fk

Fk = Fk∪{ f+}; k = k+1

4 If DA(Fk)−DA(Fk−1)> ε (e.g., ε = 0)

Go to Step 2

Else

% Backward feature selection step

5 Find the best pair of features f+, f− (only

one round) by

{ f+, f−}= argmaxx∈Fk,y/∈Fk [DA(Fk− x+ y)]

6 Update Fk′ = Fk\{ f−}∪{ f+}

7 If DA(Fk′)> DA(Fk)

% If backward step results in no improvement

% keep the forward selection result; otherwise

% replace Fk by Fk′

Fk = Fk′

8 Go to Step 2 % forward selection step

END WHILE

It is worth noting that in each backward selection step, the feature f− belongs to

the selected feature set Fk which is determined in the latest forward selection step. The

replacement f+ is chosen from the feature set that excludes the features previously

selected (i.e., Fk).

The feature evaluation criterion is the lesion Diagnostic Accuracy (DA). The selec-

tion process terminates when a pre-set number of feature size is reached. The optimal

size of feature subset space (D) is the turning point where the performance of classifier

starts to declines with the addition of new features. At this stage, a D dimensional
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feature vector is created. This sub-selected and normalized feature vector can thereby

be fed to a classifier, which ensembles to obtain a classification model that can differ-

entiate different types of lesion.

5.4.3 Classifiers

Selecting a suitable classifier has large impact on the final performance of lesion di-

agnosis. For a given classification task, a final selection of the ‘best model’ should be

based on the empirical comparison of the classification performances of different clas-

sifiers [114]. Therefore, we implement three standard classification methods, which

are K-NN, Bayes classifier and SVM.

Designing a Bayes classifier entails both the process of choosing the form for the

probability density functions for each class and the process of choosing the parameters

which describe the density function. According to visual examination, most feature

value distributions can be modeled by the unimodal Gaussian density function (see

Fig. 5.2). Thereby, the unimodal multivariate Gaussian observation model is chosen

for the Bayes classifier.

The Gaussian distribution model parameters - the mean and covariance are esti-

mated using four different ways from the training data. This results in four sub-models:

LDA, QDA, DQDA (as known as Naive Bayesian) and DLDA. QDA is the short for

quadratic discriminate function, in which the covariance of each class is estimated

from the samples in the corresponding class. Normally, these covariance matrices are

different (i.e., Σi 6= Σ j, for i 6= j). However, once the dimension of feature set is larger

than the number of sample in a certain class, the estimation of the Gaussian parameters

(covariance) can be ill-posed. This limits the size of feature subset. To avoid this prob-

lem, one can assume that the class covariances are identical (i.e., Σi = Σ j = Σ). This is

the so-called Linear Discriminant Analysis (LDA). The dimension of the feature subset

space can be as large as the database size. When the covariance matrix is further sim-

plified as a diagonal covariance matrix 4 = diag(σ2
1,σ

2
2, . . . ,σ

2
D), one can obtain the

Diagonal Linear Discriminant Function (DLDA). The conceptually simple approach

of LDA and its sibling, DLDA (where all classes use the same diagonal variance ma-

trix), remain among the most effective procedures in the domain of high-dimensional

prediction [116]. Another solution to solve the ill-posed problem is DQDA, which

is sometimes called the ‘naive Bayes Classifier’. The ‘naive Bayes’ assumes inde-

pendent covariance and it often works well in small sample and high feature space
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Figure 5.2: Features in five lesion groups (e.g., the Relative variability feature of red

colour channel) roughly obey the Gaussian distribution as shown in Fig. 5.2(a). The qq-

plots of feature 23 (Fig. 5.2(b), (c), (d)) also indicate that the data follow the Gaussian

distribution as plots in the different lesion groups are close to linear, though with outliers

evident at the high/low end of the range.

situations. For these Bayes models, to avoid the bias caused by the unbalanced sample

distribution, the a priori class probability for each class should be estimated using the

incidence rates in the training data.

We implement all these four models for the Bayes classifier. Hence, in total, six

classifiers are taken into account in our comparison. The discriminatory performances

of all these classification models are compared through classifying five types of skin

lesion (Table. D.1 shows the number of lesions for each class). The optimal feature

subset for each classifier is automatically determined using our Sequential Pair-wise
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Feature Selection (SPFS) method, respectively. Because of the relatively small data set

of certain lesions (e.g., AK and SCC), the database is not separated into independent

training and test sets. Instead, a leave-one-out cross-validation is used for training and

testing set generation. This approach trains each classifier on all of the available skin

lesions apart from the one that is to be classified. Take a database including N samples

for instance, the system is trained N times on all data except for one sample and a

prediction is made for that sample. This affords us the maximum mileage possible

from the available data in terms of model training [56].

5.5 Experiments and Results

5.5.1 Whether the 3D Data Improves Humans’ Diagnosis?

Group Image Batch Min Score Max Score Avg Score Sum Scores Total Test Images DA% Paired wilcoxon test (p value)

1: 3D benefit
2D 1 13 8 385 1000 38.5

3D 5 14 9.5 470 1000 47.0 2.148e-06 (significant)

2: Repeat
2D 3 10 5 77 260 29.6

3D 4 12 8 103 260 39.6 0.01004 (significant)

3: Reverse
3D 5 12 8 109 260 41.2

2D 4 10 6 85 260 32.7 0.01025 (significant)

4: Order effect
2D 1 10 6.5 82 280 29.3

2D 2 9 6 84 280 30.0 0.7523 (not significant)

5: Rot effect
2D 1 10 5 78 280 27.9

2D Rot 2 9 6.5 84 280 30.0 0.3905 (not significant)

6: Zoom effect
2D 2 10 7 99 300 33.0

2D Zoom 4 10 6 104 300 34.7 0.5263 (not significant)

Table 5.1: Human Diagnosis Results. This table lists the results of the experiments on

the six groups. For each group, results for both batches are recorded, including the

Min Score, Max Score, Avg Score, Sum Scores and Diagnostic Accuracy (DA). The p

value of the paired wilcoxon test between two batches is also given. It measures the

statistical difference between the diagnosis over two batches

The diagnosis results from Group 1 to Group 6 are listed in Table. 5.1. Group 1

demonstrates a primary test, which compares the Diagnostic Accuracy (DA) between

using 3D and 2D images. The DA distribution of the two batches are demonstrated in

Fig. 5.3. It shows that the students who diagnose on 3D images achieve an average DA

of 47.0%, which is much improved compared to that based on 2D images, which is

38.5%. The paired wilcoxon test [117] suggests that this improvement is statistically

significant with respect to a p value of 2.148e-06. One can also see that the diagnos-

tic variation between each batch is smaller for 3D than 2D. The minimal diagnostic
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score is 1 out of 20 for 2D images and 5 out of 20 for 3D images; while the maxi-

mal diagnostic score is 13 out of 20 for 2D images and 14 out of 20 for 3D images.

