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Abstract
The power and flexibility of deep learning havemade it an indispensable tool for tackling
modernmachine learning problems. However, this flexibility comes at the cost of robust-
ness and interpretability, which can lead to undesirable or even harmful outcomes. Deep
learningmodels often fail to generalise to real-world conditions and produce unforeseen
errors that hinder wide adoption in safety-critical critical domains such as healthcare.
This thesis presents multiple works that address the reliability problems of deep learn-
ing in safety-critical domains by being aware of its vulnerabilities and incorporatingmore
domain knowledge when designing and evaluating our algorithms. We start by show-
ing how close collaboration with domain experts is necessary to achieve good results
in a real-world clinical task - the multiclass semantic segmentation of traumatic brain
injuries (TBI) lesions in head CT. We continue by proposing an algorithm that models
spatially coherent aleatoric uncertainty in segmentation tasks by considering the de-
pendencies between pixels. The lack of proper uncertainty quantification is a robust-
ness issue which is ubiquitous in deep learning. Tackling this issue is of the utmost
importance if we want to deploy these systems in the real world. Lastly, we present a
general framework for evaluating image counterfactual inferencemodels in the absence
of ground-truth counterfactuals. Counterfactuals are extremely useful to reason about
models and data and to probe models for explanations or mistakes. As a result, their
evaluation is critical for improving the interpretability of deep learning models.

7





Contents

1 Introduction 15
1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
1.2 Research aims and thesis outline . . . . . . . . . . . . . . . . . . . . . . . . . 17
1.3 List of publications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

2 Background 21
2.1 Probabilistic Modelling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

2.1.1 Unconditional Models . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
2.1.2 Conditional Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

2.2 Deep Learning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
2.3 Deep Latent Variable Generative Models . . . . . . . . . . . . . . . . . . . . . 29
2.4 Structural Causal Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

3 Multiclass semantic segmentation and quantification of traumatic brain injury lesions
on head CT using deep learning 33
3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
3.2 Materials and Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

3.2.1 Study design and participants . . . . . . . . . . . . . . . . . . . . . . 35
3.2.2 Procedures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
3.2.3 Image pre-processing, model and training . . . . . . . . . . . . . . . . 36
3.2.4 Statistical analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

3.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
3.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

4 Stochastic SegmentationNetworks: modelling spatially correlated aleatoric uncertainty 48
4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
4.2 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
4.3 Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

4.3.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
4.3.2 Stochastic segmentation networks . . . . . . . . . . . . . . . . . . . . 52

4.4 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
4.4.1 Toy problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
4.4.2 Lung nodule segmentation in 2D . . . . . . . . . . . . . . . . . . . . . 54
4.4.3 Brain tumour segmentation in 3D . . . . . . . . . . . . . . . . . . . . . 57
4.4.4 Rank ablation study . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
4.4.5 Application to generative models . . . . . . . . . . . . . . . . . . . . . 61

4.5 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

5 Measuring axiomatic soundness of counterfactual image models 65
5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
5.2 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

9



Contents Contents

5.3 Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
5.3.1 Counterfactual Functions . . . . . . . . . . . . . . . . . . . . . . . . . 68

5.3.1.1 Function properties from axiomatic definition of counterfactuals 69
5.3.1.2 Partial counterfactual functions . . . . . . . . . . . . . . . . 69
5.3.1.3 Partial counterfactual function decomposition . . . . . . . . 70
5.3.1.4 Learning partial counterfactual functions from data . . . . . . 70

5.3.2 Measuring soundness of counterfactuals . . . . . . . . . . . . . . . . . 71
5.3.3 Simulated Interventions . . . . . . . . . . . . . . . . . . . . . . . . . . 72
5.3.4 Deep generative models as approximate counterfactual functions . . . . 73

5.4 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
5.4.1 Colour MNIST . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
5.4.2 3D Shapes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78
5.4.3 CelebA-HQ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

5.5 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

6 Conclusion 89
6.1 Summary of contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89
6.2 Limitations and Future Research . . . . . . . . . . . . . . . . . . . . . . . . . 90

6.2.1 Granularity and accuracy of automatic traumatic brain injury segmentation 90
6.2.2 Local and global spatially correlated uncertainty . . . . . . . . . . . . . 91
6.2.3 Effectiveness metric depends on data and lack of full support for the ob-

servational distribution . . . . . . . . . . . . . . . . . . . . . . . . . . 92

Bibliography 93

A Supplementary material for segmentation of traumatic brain injury 104
A.1 Absolute volume error . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104
A.2 Lesion localisation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

B Supplementary material for Stochastic Segmentation Networks 111

C Supplementary material for axiomatic quality of counterfactuals 116
C.1 Reversibility proof . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116
C.2 Distance metrics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116

Miguel Monteiro Probabilistic and causal deep learning in medical imaging 10



List of Figures
2.1 Example of a Markovian SCM. . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

3.1 Qualitative multiclass segmentation results. . . . . . . . . . . . . . . . . . . . 40
3.2 Per-class boxplots of DSC stratified by volume threshold. . . . . . . . . . . . . . 41
3.3 Bland-Altman plots for lesion volume estimation. . . . . . . . . . . . . . . . . . 43
3.4 Bland-Altman plots for lesion progression. . . . . . . . . . . . . . . . . . . . . 44
3.5 Receiver operating characteristic curves for lesion detection and classification. . 45

4.1 Probabilistic graphical model for a two-pixel segmentation problem. . . . . . . . 52
4.2 Toy problem. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
4.3 Qualitative results on the LIDC-IDRI dataset. . . . . . . . . . . . . . . . . . . . 55
4.4 Qualitative results on the BraTS 2017 dataset. . . . . . . . . . . . . . . . . . . . 58
4.5 Distribution of sample average class DSC per case. . . . . . . . . . . . . . . . 59
4.6 Sample manipulation after inference. . . . . . . . . . . . . . . . . . . . . . . . 59
4.7 Impact of rank on different performance metrics for the BraTS dataset. . . . . . 60
4.8 Visual impact of rank on samples for one case. . . . . . . . . . . . . . . . . . . 61
4.9 Samples from a standard VAE and from a VAE with a spatially coherent observa-

tional distribution. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

5.1 Process of making a parent independent of the remainder using twin network
SCMs and interventions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

5.2 Colour MNIST joint distribution of digit and hue for different SCMs. . . . . . . . . 75
5.3 Colour MNIST samples. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
5.4 Soundness tests on colour MNIST for a disentangled model and a entangled model. 77
5.5 Effectiveness/Composition tests on 3D shapes for VAE and GAN. . . . . . . . . 80
5.6 Measuring CelebA-HQ test set effectiveness, composition and reversibility as a

function of the number of latent variables abducted. . . . . . . . . . . . . . . . 83
5.7 Effectiveness/Composition plots for CelebA-HQ . . . . . . . . . . . . . . . . . . 85
5.8 Evolution of ‘smiling’ CelebA-HQ counterfactuals with number of latents abducted. 86
5.9 Evolution of ‘eyeglasses’ CelebA-HQ counterfactuals with number of latents ab-

ducted. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

A.1 Data flow diagram for model development and validation. . . . . . . . . . . . . 105
A.2 Per-class Bland-Altman plots for intra-rater reproducibility. . . . . . . . . . . . . 107
A.3 Per-class Bland-Altman plot inter-rater variability. . . . . . . . . . . . . . . . . . 107
A.4 Per-class boxplots of the absolute error for different volume groups. . . . . . . . 108
A.5 Per-class boxplots of the absolute error between the true lesion volume change

and the predicted lesion volume change for different volume groups. . . . . . . . 108
A.6 Lesion localisation example. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110

B.1 Results of sampling from the proposed stochastic model (1/4). . . . . . . . . . . 112
B.2 Results of sampling from the proposed stochastic model (2/4). . . . . . . . . . 113
B.3 Results of sampling from the proposed stochastic model (3/4). . . . . . . . . . 114

11



List of Figures List of Figures

B.4 Results of sampling from the proposed stochastic model (4/4). . . . . . . . . . 115

Miguel Monteiro Probabilistic and causal deep learning in medical imaging 12



List of Tables
3.1 Cohort details for both datasets. . . . . . . . . . . . . . . . . . . . . . . . . . 39
3.2 Evaluation Metrics stratified by volume threshold. . . . . . . . . . . . . . . . . . 42
3.3 Multiclass detection and classification results for three volume thresholds and

detection results for the external validation dataset CQ500. . . . . . . . . . . . . 46

4.1 Quantitative results on the LIDC-IDRI dataset. . . . . . . . . . . . . . . . . . . . 56
4.2 Quantitative results on the BraTS 2017 dataset. . . . . . . . . . . . . . . . . . . 57

5.1 Soundness metrics on colour MNIST. . . . . . . . . . . . . . . . . . . . . . . . 76

A.1 Distribution of lesion presence and volume for the train and test set. . . . . . . . 106
A.2 Intra-class correlation coefficient (ICC) for intra-rater reproducibility and inter-rater

variability. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106
A.3 Evaluation metrics stratified by volume group. . . . . . . . . . . . . . . . . . . 109

C.1 Effectiveness results on colour MNIST when using pseudo oracles trained from
biased data without using a simulated intervention. . . . . . . . . . . . . . . . . 123

C.2 Effectiveness results on colour MNIST when using pseudo oracles trained from
biased data using a simulated intervention. . . . . . . . . . . . . . . . . . . . . 123

C.3 Effectiveness on colour MNIST when using linear/logistic regression as pseudo
oracles trained from unbiased data. . . . . . . . . . . . . . . . . . . . . . . . . 124

C.4 Results of quality tests on 3D shapes. . . . . . . . . . . . . . . . . . . . . . . . 124
C.5 Quality metrics on the CelebA-HQ. . . . . . . . . . . . . . . . . . . . . . . . . . 125

13



List of Source Code
C.1 VAE architecture for the colour MNIST dataset. . . . . . . . . . . . . . . . . . . 118
C.2 GAN architecture for the colour MNIST dataset. . . . . . . . . . . . . . . . . . . 119
C.3 Pseudo-oracle architecture for the colour MNIST and 3D shapes datasets. . . . . 120
C.4 VAE architecture for the 3D shapes dataset. . . . . . . . . . . . . . . . . . . . . 120
C.5 GAN architecture for the 3D shapes dataset. . . . . . . . . . . . . . . . . . . . 121
C.6 Pseudo-oracle architecture for the CelebA-HQ dataset. . . . . . . . . . . . . . . 122

14



Chapter 1

Introduction

1.1 Motivation
Machine learning provides a collection of algorithms that can learn to perform a task from train-5

ing data and make predictions on unseen test data without being explicitly programmed. Among
these algorithms, deep learning has seen an explosion in commercial and research applications
due to its incredible power and flexibility. Some notable applications include natural image clas-
sification of large and diverse datasets (Krizhevsky et al. 2017; Simonyan and Zisserman 2014),
playing board and video games at superhuman levels (V. Mnih et al. 2015; Silver et al. 2018), voice10

assistants based on speech recognition (Sainath et al. 2015; Saon et al. 2013), machine transla-
tion (Bahdanau et al. 2014; Y. Wu et al. 2016), object detection for vision of autonomous vehicles
(Redmon et al. 2016), predicting the structure of proteins for drug discovery (Jumper et al. 2021),
among others.

In the healthcare space, machine learning models have the potential to address important societal15

challenges, such as the deterioration of patient care due to ageing populations and medical work-
force shortages, lack of access to healthcare experts due to poor socio-economic conditions, the
diagnosis of under-studied rare diseases, drug discovery, or the development of surgical robots
and tools (Esteva, Robicquet, et al. 2019). By leveraging large medical datasets, we can combine
medical knowledge from countless medical professionals into an autonomous algorithm capable20

of leveraging its large knowledge base without requiring human intervention. This autonomy can be
used to pre-screen patients, give fast second opinions, and generally free up doctors’ time, thus ex-
panding access to healthcare overall. In medical imaging, deep learning algorithms have achieved
physician-level accuracy in various diagnostic tasks, such as diagnosing diabetic retinopathy from
iris fundus images (Gulshan et al. 2016) and skin lesions from photographs (Esteva, Kuprel, et al.25

2017). Furthermore, they can significantly alleviate a radiologist’s workload by automating time-
consuming and repetitive tasks such as semantic segmentation of 3D images (Bakas, Akbari, et
al. 2017; Bakas, Reyes, et al. 2018).

Despite its potential, if misused, deep learning can have unintended consequences, often aggra-
vating the problems it proposes to solve. First, a close multi-disciplinary collaboration between30

clinical and computer science experts is necessary to ensure that we tackle the correct problems
and do not waste valuable resources (Roberts et al. 2021; Wiens et al. 2019). Second, we must be

15



1.1. Motivation Introduction

aware of a critical vulnerability in deep learning that can exacerbate undesirable biases and create
fragile systems with multiple ethical problems (Wiens et al. 2019).