These might indicate that the 3D images based diagnosis appears to be more reliable

and robust. The experiment Group 2 is a repeat test of Group 1 with different images.

From Table. 5.1, the same conclusion holds, though the average DAs of both 2D and

3D images are smaller compared to the respective values in Group 1. This phenomena

exists in all following groups. It could be explained by the time factor, as Group 1 test

is only taken a week before exam while the others are at least 2 months after the exam.

This could be also because that only the students in Group 1 volunteered.
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Figure 5.3: Human diagnosis based on 2D and 3D images. The red and green spots

indicate the number of lesions being correctly diagnosed by individual raters. The red

ones relate to the diagnosis on 2D images and the green ones relate to that of 3D

images

The question of whether the significant improvement of 3D over 2D is related to

other side effects is tackled by experiments on Groups 3, 4, 5, 6. The reverse test of

Group 3 shows that the order of 2D and 3D images does not influence the conclusion.

Group 4 experiment further indicates that there is no order effect, because there is no

difference between the diagnosis based on two 2D image batches displayed in succes-

sion. The last two tests answer the question of whether the interactions with images

would affect the DA. According to the result, the diagnosis with and without the abil-

ities of rotation and scaling have very close DAs. Therefore, all these possible factors

can be excluded.

In summary, there is significantly higher DA in 3D images for Group 1, Group 2
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and Group 3. This appears to be a genuine 3D effect rather than interaction or order

related effect. In addition, a questionnaire-based enquiry reveals that 62 out of 76

(81%) students who attended the test found it was easier to diagnose on 3D images

and 73 out of 76 (96%) preferred using 3D for teaching as they found 3D provides

more information than 2D images. As a result, we have a reason to believe that there

is truly a benefit of 3D images over 2D images on humans’ diagnosis. In this context,

it is worth considering to use the extra information carried by 3D images on computer-

based diagnosis.

5.5.2 Classification Results

The aim of this section is to gain some insights into the contribution of 3D-based

features towards lesion diagnosis. Our evaluation is based on Database I, which in-

cludes 369 samples over the five classes (including AK (14), BCC (140), SCC (17),

ML (83), SK (115)). More details of Database I can be found in Appendix D. Three

classifiers are implemented and used as the comparison platforms. They are K-NN,

Bayes and SVM. In the K-NN classifier, the number of nearest neighbours K is set to

two based on empirical tests. The distance is the Euclidean distance. For the Bayes

classifier, four probability density parameter (covariance matrix) estimation methods

produce four models, which are QDA, LDA, DQDA, DLDA. The prior probabilities

for individual classes are directly estimated from the training dataset which reflect the

frequencies of different lesion incidences in the hospital. For the SVM classifier, we

use the libSVM package [118], where the RBF kernel is chosen and the corresponding

parameters are estimated using its own functions. For training and testing set genera-

tion, a leave-one-out cross-validation is used because the shortage of samples in some

classes like AK and SCC. For each classifier, its optimal feature subset is identified

using our proposed Sequential Pair-wise Feature Selection (SPFS) approach. As a re-

sult, the optimal feature subset and the dimension of this subset for each classification

model might vary. But in this way, the comparison is based on the best performance of

each classifier. This is for the purpose of a fair comparison.

The classifier evaluation metric is the Diagnostic Accuracy (DA). It is commonly

calculated as the Overall Classification Rate (OCR, i.e., dividing the total correct clas-

sifications by total classifications). This is the main evaluation criterion that we use in

our work (in the classifier comparison and the feature selection step). Although there

are concerns that the OCR may bias the results towards the classification rates of the
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larger classes when using an unbalanced database. Some works prefer the Average

Classification Rate (ACR) for each lesion class (i.e., the classification rate is computed

for each of the five classes and the average classification rate is the average of these 5

rates). However, as we need to compare the computer based classification to the human

diagnosis, whose marking is based on the OCR, so that it is more fair to compare two

results on the same standard as OCR. We also calculated the ACR for the classifiers

comparison.

The experiment results are listed below:

1. Comparison between 2D, 3D and 2D+3D Features
Table. 5.2 and Table. 5.3 show the classification results of each classifier us-

ing different feature combinations (i.e., colour, depth and integrated colour and

depth). For the convenience of future reference, let s1, s2 and s3 be the classifi-

cation using Colour features only, Depth and Colour features and Depth feature

only, respectively. Based on the diagnostic accuracy of classifiers, combining 2D

(colour) and 3D (depth) based features outperforms the others. This conclusion

is held for all six classifiers.

For each classifier, the diagnostic accuracy metrics OCR and ACR are calcu-

lated on the final result of the leave-one-out cross valuation based on the optimal

feature subset selected using SPFS, which is shown in Table. 5.3 (the 3D-based

properties are in bold). Different classifiers normally have different feature sub-

sets. This might be because different classifier models fit in different feature

combinations. Also, even though integrated with the backward selection, the

SPFS is still sensitive to the first selected feature, which gives a large influence

on the features selected afterward.

Feature Set

Diagnostic Accuracy of Classifiers - OCR (ACR) %

DATABASE I DATABASE II

K-NN
Bayes SVM

QDA LDA DQDA DLDA FS I FS II

s3: 3D 57.18(44.98) 58.27(40.55) 57.99(44.71) 53.39(38.58) 54.74(42.74) 57.18(48.14) N/A

s1: 2D 71.27(55.71) 79.13(60.44) 79.40(62.20) 68.02(57.69) 67.75(51.14) 76.69(62.92) 73.28(61.30) 75.37(61.89)

s2: 2D+3D 72.36(63.73) 79.95 (59.05) 81.57(69.51) 69.92(60.64) 69.65(63.62) 82.38(71.97) 77.22(65.41) 80.54(68.59)

Table 5.2: Diagnostic accuracy using different feature sets. FS I and FS II denote the

feature sets selected using SVM classifier based on DATABASE I and DATABASE II,

respectively

The relationship curves between the OCR and the size of feature subset D are

given in Fig. 5.4. For each classifier, three curves are shown. The red one rep-
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K-NN

Feature set Feature pool Feature subset

I Colour only 25 11 4 22 23 18 1 31 24 9 2 12 2 6 5 7 6 3 8

II Colour and depth 25 41 27 11 8 21 1 9 5 23 31 40 7 46 43 29

QDA

Feature set Feature pool Feature subset

I Colour only 33 21 5 9 1 19 24 28 16 11 17 20

II Colour and depth 33 21 5 9 1 44 16 35 13 22

LDA

Feature set Feature pool Feature subset

I Colour only 6 5 1 8 22 23 12 11 14 31 3 13 19 7 30

II Colour and depth 6 5 1 8 36 22 10 21 39 40 31 23 33

DQDA

Feature set Feature pool Feature subset

I Colour only 21 12 4 29 9 2 22 1 17 25 31 6

II Colour and depth 33 21 12 36 9 44 45 18 6 4 2 35 3 39

DLDA

Feature set Feature pool Feature subset

I Colour only 6 11 1 22 25 14 30 31 34 23 10 32 26

II Colour and depth 6 11 17 36 45 21 43 33 23 42 34 2 22 9 40 10 18

SVM (DB I)