Deep learning often behaves like an evil genie, giving us exactly what we asked for instead of what
we wanted. At the core of the problem is the fact that deep learning is a greedy pattern-matching
algorithm which always tries to find the easiest solution to a problem, which seldomly matches the5

human or even logical solution. Deep learning methods often pick up on spurious correlations in
the training data as the basis for their decisions. When leveraging these spurious correlations is
the quickest solution to the problem, the algorithm will use them even though they do not match
the true causal nature of the system we are trying to model. This problem is known as shortcut
learning (Geirhos et al. 2020). For example, suppose we want to detect a specific pathology in10

medical scans, but our healthy and pathological cases come from different scanners. A deep
learning algorithm would likely learn to separate the cases using the scanner type as a proxy for
pathology since these properties provide an easier path towards the goal we have set. While this is
not what we wanted, it is, perhaps without realising, what we asked for. In the medical domain, this
problem can manifest itself in other extremely nefarious ways, such as amplifying racial or gender15

biases (Adamson and Smith 2018; Buolamwini and Gebru 2018; Obermeyer et al. 2019), lack of
generalisation between different hospitals due to dataset shift (Quinonero-Candela et al. 2008),
and over-reliance on opaque and flawed algorithms for critical decisions on patient care (Roberts
et al. 2021).

In addition to the problem of shortcut learning, deep learning also suffers from a lack of inter-20

pretability and over-confident predictions. These issues often lead to obvious yet hard-to-diagnose
and correct errors, which are unacceptable in high-risk applications such as medicine. We argue
that the solution to the problem is incorporating as much domain knowledge as possible into our
deep learning models instead of expecting them to learn from data. This knowledge, also known
as inductive biases or priors, can improve robustness and interpretability and mitigate the effect of25

nefarious biases. Essentially, we want our model to match the data-generation process as closely
as possible. We do not expect the data to contain all the information necessary, and we are happy
to build part of the solution into the algorithm if we are confident that such a prior is correct.

One crucial component of any good probabilistic model is proper uncertainty quantification. A
model must give us not only an accurate prediction but also an accurate estimate of its uncer-30

tainty about the prediction. This ability allows us to know when the model is unsure of itself and
use that information accordingly when using the model’s prediction to make decisions. Therefore,
reliable uncertainty estimates are necessary for any serious deep learning application. In reality,
good uncertainty quantification is achieved by simply choosing a probabilistic model whose as-
sumptions closely match the data-generation process. However, convenience is often put above35

rigour, resulting in poor and sometimes incorrect uncertainty estimates.

Another beneficial way of incorporating domain knowledge into our models is incorporating our
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1.2. Research aims and thesis outline Introduction

causal knowledge about the system into our algorithms (Pearl 2009). By telling a model which
variables are causes and which are effects from the start instead of expecting it to be learnt from
data, we bias our model towards a more accurate understanding of the world. These strong priors
mitigate the effect of spurious correlations and nefarious biases, which can often be present in
observational data. In summary, we are telling our models that there is more to a system than5

the empirical correlations observed in the training data. There is an underlying causal mechanism
we want to model, and our observations are potentially contaminated by unwanted confounding
and spurious correlations. Additionally, causal models allow us to ask counterfactual queries, aka
‘what-if’ questions. These questions allow us to gain a deeper understanding of our model’s inner
workings or even of the world that it is modelling.10

1.2 Research aims and thesis outline
Motivated by the above, this thesis presents multiple works that address the reliability problems
we face when deploying deep learning systems in safety-critical domains by being aware of their
vulnerabilities and incorporating more domain knowledge into the design and evaluation of our
algorithms. Specifically, we touch on the following topics:15

• Collaboration with domain-experts. We show how close collaboration with domain experts
is necessary to successfully deploy deep learning tools in a challenging medical application;

• Uncertainty quantification. We demonstrate how more accurate assumptions about the data-
generation process can lead to better uncertainty quantification and hence better models;

• Evaluation of counterfactual models. We develop a framework to measure how closely our20

algorithms are modelling the true causal nature of the data-generation process as opposed to
simply taking advantage of spurious correlations.

In Chapter 2, we briefly introduce the topics necessary to understand the following chapters and
frame the research into a larger context. We start by reviewing classic unconditional and condi-
tional probabilistic models. We continue by touching upon the basic building blocks of deep learn-25

ing algorithms. After, we revisit the use of deep learning for latent variable generative models. We
finish by reviewing structural causal models.

In Chapter 3, we develop an algorithm for the multiclass semantic segmentation of traumatic brain
injuries (TBI) lesions in head CT. We demonstrate how close collaboration with medical experts and
meticulous development is necessary to successfully deploy deep learning tools in clinical appli-30

cations. TBI is one of the leading causes of mortality worldwide, and CT is the imaging modality of
choice for quick assessment of lesion presence and load. However, its conventional use requires
expert clinical interpretation and does not provide detailed quantitative outputs. Our algorithm has
the ability to separately segment, quantify, and detect multiclass haemorrhagic lesions and perile-
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sional oedema. These volumetric lesion estimates allow clinically relevant quantification of lesion
burden and progression, with potential applications for personalised treatment strategies.

• Monteiro, M., Newcombe, V. F., Mathieu, F., Adatia, K., Kamnitsas, K., Ferrante, E., Das, T.,
Whitehouse, D., Rueckert, D., Menon, D. K., et al. (2020). “Multiclass semantic segmentation
and quantification of traumatic brain injury lesions on head CT using deep learning: an algo-5

rithm development and multicentre validation study”. In: The Lancet Digital Health 2.6, e314–
e322

In Chapter 4, we propose stochastic segmentation networks (SSNs) – an algorithm that models
spatially coherent aleatoric uncertainty in segmentation tasks by taking into account the dependen-
cies between pixels. Proper uncertainty quantification is essential for improving the interpretability10

and robustness of deep learning algorithms. In medical imaging, for example, experts will often
disagree about the presence of an object or the exact location of its boundaries. An accurate model
of the data-generation process would therefore be able to represent this inherent uncertainty and
predict multiple plausible hypotheses for the same input. In sensitive applications, having good un-
certainty estimates is not only a sign of a good model of the data but also a strict requirement for15

informing critical decision-making. In contrast to approaches that produce pixel-wise estimates,
SSNs model joint distributions over entire label maps and thus can generate multiple spatially co-
herent hypotheses for a single image – more accurately modelling the data-generation process.
We eliminate the necessity for the independence assumption between pixels by using a low-rank
multivariate normal distribution over the logit space to model the probability of the label map given20

the image. We obtain a spatially consistent probability distribution that can be efficiently computed
by a neural network without any changes to the underlying architecture. We tested our method on
the segmentation of real-world medical data, including lung nodules in 2D CT and brain tumours in
3D multimodal MRI scans. SSNs outperform state-of-the-art for modelling correlated uncertainty
in ambiguous images while being much simpler, more flexible, and more efficient.25

• Monteiro, M., Le Folgoc, L., Coelho de Castro, D., Pawlowski, N., Marques, B., Kamnitsas, K.,
Wilk, M. van der, and Glocker, B. (2020). “Stochastic segmentation networks: Modelling spa-
tially correlated aleatoric uncertainty”. In: Advances in Neural Information Processing Systems
33, pp. 12756–12767

In Chapter 5, we present a general framework for evaluating image counterfactuals. Counterfac-30

tuals are ‘what-if’ questions that allow us to better understand the world by observing fictitious
branches of reality. In the context of deep learning, we can use counterfactuals to probe a model
for interpretable explanations or as data-augmentation in downstream tasks to correct for nefar-
ious biases. The power and flexibility of deep generative models make them valuable tools for
learning mechanisms in structural causal models. However, their flexibility makes counterfactual35

identifiability impossible in the general case. Motivated by these issues, we revisit Pearl’s axiomatic
definition of counterfactuals to determine the necessary constraints of any counterfactual infer-
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ence model: composition, reversibility, and effectiveness (Galles and Pearl 1998; Pearl 2009). We
frame counterfactuals as functions of an input variable, its parents, and counterfactual parents and
use the axiomatic constraints to restrict the set of functions that could represent the counterfac-
tual, thus deriving distance metrics between the approximate and ideal functions. We demonstrate
how these metrics can be used to compare and choose between different approximate models and5

to provide insight into a model’s shortcomings and trade-offs.

Lastly, Chapter 6 summarises the contributions of the thesis, points out their limitations and sug-
gests avenues for future work.
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Chapter 2

Background

2.1 Probabilistic Modelling
Probability theory stands at the core of all machine learning algorithms. This framework allows us5

to model the probability of random events, given our assumptions about the world and observa-
tional data. We start by looking at unconditional models using parametric distributions from the
exponential family. We will use these as building blocks for more complex algorithms such as con-
ditional linear models and deep neural networks. In this section, we give a brief overview of the
topic. For an in-depth treatment see Bishop, C. M. and Nasrabadi, N. M. (2006). Pattern recognition10

and machine learning. Vol. 4. 4. Springer.

2.1.1 Unconditional Models
Coin flip. Suppose we have a coin and wish to determine whether it is a fair coin – meaning the
probability of getting the two faces is the same. To build a probabilistic model of this event, we
introduce a random variable X representing the outcome of the coin flip, taking the value 0 for tails15

or 1 for heads. Next, we must decide what class of probability distributions best describes the data-
generating process. The Bernoulli distribution is well-suited since the models of the outcome of a
discrete variable with only two possible outcomes. The probability mass function of the Bernoulli
distribution is given by:

P(X = x) = px(1− p)(1−x), (2.1)

where the parameter p represents the probability of the outcome being heads (X = 1).20

Having decided on a model, we proceed by collecting a set of N observations x1, . . . , xN corre-
sponding to the outcomes of independent coin flips. Our aim is to estimate the parameter p given
the observations. To do this, we can use maximum likelihood estimation (MLE), which aims to find
the value of the parameter that maximises the likelihood of all observations:

argmax
p

N∏
n=1

P(X = xn). (2.2)

Using the log-likelihood for convenience of calculation, we obtain the following optimisation objec-25

21



2.1. Probabilistic Modelling Background

tive:

argmax
p

log
N∏

n=1

P(X = xn) = argmax
p

N∑
n=1

logP(X = xn), (2.3)

which we can solve by taking the derivative with respect to the parameter p and finding the value
of p for which the derivative is zero – the point of maximum log-likelihood:

∂

∂p

N∑
n=1

logP(X = xn) =
d

dπ

N∑
n=1

(xn log(p) + (1− xn) log(1− p))

=

∑N
n=1 xn

p
−
∑N

n=1 1− xn

1− p

p =
1

N

N∑
n=1

xn.

(2.4)

Now that we have estimated the probability of obtaining heads, we can determine whether the coin
is fair (p = 0.5). Note that p matches the expected value of the observed values Ex∼X [x]. Thus,5

calculating p is equivalent to counting the number of heads and dividing by the total number of
flips.

Loaded dice. Suppose we have an M face dice and wish to determine whether it is loaded –
the probability of all faces is not the same. We introduce a random variable X representing the
number on the face of the dice taking discrete integer values from 1 to M . We use a categorical10

distribution since it models the probability distribution of a discrete variable with multiple possible
outcomes. The probability mass function of the categorical distribution is:

P(X = x) =
M∏
i

p
[x=i]
i , (2.5)

where pi are the parameters of the distribution corresponding to the probability of obtaining a
specific outcome.

Given a set of N observations x1, . . . , xN , using maximum log-likelihood estimation, we obtain15

the following optimisation objective:

arg max
p1,...,pM

N∑
n=1

logP(X = xn). (2.6)

Taking the partial derivative with respect to a specific parameter pj and noting that the categorical
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probabilities must sum to 1, we obtain.

∂

∂pj

N∑
n=1

logP(x = xn) =
N∑

n=1

log
(
p
[xn=j]
j (1− pj)

[xn ̸=j]
)

=

∑N
n=1[xn = j]

pj
−
∑N

n=1 xn ̸= j

1− pj

pj =
1

N

N∑
n=1

[xn = j].

(2.7)

We can now calculate the probability of obtaining a given face and determine whether the dice is
fair (pi = 1/M,∀i ∈ [1, . . .M ]). This result is familiar from the coin flip example because the
categorical distribution is merely an extension of the Bernoulli distribution for the case where there
are more than two possible outcomes.5

Javelin throw. Suppose we want a model for the distance of javelin throw amongst Olympic
athletes. Unlike the coin flip scenario, now we have a continuous variable X which can take values
in R+. Thus, we opt to model the distribution using a normal distribution, where the probability
density function is given by:

P(X = x) =
1√

(2πσ2)
exp

(
−1

2

(x− µ)2

σ2

)
, (2.8)

where µ is the mean of the distribution, and σ2 is its variance.10

Give a set of observations x1, . . . , xN , using maximum likelihood estimation, we obtain the follow-
ing optimisation problem:

argmax
µ,σ2

N∑
n=1

logP(X = xn). (2.9)

Taking the partial derivative with respect to mean µ we obtain the first-order condition:

∂

∂µ

N∑
n=1

logP(X = xn) = − 1

σ2

N∑
n=1

(xn + µ), (2.10)

which is equal to zero when:

µ =
1

N

N∑
n=1

xn. (2.11)

Following the same procedure for the variance σ2, we obtain:15

∂

∂σ2

N∑
n=1

logP(X = xn) =
1

2σ2

(
1

σ2

N∑
n=1

(xn − µ)2 −N

)
, (2.12)
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which is, assuming σ2 > 0, is zero when:

σ2 =
1

N

∑
(xn − µ)2. (2.13)

Having estimated the parameters of the normal distribution, we can now use the cumulative proba-
bility distribution to estimate the probability that a throw comes from an Olympic athlete, a normal
person or a demi-god.