Feature set Feature pool Feature subset

I Colour only 9 5 33 1 19 10 6 31 22 32 28 16 11 7 3 24 2 30

II Colour and depth 9 5 33 41 20 33 28 23 47 11 15 18 45 37 2 3 12 38 43

SVM (DB II)

Feature set Feature pool Feature subset

I Colour only 9 1 5 8 4 20 21 6 35 22 31 28 16 19 7 3 24 2

II Colour and depth 9 38 21 5 1 8 23 44 47 6 45 37 2 3 15 20 18 12 41 43 19 42 22 27 35 14

Table 5.3: Selected feature subset for each classifier. DB I and DB II denote DATABASE

I and DATABASE II, respectively. The features derived from 3D data are highlighted in

bold.

resents the OCRs of s2. It is normally above the green curve that indicates the

result of s1. Both of these two are significantly better than that of s3 (shown in

blue). However, the depth features also produce an accuracy above 50% with

OCR and 40% with ACR. These findings indicate that 1) colour is the primary

cue for lesion discrimination, 2) depth is also informative for lesion diagnosis,

although it is not reliable when used alone and 3) adding the depth with colour

increases the discrimination abilities of all classifiers. These conclusions are

derived based on experiments with DATABASE I.

To confirm the findings, we repeat the feature set comparison experiment on

DATABASE II (see Appendix D). The SVM classifier that performed best on

DATABASE I experiments is employed. The results can be found in the last

two columns of Table. 5.2 and Fig. 5.4(f). First, we directly use the feature

set selected by SVM classifier on DATABASE I. The diagnostic accuracy is

improved from 73.28% to 77.22% for OCR and from 61.30% to 65.41% for

ACR because of the additional 3D based features. Second, in order to obtain the

best result, we re-select the feature set based on DATABASE II. The new feature

set is shown in Table. 5.3. There are eight 3D-based features selected by the
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Figure 5.4: Diagnostic property comparison using different classifiers

SPFS. The confusion matrix for different feature sets (s1 and s2) are shown in

Table. 5.4 and Table. 5.5. Again, the diagnostic rate is increased by around 5%

(from 75.37% to 80.54%) for OCR and 7% (from 61.89% to 68.59%) for ACR,

with the additional 3D features.

Most melanoma classification results reported in the literature reported their per-

formances in terms of specificity and sensitivity. A survey of the performances

of existing works in [2] showed that the sensitivity could score between 82.5% to

100% and specificity between 63.65% to 91.12%, referring mostly to the detec-

tion of melanotic lesions against nevus. We also evaluate our experiment using

this criterion. Because this criterion is traditionally designed for a two class
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Diagnostic

AK BCC ML SCC SK Number Rate

True

AK 8 1 29 7 3 48 16.67%

BCC 0 229 10 0 27 256 89.45%

ML 1 6 184 10 8 209 88.04%

SCC 5 1 38 37 7 88 42.05%

SK 0 33 11 3 154 201 76.62%

Overall accuracy: OCR(ACR) 812 75.37%(61.89%)

Table 5.4: Confusion matrix for 2D feature set

Diagnostic

AK BCC ML SCC SK Number Rate

True

AK 10 4 28 2 4 48 20.83%

BCC 1 241 7 0 17 256 94.14%

ML 0 8 184 14 3 209 88.04%

SCC 4 3 25 54 2 88 61.36%

SK 0 21 12 3 165 201 82.09%

Overall accuracy: OCR(ACR) 812 80.54%(68.59%)

Table 5.5: Confusion matrix for 2D+3D feature set

problem, to make it fit our problem, we calculate them for each class individu-

ally by treating all other class samples as true negatives. The overall criteria are

thereby the mean of the individual results. The results are given in Table. 5.6.

The average specificities for both s1 and s2 are over 90%, which is compara-

ble to most binary classifications reported in the literature (like 74.1% in [39],

92.34% in [10]). On the other hand, a 2% improvement of s2 over s1 shows that

adding the extra depth information lowers the Type I error (or false positive).

Unfortunately, the average specificities are not as good as those reported (like

85.9% in [39], 93.33% in [10]). It is mainly held back by the groups with less

samples, such as AK and SCC. This indicates a high false negative rate for these

two classes. Though, with the addition of depth features, the average sensitivity

is increased from 62% to 69%.

The class specific results are also shown in Table. 5.4, Table. 5.5 and Table. 5.6.

For class ML, the two classifiers perform almost the same. Only the specificity is

improved very slightly (3%) when taking into account the depth. Typically, ML

is a spot with browny colour and regular round or oval shape. These characters

make the ML comparatively easy to be distinguished from other lesions by only

using colour features. However, from the 3D shape point of view, ML may be

flat or it may be raised and its surface can be smooth or rough. Hence, the 3D
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Colour

Diagnosis AK BCC ML SCC SK Average

Specificity 0.99 0.92 0.85 0.97 0.93 0.93

Sensitivity 0.17 0.86 0.88 0.42 0.77 0.62

Colour + Depth

Diagnosis AK BCC ML SCC SK Average

Specificity 0.99 0.93 0.88 0.97 0.96 0.95

Sensitivity 0.21 0.91 0.88 0.61 0.82 0.69

Table 5.6: Classification results evaluated using specificity and sensitivity metrics

features we implement so far make limited contribution to the diagnosis. For all

other four classes, whose samples are mostly non-pigmented, the advantage of

combining 2D and 3D is obvious. For instance, the improvement to SK between

using s1 and s2 is 16% (according to OCR). SK often resembles warts and has a

rough surface which looks like the scab from a healing wound. This character-

istic can be represented by 3D texture features, which help to distinguish them

from other lesions. For the dangerous SCC class, including depth-based features

outperforms using only colour features by a considerable 20% increase. Com-

monly, this lesion has a ‘crater like’ appearance with raised surroundings and a

central depression [56]. For them, the eight features utilising depth may be at

least partially helpful in representing these characteristics. Even with the large

improvement, it still displays a low individual class accuracy and sensitivity on

SCC, and similar findings hold true for the AK class. This could be explained

by the lack of samples in these two class, without which the classifier cannot be

well trained in the learning phase.