2.1.2 Conditional Models5

So far, we have dealt with examples where the variable of interest does not depend on any other
observed variables. We now consider the case where there is a target variable Y , which has a
linear dependency on a variable X . We also consider generalised linear models, where a (non-
parameterised) link function provides the relationship between the linear predictor and the param-
eters of the likelihood.10

Linear regression. Going back to the javelin throw example, suppose we measure a set of M
bio-mechanical features x = (1, x1, . . . , xM) for each athlete in addition to the distance of their
throw y. Notice that the subscript now indexes features and not data samples and that we have
introduced a constant bias feature in x. We want to obtain the conditional model P(Y = y |
X = x) of the distance of a throw given said features. One simple way to do this, is to assume a15

linear relationship between the features and the target variable, and a zero-mean additive Gaussian
noise model. The predictor ŷ(x; θ) is given by:

ŷ(x; θ) = xT θ + ϵ, ϵ ∼ N (0, σ2), (2.14)

where θ = (θ0, θ1, . . . , θM) are the parameters of the model and σ2 is the variance of the additive
noise. Using the Gaussian noise model we obtain a Gaussian likelihood for the observations:

P(Y = y |X = x) = N (ŷ(x; θ), σ2). (2.15)

This allows us to use maximum likelihood estimation to obtain the values of the parameters θ.20

Given a matrix of observations X where each row is a sample and each column corresponds to a
feature, and a column matrixY with the target values for each sample, optimising the log-likelihood
with respect to θ yields the following solution:

argmax
θ

P(Y = Y |X = X) = (XXT )−1XTY . (2.16)

We see how we can obtain a close-form solution of the parameters of the conditional model, al-
lowing us to make predictions about Y when given observations of X .25
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Logistic Regression and Binary Classification. Linear regression and the Gaussian likelihood
are not appropriate for discrete variables. For a discrete binary variable, we would like to clas-
sify a data-point into one of two classes, given its observed features. To do this, we use logistic
regression, the generalised linear model for discrete binary variables.

As we have seen in Section 2.1.1, the Bernoulli likelihood is well-suited for discrete binary variables.5

However, the unbound codomain of the affine transformation in a linear regression model is in-
compatible with the constraint that the probability parameter of the Bernoulli distribution must be
in the range of 0 to 1. To solve this problem, we use the sigmoid link function to bound the output
of the affine transformation, which gives us the following predictor:

ŷ(x; θ) = sigmoid(xT θ) =
1

1 + e−xT θ
(2.17)

We can now use the Bernoulli log-likelihood to obtain the conditional model:10

logP(Y = y |X = x) = log Bernoulli(ŷ(x; θ))

= y log(ŷ(x; θ)) + (1− y) log(1− ŷ(x; θ))
(2.18)

Since ŷ(x; θ) is bound between 0 and 1, we can interpret it as the conditional probability of a posi-
tive outcome given the input features. We can then threshold its value to separate the positive and
negative classes. Unlike in linear regression, there is no closed-form expression for the maximum
likelihood estimate of the parameters. Hence, we must resort to numerical optimisation methods
such as Newton’s method.15

Multinomial Logistic Regression Multi-Class Classification The extension of logistic regres-
sion to the multi-class problem is called multinomial logistic regression. The predictor ŷ(x; θ) is
now a vector of class-probabilities given by a softmax link function:

ŷ(x; θ) =

(
ex

T θ1∑C
i=1 e

xT θi
,

ex
T θ2∑C

i=1 e
xT θi

, . . . ,
ex

T θC∑C
i=1 e

xT θi

)
, (2.19)

where C is the number of classes and θ = (θ1, θ2, . . . , θC) resulting in one affine transformation
per class.20

Using the categorical log-likelihood for the observations, we obtain the following conditional model:

logP(Y = y |X = x) = log Cat(ŷ(x; θ))

=
C∑
i=1

yi log(ŷ(x; θ)i).
(2.20)
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2.2 Deep Learning
For complex non-linear relationships and high-dimensional data, linear models tend to underfit the
data and have poor predictive performance. The core idea of deep learning is to create a stack of
linear layers intertwined with non-linearities to obtain flexible models capable of efficiently fitting
non-linear functions to high-dimensional data. In this section, we give a brief overview of the main5

components of deep learning. For a more complete treatment of the topic, see Goodfellow, I.,
Bengio, Y., and Courville, A. (2016). Deep learning. MIT press.

Deep learning models, also called neural networks, can be seen as a composition of functions fk ,
each parameterised by its own set of parameters1 θk , mapping the input features to the target
variable:10

ŷ(x; θ) = f1( · ; θ1) ◦ f2( · ; θ2) ◦ . . . fK( · ; θK)(x). (2.21)

The nature and order of these functions make up the neural network’s architecture – a topic of
intense research where researchers try to find which architecture best suits their application.

The conditional negative log-likelihood of Y given X is referred to as the loss function:

− logP(Y = y |X = x) = L(y, ŷ(x; θ)) (2.22)

Minimising the loss function is equivalent to maximising the likelihood with respect to the neural
network’s parameters. Maximum likelihood estimation is not tractable in deep models, there are15

usually no closed-form expressions, and second-order numeric optimisation methods fall to the
curse of dimensionality. One of the major keys to the success of deep learning is the gradient
descent and back-propagation algorithms (LeCun, Boser, et al. 1989; Rumelhart et al. 1986).

Gradient descent. The gradient descent algorithm is an iterative process to find a maximum or
minimum of a function. At each time-step t, we calculate the gradient of the function with respect20

to its parameters and take a small step in the direction which maximises the likelihood:

θt+1 = θt − α
∂L(y, ŷ(x; θt))

∂θt
, (2.23)

where α is a hyper-parameter called learning rate. The algorithm is usually applied to batches of
data as opposed to the entire dataset resulting in what is known as stochastic gradient descent.
Note that gradient descent is not guaranteed to find the global minimum of the likelihood function,
as there are many local optima and the one we converge to depends on the initial values of the25

parameters.
1Without loss of generality, we admit the existence of functions with an empty set of parameters, such as the Relu

non-linearity.
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Back-propagation. To calculate the gradients needed for gradient descent, we use the back-
propagation algorithm, which allows us to recursively calculate gradients starting at the last layer of
the network. We begin by introducing the intermediate outputs of the network, which are computed
in the forward pass:

ok = f1( · ; θ1) ◦ . . . fk( · ; θk)(x), (2.24)

where each intermediate output can be obtained from the previous as such: ok = fk(ok−1, θk).5

Next, using the chain rule for derivatives for composite functions, we can obtain the gradient of the
loss function with respect to an arbitrary parameter θk as follows:

L(y, ŷ(x; θ))
∂θk

=
∂L(y, ŷ(x; θ))

∂ok

∂ok
θk

=
∂L(y, ŷ(x; θ))

∂ok

∂fk(ok−1, θk)

θk
.

(2.25)

This simple rule allows us to compute the gradient for a specific parameter given the local gradient
of the function pertaining to the parameter and the gradient of the loss function with respect to
the output of the same function. With this in mind, we can create an iterative algorithm to back-10

propagate the gradient through the network starting at the last layer and obtain the gradients for
all parameters. For the last layer of the network we have a k = K and thus ok = L(y, ŷ(x; θ)),
thus the first term in equation 2.25 is equal to 1 and hence:

∂L(y, ŷ(x; θ))
∂θK

=
∂fK(oK−1, θK)

∂θK
. (2.26)

For the second to last layer:

L(y, ŷ(x; θ))
∂θK−1

=
∂L(y, ŷ(x; θ))

∂oK

∂oK
∂oK−1

∂fK−1(oK−2, θK−1)

∂θK−1

, (2.27)

where we have already computed the first term, and thus we need only to compute the two last15

terms. For the third to last layer:

L(y, ŷ(x; θ))
∂θK−2

=
∂L(y, ŷ(x; θ))

∂oK

oK
∂oK−1

∂oK−1

∂oK−2

∂fK−2(oK−3, θK−2)

∂θK−2

, (2.28)

where again, we have already computed the two first terms and need only to compute the last two.
We can continue the process recursively until we obtain all of the parameter’s gradients.

Image Classification and Segmentation. One of the main applications of deep learning is the
multi-class classification of images. Images are high-dimensional dimensional and complex data20

points living on a grid, making simple machine-learning methods unsuitable models in this case.
In this setting, the input X is a 2D or 3D grid of pixels/voxels, and the target variable Y is a class
label. Following the same procedure as we did for multinomial logistic regression, we obtain the
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following predictor:

ŷ(x; θ) =

(
ef(x;θ)1∑C
i=1 e

f(x;θ)i
,

ef(x;θ)2∑C
i=1 e

f(x;θ)i
, . . . ,

ef(x;θ)C∑C
i=1 e

f(x;θ)i

)
, (2.29)

with the only difference being that instead of using a linear transformation on the input data, we
use a neural network f parameterised by θ, which outputs a vector of logits, which are then fed to
the softmax activation function. Using the categorical log-likelihood, we obtain the famous cross-
entropy loss function:5

L(y, ŷ(x; θ)) = −
C∑
i=1

yi log(ŷ(x; θ)i). (2.30)

Fully-connected linear layers have one parameter per pixel and ignore the spatial structure of the
data, incurring a high computational cost. In contrast, image convolutions share parameters be-
tween pixels and allow for much more efficient use of computational resources. For this reason,
convolutions were first introduced in neural networks in 1989 for hand-digit recognition (LeCun,
Bottou, et al. 1998) at a time when computational power was a significant limitation. More re-10

cently, advancements in graphics processing units (GPUs) which provide substantial increases
in computational power over central processing units (CPUs), allowed convolutional neural net-
works to thrive at natural image classification tasks with large and complex datasets (Krizhevsky
et al. 2017). Later developments cemented convolutional neural networks for image classifica-
tion by using deeper models (Simonyan and Zisserman 2014) and residual connections (He et al.15

2016a).

Image segmentation is a particular case of image classification where instead of predicting a class
for the whole image, we predict a class for each pixel/voxel. Using a shared neural network back-
bone, we can efficiently obtain a logit map with the same spatial dimensions as the input image.
Fully-convolutional neural networks are used to produce an output with the same spatial dimen-20

sions as the input image (Long et al. 2015). When the image size becomes prohibitively large, it is
common to use multi-resolution architectures which down-sample the image and perform most of
the computation at lower image resolutions (Kamnitsas, Ledig, et al. 2017; Ronneberger et al. 2015).
Like in classification, we compute the log-likelihood of one pixel using a softmax activation and a
categorical distribution. Assuming that the distribution of each pixel is independent of the distri-25

butions of other pixels when given the input image, we can compute the log-likelihood of the entire
label map by simply summing the individual contributions of each pixel. In Chapter 2, we show an
application of this process by performing multi-class segmentation of traumatic brain injury in 3-
dimensional head CT images. In Chapter 3, we show that the pixel-wise independence assumption
used to arrive at the log-likelihood for the whole image is somewhat strong and propose a better30

way of computing the likelihood by taking into account correlations between pixels.

Miguel Monteiro Probabilistic and causal deep learning in medical imaging 28



2.3. Deep Latent Variable Generative Models Background

2.3 Deep Latent Variable Generative Models
The unconditional models of Section 2.1.1 are generative models of the data since we can use them
to simulate the data-generating process and obtain new samples from the distribution. However,
these simple models quickly reach their limit when fitting to high-dimensional structured data such
as images. To generate new samples from complex distributions, we must rely on more powerful5

models, such as the neural networks presented in Section 2.2. The deep models presented in
Section 2.2 are known as discriminative models. These models aim to obtain a low-dimensional
target variable by conditioning it on a high-dimensional structured variable, such as an image. In
this section, we show how we can use neural networks and latent variable models to model complex
probability distributions and generate high-dimensional structured data.10

Latent variablemodels. Consider a simple probabilistic graphical modelZ → X , whereX is the
observed variable distributed according to an unknown distribution p(x), and Z is a latent variable
with a known prior distribution p(z) amenable to sampling and tractable likelihood calculations.
We wish to obtain the generative model p(x) from which we can sample new instances of X .
We assume a conditional likelihood pθ(x|z) parameterised by parameters θ from which we can15

obtain samples of X by passing samples of Z through the model. The log-likelihood of X is given
by:

log p(x) =

∫
z

pθ(x, z)dz =

∫
z

pθ(x |z)p(z)dz. (2.31)

We can use maximum likelihood estimation to obtain estimates for the parameters θ. However, for
any moderately complex model, such as a neural network, the likelihood is intractable. Noting that
the integral is simply the expectationEp(z) pθ(x |z), we could naively compute it using Monte-Carlo20

integration. However, this estimator is known to have extremely high variance and result in poor
parameter estimates (Kingma and Welling 2014).