2. Significance Testing
We test whether the difference in results is statistically significant using McNe-

mar’s test on SVM (based on FS II and DB II) results. McNemar’s test essen-

tially is based on a χ2 test and computes a goodness of fit that compares the

distribution of counts expected under the null hypothesis (the two systems have

the same classification rate) to the observed [56]. The test is based on a 2× 2

contingency table, which tabulates the outcomes of two tests. Let n10 be the

number of examples misclassified by s2 but not by s1 and n01 be the number

of examples misclassified by s1 but not by s2. In our case, n01 is 82 and n10 is

40. The Chi squared statistic equals 13.779 with 1 degree of freedom. The two-

tailed P value equals 0.0002. By conventional criteria (0.05 confidence level),
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this difference is considered to be extremely statistically significant. We also

apply the McNemar’s test on individual classes. Their respective two-tailed P

values are 0.72(AK), 0.05(BCC), 0.81(ML), 0.004(SCC) and 0.07(SK). Under

0.10 confidence level, the improvements in BCC, SCC and SK are statistically

significant. Though there is not much difference between the two feature sets for

AK and ML.

3. Comparison between Six Classification Models
The performance of six classifiers are compared in Fig. 5.5. SVM produces the

best result (82.38%) in our application. The confirms the survey result in [2] that

the lesion diagnostic systems employing SVM achieved higher performance.

The Bayes Classifier using LDA model (81.57%) and QDA model (79.95%)

comes the second and third. These three methods clearly outperform the other

three, though there is no large difference within them. The reason that LDA is

better than QDA might because that the former allows to include more features.

KNN comes fourth, with an accuracy of 74.17%. Too much simplification re-

duces the discriminative power of the Bayes Classifer, the results of DLDA and

DQDA are only 69.95% and 69.92%.

0 5 10 15 20 25
40

45

50

55

60

65

70

75

80

85
Comparison between classifiers

79.95

81.57

69.9569.92

74.17

82.38

Number of features

D
ia

g
n
o
s
ti
c
 a

c
c
u
ra

c
y
 (

O
C

R
)

 

 

QDA:79.95

LDA:81.57

DLDA:69.95

DQDA:69.92

KNN:74.17

SVM:82.38

Figure 5.5: Classifier comparison

4. Comparison between SFFS and SFPS
Fig. 5.6 demonstrates the classification results based on feature subsets selected

using two strategies: SFFS and SFPS. The Bayes Classifier with the LDA model

is used for comparison as it gives a good classification result and is efficient.
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The figure shows that SFPS could find a better feature subset for solving the

classification problem than SFFS. This improvement might be because 1) SPFS

enlarges the search space since it looks for an optimal pair of features rather than

a single one in the backward step, 2) similar to the SFFS, SFPS has the ability of

re-selecting / removing of the previously discarded / selected features (e.g., in the

Feature Set I of DQDA, the first chosen feature 31 is replaced by other features

in the latter selection (see Table. 5.3)). Although the computational expense

increases, it is within an acceptable tolerance. All our experiments are based on

the features selected using SFPS. For each classifier model, its feature subset is

shown in Table. 5.3.
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Figure 5.6: Feature selection strategy comparison

5. Comparison with Human Diagnosis The computer based classification is sur-

prisingly better than the human (inexperienced medical students) performance.

This may be because the computer is able to identify subtle variations in skin

which is hard for humans due to the limitation of the naked eye. The SVM

classifier produces an accuracy of 82.38% when using 2D and 3D features (FS

II) on a database including 812 samples (DB II); while the diagnostic accuracy

of the student is only 47% using 3D images and 38.5% using 2D images. Our

human raters are medical students who had only undertaken one week of spe-

cific dermatological training. Their poor performances reflect the multiple lesion

classification task is not trivial for human. Although this comparison is not very

fair as they are not based on exactly the same database. The data used for human

testing is a sub-set of DATABASE II (including 100 samples) selected by a ran-

dom strategy. The number of samples in each classifier was identical. But the

encouraging performance of the implemented recognition algorithms suggests
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such a system can be considered a valuable tool to assist non-experts or even

experts when making a judgement.

6. Important Features for Lesion Diagnosis
Table. 5.7 lists the times that each feature is selected by classifiers for the task of

classification. The most frequent features (highlighted in red) are 9, 21 and 33.

They represent the diagnostic properties of colour variation, local texture and

flatness of data distribution, respectively. Their common property is that they

are associated with the blue colour channel. This again reflects that skin lesions

are more prominent in blue colour [69]. The second important features are high-

lighted in blue, including two 3D based features, 43 and 45, representing local

surface texture and relative flatness of depth data distribution. The skewness re-

lated features and the 3D based skin lesion volume are not useful according to

the fact that they are rarely selected by classifiers. But in general, various kinds

of features (e.g., colour variation based, local texture based, 2D and 3D shape

based) have been at least selected once. It is not clear which kind of features

are more informative since the feature set selected by different classifiers do not

highly agree.

5.6 Conclusion

In clinical settings, in addition to the visual observation of skin lesions, touching is also

a part of examination for dermatologists when making a diagnosis. Motivated by this,

we hypothesize that both colour and surface shape have discriminative power in lesion

diagnosis system. Unfortunately, the state of the art imaging system, dermoscopy, can

only provide colour-based information about the skin lesion. Without access to surface

shape data, the potential discriminative power of this information has been neglected.

New sensors enable simultaneous acquisition of 3D shape and 2D colour information

of skin at reasonable resolutions. We first carried out an extensive and rigorous em-

pirical test on medical students to evaluate whether 3D data carried some message

resembling the information obtained through touching in the clinic and would help

humans in making a correct decision. The diagnostic results support our claim and

show a significant increment of 8.5% by using the 3D images. Several auxiliary ex-

periments suggest that this improvement is purely because of the advantage of extra

shape information observed from the 3D data rather than any side effects. We further
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investigate the contribution of 3D data on a computer based five non-melanoma skin

lesion classification task by a comparison between using colour features only and using

both colour and depth features. We implemented six classifier models as the compar-

ison tool. For each of them, a novel feature selection method (SPFS) that integrated

greedy forward and backward strategies is employed to find a locally optimal feature

subset that produce the maximal performances. Based on the comparison results, the

key point to make is that the addition of depth does improve the diagnostic accuracy.

This conclusion is found across all six classifiers and under different evaluation met-

rics (e.g., OCR, ACR, sensitivity and specificity). We also repeat the experiment on

a larger database (DATABASE II) using the Support Vector Machine (SVM) which is

found to suit our classification task best. For the second time, it confirms that adding

the 3D-based features gives an improved classification rate of 80.67% compared to

simply colour features (75.25%). The statistical test shows this improvement is signif-

icant at the 0.05 confidence level. In addition, we also compare the performances of

human and automated computer-based algorithms. The large improvement of the latter

suggests that the computer based algorithms might play a valuable role in providing

decision-making assistance.