Variational autoencoders (VAEs). In variational autoencoders (Kingma and Welling 2014; Rezende
et al. 2014), we take a better approach to solving the integral by using variational inference. We in-
troduce an auxiliary distribution q(z) and use Jensen’s inequality to obtain the following variational25

bound:
log p(x) = log

∫
z

pθ(x, z)dz

= log

∫
z

pθ(x, z)
q(z)

q(z)
dz

= logEq(z)
pθ(x, z)

q(z)

≥ Eq(z) log
pθ(x, z)

q(z)
= Eq(z)[log pθ(x|z)]−DKL[q(z)∥p(z)].

(2.32)
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We can see that maximising the variational lower bound, also called the evidence lower bound,
also maximises the log-likelihood. The key to successful variational inference is to choose the
auxiliary distribution q(z), which makes the estimation problem easier. In the VAE framework, we
use an amortised variational approximation qϕ(z |x)which is modelled by a neural network encoder
z = gϕ(x) with parameters ϕ. The likelihood pθ(x|z) is modelled by a neural network decoder5

x = fθ(z) with parameters θ. The resulting ELBO is given by the following:

ELBO = Eqϕ(z|x)[log pθ(x |z)]−DKL[qϕ(z |x)∥p(z)]. (2.33)

The first term of the equation is known as the reconstruction term, and the second term is the
Kullback–Leibler (KL) divergence between the latent prior and the approximate latent posterior.
The latent prior p(z) and approximate latent posterior qϕ(z |x) are usually chosen to be Gaus-
sian, enabling a closed-form expression for the KL divergence and its gradient. Optimising the10

reconstruction term using the naive Monte-Carlo estimate of the gradient is known to be of high
variance (Paisley et al. 2012). For this reason, we re-parameterise the random variable z ∼ qϕ(z |
x) using an auxiliary noise variable ϵ ∼ p(ϵ). For example, for a Gaussian latent posterior qϕ(z |
x) = N (µϕ(x), σ

2
ϕ(x)), we would use standard normal distribution as the auxiliary noise vari-

able p(ϵ) = N (0, 1), resulting in the following Monte-Carlo approximation of the reconstruction15

term:

Eqϕ(z|x) log pθ(x|z) =
1

M

M∑
m=1

f(µϕ(x) +
√
σ2
ϕ(x)ϵ

(m)), ϵ(m) ∼ N (0, 1). (2.34)

Generative Adversarial Networks (GANs). Variational autoencoders are amortised explicit like-
lihood models because we directly optimise an approximation of the likelihood. In the case of
generative adversarial networks (Goodfellow, Pouget-Abadie, et al. 2020), this objective is a mini-
max game between a generator and a discriminator. The generator attempts to produce samples20

from the observed distribution from random noise, and the discriminator tries to distinguish these
‘fake’ samples from the ‘real’ samples of the empirical distribution. In summary, we try to match
the generated to the observed distribution. Formally, this objective is given by:

min
θ

max
ϕ

Ex∼p(x)[logDϕ(x)] + Ez∼p(z)[log(1−Dϕ(Gθ(z)))]. (2.35)

Gθ(z) is a neural network generator parameterised by θ, which takes as input a sample from the
auxiliary latent noise variableZ and tries to produce a ‘fake’ sample of the distribution p(x). Dϕ(x)25

is a neural network discriminator parameterised by ϕ, which tries to distinguish samples from the
real distribution p(x) from the ‘fake’ samples produced by the generator.

While the GAN objective might initially seem ad-hoc, Nowozin et al. (2016) have shown that this ob-
jective is equivalent to minimising an approximation of the Jensen–Shannon divergence via convex
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risk minimisation. Furthermore, they showed the GAN objective is a particular case of an algorithm
that allows the estimation of other f-divergences, such as the KL divergence. If the divergence be-
tween two distributions is zero, then they are the same distribution. Thus we can see how this
distribution matching procedure results in a sensible generative model.

2.4 Structural Causal Models5

This section gives a brief overview of Structural Causal Models (SCMs), also known as Structural
Equation Models (SEMs). For a complete treatment of the theory, see Pearl, J. (2009). Causality.
Cambridge University Press and Peters, J., Janzing, D., and Schölkopf, B. (2017). Elements of causal
inference: foundations and learning algorithms. The MIT Press.

An SCM is a set of functional assignments (called mechanisms) that represent the relationship10

between a variable, its direct causes (called parents) and all other unaccounted sources of variation
(called exogenous noise). Formally, an SCM is defined as:

Xj := fj(PAj, Nj) j = 1, . . . , d, (2.36)

where a random variable Xj is a function f of its endogenous causes PAj (parents) and its ex-
ogenous causes Nj (exogenous noise).

In SCMs, we assume that the mechanisms are algorithmically independent of each other. In the15

case of two variables, this reduces to the independence of cause and mechanism. An SCM is said
to be semi-Markovian if it is acyclic, a variable cannot be its own cause. These models can be
represented by directed acyclic graphs (DAGs). If in addition to acyclicity the the exogenous noise
variables are jointly independent of each other the model is said to be Markovian. Figure 2.1 shows
an example of a Markovian SCM represented in DAG form.20

In Pearl’s ladder of causation, we have, in increasing order of difficulty: association, intervention,
and counterfactuals. Classic statistical models are sufficient to answer associative questions.
However, for questions regarding interventions and counterfactuals, SCMs are powerful and con-
venient tools.

Intervening on a variable means setting it to a specific value. When we intervene on a variable, we25

stop the causal effects from its parents since we are forcing the variable to take a given value. This
process results in a modified SCM where we remove the arrows from the parents to the intervened
variable. We can calculate interventional distributions by intervening on one or more variables in
the SCM, sampling from the exogenous noise distributions and using the modified SCM to com-
pute the quantity of interest. Here we assume we have access to the equations that govern the30

SCM. Estimating these equations often involves collecting interventional data through randomised
control trials.
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Counterfactuals are what-if question about the system that allows us to ask how the system would
have behaved had some variables taken different values. Counterfactuals differ from interventions
since they are questions about a specific observation, not the entire distribution. As a result, an-
swering counterfactual questions is only possible by knowing the complete state of the system
before acting on a variable, which implies estimating the value of the exogenous noise variables, a5

process known as abduction. Conceptually, estimating counterfactuals is a three-step process: 1)
Abduction: infer the exogenous noise from the observation and its parents; 2) Action: intervene on
the targeted parents; 3) Prediction: propagate the effect of the intervention through the modified
model to generate the counterfactual.