The novelties of our research are 1) we are the first group that has ever extensively

studied the importance of 3D data applied to skin lesion classification, 2) we perform

the comparison between using 2D data (colour images) and both 2D and 3D data (3D

images) on both human and automated computer-based diagnosis, 3) given that most

studies reported in the literature focus on the more limited problem of discrimination of

melanoma from benign pigmented lesions (mostly moles) [21], we expand the lesion

diagnosis study to a broader range of lesions and furthermore, most of these lesions are

rarely considered in other works despite their high presence in clinics, 4) we propose a

novel feature selection method - SPFS which is shown to outperform SFFS and 5) we

compare the performances of six classification models and find the best one for skin

lesion diagnosis application.

Given that our ultimate goal is to gain an insight into the benefit of incorporating

3D information rather than pursuing perfect classification performance, we did not put

much effort on extracting sophisticated features and enlarging the feature pool. Our

feature set only includes 34 colour and 14 depth based features (as listed in Table. 5.7).

They are mostly basic low-level features. Further improvements would involve devel-

oping better features, e.g., ones that model specific characters of different lesions, like

the blood vessels of BCC, the cauliflower surface texture of SK, etc. These pattern-
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based features have attracted more attention recently. For example, dermoscopic fea-

tures - granular, white and hypo-pigmented areas are extracted for the detection of early

stage melanoma [28]. In addition, a variety of morphological, clinical and molecular

variables could also be taken into account.

Another drawback of the current work lies in the feature selection part. The feature

subset of each classifier is chosen by optimizing the Diagnostic Accuracy criterion.

This criterion is also used later as a test figure of merit to evaluate the performance

of these classifiers. In other words, the comparison between different classifiers is

based on the their best performances obtained through adjusting feature subset size

and content. Therefore, there is potential risk of data overfitting problem.The fea-

tures selected in one database may perform badly in another database. As a result,

the conclusion obtained in one database may not hold in another database. To assess

whether this problem exists, we apply the feature subsets selected under DATABASE I

to DATABASE II (see Table. 5.2). Fortunately, the same conclusions stay. However, a

more proper solution to the problem is to use different criteria for feature selection and

performance estimation. Another solution should be dividing the dataset into train-

ing and testing sets and selecting the optimal feature subset using the training dataset

while evaluating the diagnostic performances using the testing set. The reason that we

cannot split the dataset into independent training and testing dataset is the shortage of

samples in certain classes (e.g., AK and SCC). This also means that the classifier of

certain classes cannot be properly trained. For these classes, their specific classifica-

tion rates are not ideal. In order to obtain a good variety of these classes, huge numbers

of training samples in all classes are required. This may lead to heavy burden to data

collection and processing. An alternative way is to only increase the proportion of

small classes in the training set and then to compensate the prior probability problem

as discussed in 5.2.4. Furthermore, the usefulness of the depth information in the task

of classification was investigated only by inexperienced medical students, future work

will continue the investigation for experienced dermatologists.
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Index Name Scheme Information # selected Notes

1 avgColRR

Relative colour brightness features Colour

4

µa,S
µb,L

, S and L denote skin and lesion, respectively

2 avgColGR 4

3 avgColBR 3

4 avgColRG 1

5 avgColGG 5

6 avgColBG 4

7 avgColRB 1

8 avgColGB 3

9 avgColBB 6

10 avgRoughR

Relative variability features
Colour

2

σc,S
σc,L

11 avgRoughG 3

12 avgRoughB 3

36 avgRoughZ Depth 3

13 redtext05

Peak and pit density features

Colour

1

scale = 0.5
14 greentext05 1

15 bluetext05 2

41 ztext05 Depth 3

16 redtext1

Colour

1

scale = 1
17 greentext1 1

18 bluetext1 4

42 ztext1 Depth 2

19 redtext2

Colour

1

scale = 2
20 greentext2 2

21 bluetext2 6

43 ztext2 Depth 4

22 spotDiamDelta20 50 Shape regularity 2D shape 4

23 KurtosisLesionR

Absolute kurtosis
Colour

5

Flatness of the data distribution
27 KurtosisLesionG 2

31 KurtosisLesionB 2

44 KurtosisLesionZ Depth 3

24 SkewnessLesionR

Absolute skewness
Colour

0

Symmetry of the data distribution
28 SkewnessLesionG 1

32 SkewnessLesionB 0

46 SkewnessLesionZ Depth 1

25 KurtosisRatioR

Relative kurtosis
Colour

1

Flatness of the data distribution
29 KurtosisRatioG 1

33 KurtosisRatioB 6

45 KurtosisRatioZ Depth 4

26 SkewnessRatioR

Relative skewness
Colour

0

Symmetry of the data distribution
30 SkewnessRatioG 0

34 SkewnessRatioB 1

47 SkewnessRatioZ Depth 2

35 Area Area 2D shape 3

37 dheight Height 2

38 i1

3D moments Depth

2

39 i2 2

40 i3 3

48 Volume Volume Depth 0

Table 5.7: List of extracted features. The features derived from 3D data are highlighted

in bold and italic. The most frequently selected features are highlighted in red and the

second important features are highlighted in green. Feature descriptions can be found

in Section 5.4.1



Chapter 6

Conclusion

This thesis aims at investigating the potential benefit of 3D information to multiple

class skin lesion diagnosis. A general schematic diagnostic framework comprising data

collection and pre-processing, lesion segmentation and classification has been built to

explore the contribution of 3D data, particularly on lesion detection and recognition.

The preceding chapters present three main contributions:

1. A novel ground truth estimation approach that takes into account the inter-rater

variation caused by different diagnostic policies through incorporating a prior

pattern analysis of manual segmentation results.

2. A comprehensive evaluation of the contribution of various information on lesion

segmentation, particularly focusing on depth information, based on a carefully

validated lesion database.

3. A thorough empirical investigation of the contribution of 3D data to both human

and computer based non-melanoma skin lesion diagnosis tasks.

These contributions are summarised in the reminder of this chapter, together with a

discussion of their limitations and future work.

6.1 Ground Truth (GT) Estimation for Segmentation Eval-

uation

Main Findings
In order to evaluate our segmentation results derived from Chapter 4, we need a GT
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that is estimated from a collection of manual results. In our work, ground truth estima-

tion is treated as an optimization problem and it is solved under a level-set framework.

Three approaches derived from different energy functions are proposed. LSV is gen-

erated by minimizing the variation between manual segmentations. LSML is based on

maximizing the a posteriori probability (MAP) given a set of manual segmentations

and it takes forward the idea in STAPLE [1] that takes each rater’s performance level

into account. A further analysis of manual segmentations reveals that the segmenta-

tions of lesions differ mainly because of the rater’s segmentation policies. In order to

take into account these characteristics of the raters’ segmentations, the third approach

called LSMLP is proposed. LSMLP adds an extra energy term related to a Shape

Prior Model (SPM) to the energy function of LSML. SPM is learned through a prior

manual segmentation pattern analysis. Experiments on both synthetic data and real

lesion data reveal that LSMLP outperforms all the other methods that do not consider

the prior information, followed by LSML and the state of the art method STAPLE.

In the field of ground truth estimation, little research has analyzed the patterns of the

manual segmentation results and we are the first group that study this subject and inte-

grate it into a ground truth estimation formulation. In addition, we prove theoretically

(Section 3.4.1) and experimentally (Section 3.5.1) that LSV and Majority Vote Rule

(MV), which produces the smallest average discrepancy between the estimated GT
and the manual segmentations when a voting threshold is set as θ = J/2 are essentially

equivalent.

Limitations and Future Work
1. Our Shape Prior Model (SPM) is generated by combining the detailed segmenta-

tions through a Majority Vote Rule based strategy. Also, in this preliminary study, SPM

has a discrete binary formation. It is worth learning the shape prior model in a more

comprehensive way, e.g., based on principal components analysis (PCA) or combining

the detailed segmentations using a better method like STAPLE [1] and representing it

in a better formulation, e.g., in a continuous format.

2. In order to solve the problem in a level set framework, a simplification is made

by assuming that pixels have a spatial independence. To relax this strong assumption,

one could introduce a Markov random field model as future work. This might provide

better performance on the task of ground truth estimation.

3. Our algorithm can only solve binary segmentation problems. More work needs to be

done to extend it to generalized multiple segmentation phase applications. This should
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be feasible under a level set framework. In fact, this is the reason that we chose the

level set to solve the problem.

6.2 Depth Data Based Lesion Segmentation

Main Findings
For the purpose of comparing the discriminative ability of various lesion information

on separating lesion from normal skin, we present a flat segmentation algorithm that

is implemented within a level-set framework. The approach is built upon a region-

based deformable model under a probabilistic formulation. For each lesion region

(i.e., lesion and healthy skin), its regional statistical parameters are estimated and used

to characterize the respective lesion structures (i.e., lesion and skin) with the density

distribution model. We derive and compare several density models. The GMM is

found to be the best way to model the complex density distribution of properties of

skin lesions. The well-known Chan-Vese segmentation [85] is found to be equivalent

to the most simplified version in the statistical regional-based segmentation. In order

to take into account the prior knowledge of spatial relationships, we introduce the local

spatial dependency term, which is modeled by MRF in the form of a Gibbs distribution.

The segmentation property comparison results reveal that integrating depth and tex-

ture properties results in a significant overall improvement of segmentation, in terms

of both accuracy and consistency. By adding depth and texture properties, the error

rate is reduced from 7.80%± 5.35% to 6.62%± 2.60%. This convincing gain sug-

gests that the depth and texture descriptors are complementary to colour. From this

respect, the depth information does improve lesion segmentation. On the other hand,

we find that colour properties enable a close segmentation to the dermatologists on

pigmented lesions and the depth and texture information is particularly meaningful for

non-pigmented lesions which have less colour variation over different regions. This

suggests that different information has specific importance for different types (e.g., pig-

mented and non-pigmented) of lesions and only discriminative and useful properties

should be chosen for each lesion according to their appearances, instead of using all

the properties derived from all kinds of information for every lesion. Hence, we fur-

ther propose a hierarchical segmentation structure that incorporates pattern recognition

techniques to the flat segmentation. The novel segmentation strategy performs segmen-

tation by using different feature subsets within a hierarchical structure which is in turn

determined by the discrimination between different lesion appearances. The experi-
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ments show that both the one layer hierarchical approach based on colour and the two

layer hierarchical approach based on colour and depth further improve the segmenta-

tion results compared to the flat segmentation approach (from 6.62% to 6.15%).

In our study, we also included several non-pigmented skin lesion types. These

lesion types have been rarely discussed before in the medical imaging community.

Adding them increases the difficulty of segmentation tasks because they are compara-

tively lacking the most important discriminative cue (i.e., colour).

Limitations and Future Work
Our hierarchical structure is built up in an ad-hoc way according to some kinds of

prior information. In the future, a more sophisticated hierarchical structure could be

built based on 1) a better definition of the hierarchical layer splitting parameters and

2) additional lesion data with ground truth segmentations that allow more extensive

development and testing.

6.3 Depth Data Based Lesion Diagnosis

Main Findings
The empirical tests using medical students reveals that viewing 3D lesion data carries

some message resembling the information obtained through touching the lesion in the

clinic and would help humans in making a correct decision. Compared to the 2D

images, the human-based diagnostic results show a significant increase of 8.5% by

using the 3D images. Several auxiliary experiments suggest that this improvement is

purely because of the advantage of extra shape information observed from the 3D data

rather than any side effects.

A further comparison between using colour features only and using both colour

and depth features shows that the 3D data also improves the computer based classifi-

cation performance over the five non-melanoma skin lesion classes. This conclusion

holds over the six classifier models that are implemented and the two databases that

are researched on. Through comparison, we find the Support Vector Machine (SVM)

outperforms the other classifiers in the lesion classification task. An experiment using

SVM on DATABASE II shows that adding 3D-based features gives an improved clas-

sification rate of 80.67% compared to simply colour features (75.25%). This result is

extremely significant under the 0.05 confidence level.

For the purpose of finding better feature subsets, we propose a new feature selection

method, SPFS, which incorporates forward and backward greedy selection in a novel
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strategy. The comparison shows that SPFS could select a better sub-optimal feature

subset that SFFS.

Limitations and Future Work
In our work, we did not concentrate our effort on extracting sophisticated features

and enlarging the feature pool, because improving the diagnosis using better features

is not the goal of this research. The features used in the thesis are mostly from the

preliminary study in our group carried out by McDonagh et al. [56]. Though, in the

future, improvement on the diagnostic system would involve developing better fea-

tures, e.g., ones that model specific characters of different lesions, like the blood ves-

sel of BCC, the cauliflower surface texture for SK, etc. These pattern-based features

have attracted more attention recently. For example, the dermoscopic features - gran-

ular, white and hypo-pigmented areas are extracted for the detection of early stage

melanoma [28]. In addition, a variety of morphological, clinical and molecular vari-

ables, such as the age of the patient, lesion location, etc., should also be taken into

account.

Because of the shortage of samples in certain classes (e.g., AK and SCC), our

databases are not balanced. The diagnosis result may have been biased to the large

lesion groups. For building a classifier, collecting enough images is an important is-

sue to ensure system accuracy and generality [20]. Otherwise, for the classes with

insufficient samples, as the classifier model cannot be properly trained, their specific

classification rates are not ideal. Adding more samples to these classes seems to be

very necessary. Besides, to solve the unbalanced database problem, another solution is

to further divide the lesion class with large samples into sub-groups, given the finding

that there exist sub-classes for certain lesions (e.g., BCC and melanoma) which are

‘almost’ discriminant based on the image features or histological features. This is a

brand new topic and has been rarely investigated, except for a recent work conducted

by Armengol [119] who introduced a method called LazyCL for generating a domain

theory to classify melanomas. We believe incorporating this sub-classification scheme

would benefit the diagnostic system with better classifier models that represent classes

with significantly different appearances.

In summary, this thesis raises a scientific question of whether there is potential ben-

efit of the 3D information to the computer aided skin lesion diagnosis given the fact that

viewing the lesion superficial shape is also a part of lesion diagnosis in clinic. The ex-

tensive experiments based on a complete computer-based diagnostic system have given

a positive answer to the question. We have proven that the 3D depth data of lesions
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embeds useful messages about the lesion location (Section 4) and identity (Section 5).

We suggest that by adding 3D to the colour information which is commonly used in

the skin lesion diagnostic community, there is a chance of improving the diagnostic

rate of computer-based diagnostic systems. This work provides evidence for the fu-

ture lesion diagnostic systems to take advantage of lesion surface shape information.

But it must be noted that, at the current stage, the benefit from the 3D data is small

(e.g., the improvement is 1.2% for segmentation and 5% for classification) and the use

of depth data is not always possible due to stereo failures. Furthermore, the 3D data

capturing system is expensive. However, with the fast development of 3D data captur-

ing system and the improvement of 3D data analysis algorithms, there is hope to fulfill

the ultimate goal in the skin lesion analysis field of providing objective, consistent,

quantitative, cheap and accurate automatic diagnostic results.
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Hue Modification Using a Shifted Scale

As it can be seen in Fig. A.1(a), the hue colour representation is arranged around the

colour wheel, which starts from red at 0◦ and wraps back to red at 360◦. The histogram

analysis shows that the hue of lesion images is narrowly distributed at the red colour

region, as shown in Fig. A.2(d) and (e). The majority of the hue values centralize

around the narrow interval between 0◦ and 60◦. For some particular lesions, there are

also some values located near 360◦, which also belong to the red colour category. In

such cases, the hue feature cannot be directly used for representing the pure colour

property of lesions because of the break of the red colour region (see Fig. A.2(b)). To

solve the problem, we modify the hue value by a simple shifting operation. The goal

is to shift the colour circle break point to another colour. We choose to use blue, which

is placed at H = 240◦, as it is not a valid colour for lesions. Therefore, the colour

transformation has the form as:

Ĥ ≡

{
H−240◦,H ≥ 240◦

H +121◦,H < 240◦
. (A.1)

As shown in Fig. A.1(b), after the modification, the hue still has the range from 0◦

to 360◦, but the break of the colour wheel takes place at blue colour. Red is placed at

0 60 120 180 240 300 360

(a) Hue

0 60 120 180 240 300 360

(b) Modified Hue

Figure A.1: Hue colour wheel.
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(a) Colour Image (b) Hue channel (H) (c) Modified hue channel (Ĥ)
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(f) Hue channel histogram distribution after the

modification

(g) Hue channel histogram distribution after the

projection

Figure A.2: Histogram distribution of the hue channel of lesion case D489.
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H = 120◦. Now, pixels with red colour are guaranteed to be assigned to continuous

values around 120◦, as shown in Fig. A.2(f). We further project the hue value to the

interval [0,1] using the following transformation:

Ĥ =
Ĥ−min Ĥ

max Ĥ−min Ĥ
. (A.2)

The histogram distribution of the projected Ĥ is given in Fig. A.2(g). From Fig. A.2(c),

one can see that the modified hue channel can properly present the pure colour property

of lesion case D489.

This hue channel transformation has been performed on all the lesion data. A

visual inspection of the transformed hue images shows that this method solves the

colour wheel breaking problem.
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Stereo System Accuracy Test

Evaluating stereo system accuracy is difficult, because of the lack of a proper testing

target which should have a known micro-wise scale and rich texture. To get a general

idea of the capturing ability of our system, we conduct a preliminary experiment. Our

testing targets are two crossing surgical sutures that are tightly attached onto a flat sur-

face (as shown in the left column of Fig. B.1). The goal is therefore to find the distance

between two sutures when they can no longer be separated on the depth image. The

experimental steps are given as following:

First, draw a line across the two sutures, which is shown as the blue vertical bar in

Fig. B.1. Its 3D profile is shown on the right column in Fig. B.1. The line then moves

in the horizontal direction towards the right gradually and automatically.

Second, find the intersecting points between the sutures and the blue vertical bar. The

point detection is based on the colour image using a thresholding technique. The mid-

dle column in Fig. B.1 shows this result. The background points are assigned to 0 and

the intersecting points to 1.

Third, project those detected 2D points onto the 3D space. The associated 3D points

are denoted as pti1, pt j2, where i ∈ 1, . . . , I and j ∈ 1, . . . ,J indicate the index of points

on suture 1 and 2, respectively. They are highlighted in red on the depth profiles, where

two peaks could be spotted. They correspond to the sutures and the detected points lo-

cated around them. When two peaks exist and are distinguishable, it means that the

stereo system is able to detect and separate them. The distance between two points is

calculated as ∑i, j ||pti1−pt j2||
I×J .

As the blue line approaches the intersection points of the two sutures gradually, the

peaks tend to merge, as shown in the bottom row of Fig. B.1. It indicates that the two

sutures could no longer be separated when the distance between textures is less than
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Figure B.1: Stereo system test diagram: the blue vertical bar approaches the inter-

secting point of two sutures in the horizontal direction by a small step setup by the

algorithm.

629µm. Hence, we estimate the texture separating capability of the system should be

about 705µm, under which the sutures could still be separated. On the other hand,

in order to evaluate the system accuracy in capturing fine textures, we also measure

the diameter of the suture. This parameter is estimated as the average height of the

top points of sutures based on the 3D profile. The height of the peaks is calculated

as the difference between the peak point and a line representing the flat background

surface, which is fitted using the points along the 3D profile excluding the points in the

local neighborhood of the peaks. Based on five measurements, the suture diameter is

estimated as 134.6µm(±13.9). For the purpose of system evaluation, the physical mea-

surement of the suture is taken as the ground truth. The measurement was conducted

by Craig Walker in Dermatology Department, Edinburgh University and is based on an

average of ten measurements. The result is 187.9µm. The difference between the 3D

and physical measurements is 53.3µm. This large discrepancy might be partly caused

by the inaccurate estimation of the suture height in 3D data, because it is very difficult
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to find a flat surface which is also capturable using the 3D system. In our experiment,

the flat surface is obtained by binding a paper with rich texture onto a flat glass sur-

face. Previously we measured the depth RMS for our system as 25µm and the inter

pixel separation as 30µm. This means that the texture scale must be on the order of

629/30µm' 30 pixels. The result shows that the 3D system has not matured to a point

to accurately capture very fine details of objects. However, one must see that the 3D

system is able to detect and separate fine textures with 0.7mm scale. Hence, there is

no doubt that they could be used to capture lesion surface variation.
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Pseudocode of Segmentation Methods

Flat segmentation in pseudocode

1 Initialize lesion boundary

2 WHILE iteration number is less than N (or algorithm does not

converge)

3 Estimate the pdfs inside and outside lesion boundary (p1/p2)

4 FOR each pixel along the boundary (x)

5 Calculate Eq. 4.33

6 Adjust the level set function (φ(x))

7 ENDFOR

8 Test for convergence

9 ENDWHILE
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Segmentation in hierarchical structure pseudocode

1 Initialize lesion boundary

2 Calculate DV using C

3 Compare DV with a pre-set threshold

4 IF the lesion belongs to pigmented lesion category

5 Perform Flat segmentation using C

6 ELSE

7 Calculate DV using D

8 Compare DV with a pre-set threshold

9 IF the lesion belongs to non-flat lesion category

10 Perform Flat segmentation using CD

11 ELSE

12 Perform Flat segmentation using CDT

C denotes colour-based features

CD denotes colour and depth based features

CDT denotes colour, depth and texture based features

DV denotes the regional dissimilarity value between lesion and skin.
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Image Database

Collecting sufficient lesion images is an important issue for building a classifier and to

ensure system accuracy and generality [20]. This is not a trivial task, because a good

database needs large amount of high quality samples with diagnosis information and

have been pre-processed into a usable format. All these lead to heavy workload.

Our skin lesion data pool has been continuously expanded over the past four years

because of the ongoing collection in the Dermatology Department of Edinburgh Uni-

versity. The number of samples reached 2001 in April, 2010. The imaging equipment

is the Dimensional Imaging [19] dense stereo image capture system which allows si-

multaneous acquisition of 3D shape and colour data of skin. The system is built around

a pair of Canon EOS 350D SLR cameras. Each camera acquires a 3456x2304 im-

age. Given camera placement, lenses and patient placement, each pixel corresponds to

about 0.03 mm skin sample separation. Measurements have determined an RMS depth

error also of about 0.03 mm. More information on the system capabilities can be found

in Appendix B.

Regarding factors like the sample amount and 3D reconstruction quality, only lim-

ited number of samples are kept. The selection is based on a visual inspection of the

cosine-projection (cosine shading) of depth image and colour image (see Fig. D.1).

Samples are excluded if: diagnosis is ambiguous, depth recovery failed or colour im-

age is unsatisfactory. As a result, two lesion databases (Database I and Database II)

have been installed and applied in succession in our work. Database I and Database II

have 369 and 812 samples, respectively. All the samples come from five lesion classes,

which are AK (Actinic keratosis), BCC (Basal cell carcinoma), SCC (Squamous cell

carcinoma), ML (Melanocytic nevus) and SK (Seborrheic keratosis). Their distribu-

tions are shown in Table. D.1, respectively. The deadly form of skin cancer - melanoma
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is not included because of the shortage of samples. AK and SCC classes are compar-

atively underrepresented in both databases because of the limited patient availability.

Another reason for the shortage of AK samples is the poor 3D reconstruction. AK

often occurs on the top of the head of aged people, where lots of the hair noises result

in catastrophic problems for the 3D building.

Lesion

AK BCC ML SCC SK Total Number

DATABASE I
Number 14 140 83 17 115

369
Percentage 3.79% 37.94% 22.49% 4.61% 31.17%

DATABASE II
Number 48 256 209 88 201

812
Percentage 5.99% 31.92% 26.06% 10.97% 25.06%

Table D.1: Lesion distributions in DATABASE I and DATABASE II

In addition, for the convenience of further analysis, some pre-processing steps

are necessary: 1) cropping which removes the background region (e.g., the capturing

frame) and enables the following operations to focus on the lesion area (see Fig. D.2).

2) rotation of the 3D data that makes sure the lesion’s surface is fronto-parallel (see

Fig. 4.3) and 3) isolating the lesion from the normal skin region prior to the classifica-

tion step using the segmentation algorithm developed in Chapter 4.

To obtain the diagnosis information, dermatologists usually need histopathological

tests or long term clinical follow-up [20]. In our project, the diagnosis of the lesions

is established based on opinion from multiple dermatologists’ clinical observation and

histopathology and it is considered as the Ground Truth in our supervised classifica-

tion.
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(a) Good 3D reconstruction (b) Bad 3D reconstruction

Figure D.1: Good and bad lesion data examples observed on the cosine-projection of

depth image(right) and colour image(left)

(a) Full data (b) Cropped data

Figure D.2: An example of the cropped lesion data
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Publications

The research presented in this thesis has also formed the basis for several peer-reviewed

papers, listed as follows:

1. Li X and Aldridge B and Ballerin L and Fisher RB and Rees J. Estimating the

ground truth from multiple individual segmentations incorporating prior pattern

analysis with application to skin lesion segmentation. International Symposium

on Biomedical Imaging (ISBI), pages 1438-1441, 2011.

2. Li X and Aldridge B and Ballerin L and Fisher RB and Rees J. Estimating the

ground truth from multiple individual segmentations with application to skin le-

sion segmentation. Medical Image Understanding and Analysis (MIUA), 1(1):101-

106, 2010.

3. Li X and Aldridge B and Ballerin L and Fisher RB and Rees J. Depth data im-

proves skin lesion segmentation. In Medical Image Computing and Computer-

Assisted Intervention MICCAI 2009 12th International Conference, volume 12,

pages 1100-1107, 2009

4. Aldridge B, Li X, Ballerin L, R. Fisher RB, Jonathan L. Rees, Teaching Derma-

tology Using 3-Dimensional Virtual Reality, Correspondence, Archives of Der-

matology, 146(10), Oct 2010.

5. Ballerini L, Li X, Fisher RB, Aldridge B, Rees J, Content-Based Image Retrieval

of Skin Lesions by Evolutionary Feature Synthesis, Proceeding of the 12th Eu-

ropean Workshop on Evolutionary Computation in Image Analysis and Signal

Processing, Istanbul, pages 312-319, April 2010.
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6. Ballerini L, Li X, Fisher RB, Aldridge B, Rees J, A Query-by-Example Content-

Based Image Retrieval System of Non-Melanoma Skin Lesions, Proceeding of

MICCAI-09 Workshop MCBR-CDS 2009: Medical Content-based Retrieval for

Clinical Decision Support, London, Caputo B et al.. (Eds.): MCBR CBS 2009,

LNCS 5853, pages 31-38. Springer-Verlag, Heidelberg, 2010.
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