D

B

H

ND

NB

NH

Figure 2.1: Example of a Markovian SCM represented in DAG form. D=Drug; B=Blood pressure;
H=Heart attack. ND, NB, NH are the exogenous noise variables. The arrows represent the di-
rection of causation. The drug causes both blood pressure and heart attack, and blood pressure
causes heart attack.
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Chapter 3

Multiclass semantic segmentation and
quantification of traumatic brain injury
lesions on head CT using deep learning5

This chapter is based on the following publication:

• Monteiro, M., Newcombe, V. F., Mathieu, F., Adatia, K., Kamnitsas, K., Ferrante, E., Das, T.,
Whitehouse, D., Rueckert, D., Menon, D. K., et al. (2020). “Multiclass semantic segmenta-
tion and quantification of traumatic brain injury lesions on head CT using deep learning:
an algorithm development and multicentre validation study”. In: The Lancet Digital Health
2.6, e314–e322

MM, VFJN, DKM, and BG conceived and designed the study. MM did the implementation, anal-
ysed data, and cowrote the manuscript with VFJN. MM, VFJN, DKM, and BG revised and finalised
the manuscript. VFJN, FM, KA, and DW did the manual and semi-automatic segmentation of
the scans or provided broader clinical input, or both. KK, EF, and BG provided feedback on
the development of the model. TD provided specialist neuroradiological oversight of image
analysis. VFJN, DR, DKM, and BG secured the funding.

Code available at:

• https://github.com/biomedia-mira/blast-ct

3.1 Introduction
With an estimated global incidence of more than 60 million cases per year, traumatic brain injury
(TBI) is the leading cause of mortality in young adults and a major cause of morbidity worldwide
(Dewan et al. 2018; Maas, Menon, Adelson, et al. 2017). CT is the imaging modality of choice to
assess the extent and distribution of injury, provide input to prognostic models, and assess the10

requirement for surgery (Amyot et al. 2015). Being able to automatically and accurately quantify
lesion load and its progression would provide a more objective basis than qualitative assessment
by visual inspection for medical and surgical treatment decision making.

A substantial focus of TBI research has been to refine the current classification schemes into more
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therapeutically meaningful categories by incorporating information on a patient’s genetic, blood,
and cerebrospinal fluid biomarkers along with clinical and neuroimaging data (Carney et al. 2017;
Maas, Menon, Adelson, et al. 2017). Hence, being able to reliably and efficiently differentiate lesion
types and compute their spatial distribution, number, and volumes would enable optimised and
more individualised treatment strategies. Such automated assessment would also facilitate the5

analysis of large imaging datasets, which are emerging as an essential research resource. Finally,
by far the greatest burden of TBI is in low-income and middle-income countries (Dewan et al. 2018),
where radiological expertise is likely to be be less easily available. Having automatic CT analysis
algorithms would be of particular benefit in such contexts (Dewan et al. 2018).

Substantial inter-centre variability and discordance by radiologists exists when reporting CT scan10

results from patients with TBI (Vande Vyvere et al. 2019). Automating such quantitative measure-
ments would, in theory, circumvent inter-observer variability and allow for analysis of large-scale
imaging datasets. Until recently, attempts to automate acute intracranial haemorrhage segmenta-
tion on CT have relied on techniques such as intensity thresholding and active contouring, which
still require some degree of manual input, and have only been applied to small datasets, raising15

concerns about the robustness and generalisability of these models (Bardera et al. 2009; Bhadau-
ria et al. 2013; Roy et al. 2015; Zaki et al. 2011). Little past success in this context probably reflects
two challenges in working with this patient population. First, the heterogeneity of radiographic phe-
notypes in TBI makes the development of accurate segmentation rules challenging. Second, the
diffuse nature of the injury in a large proportion of patients with TBI renders the manual annotations20

required to establish a ground truth reference dataset difficult and time consuming.

Convolutional neural networks (CNNs) have emerged as a powerful tool for image segmentation,
with the ability to learn complex non-linear mappings between the input image and segmentation
(LeCun, Bottou, et al. 1998). Previous deep learning studies for segmentation of TBI lesions have
focused on the segmentation of undifferentiated haemorrhagic lesions, with no attempts to differ-25

entiate pathoanatomical lesion types (Jain et al. 2019). Although such binary image-level detection
of abnormalities might prove useful for triaging patients in need of urgent medical attention, it has
little value in supporting precision medicine, quantifying lesion progression in trials of new thera-
pies, or predictive modelling of clinical outcome. Other studies have focused on lesion detection
at an image level with differentiation of intracranial haemorrhage types (Chilamkurthy et al. 2018;30

Kuo et al. 2019). In addition to detection, one study showed qualitative results for segmentation
(Kuo et al. 2019). However, this study provided no quantitative metrics, did not specifically address
TBI, and provided no assessment of oedema. Accurate quantification of lesion volumes can only be
achieved when using voxel-wise labels (i.e., for segmentation of lesions) as opposed to image-level
labels (i.e., for classification of images). Voxel-wise labels allow for both volume quantification and35

localisation of lesions, which may be important for improved understanding of the factors that lead
to lesion progression and to more clinically relevant prognostic schemes.
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We aimed to develop and validate a new, clinically relevant algorithm based on deep CNNs for
multiclass, voxel-wise segmentation, volumetric quantification, and detection of TBI lesion types
visible in CT.

3.2 Materials and Methods
3.2.1 Study design and participants5

The data used in this study were from the Collaborative European Neuro Trauma Effectiveness
Research in TBI study (CENTER-TBI, NCT02210221) (Maas, Menon, Steyerberg, et al. 2015; Steyer-
berg et al. 2019), accessed using the Neurobot platform (RRID/SCR 017004, core data version 2.0,
release date May 15, 2019). Patients were recruited between Dec 9, 2014, and Dec 17, 2017, in 60
centres across Europe. Data collection, handling, and storage are described in detail elsewhere10

(Maas, Menon, Steyerberg, et al. 2015; Steyerberg et al. 2019). CT scans were collected as part
of standard clinical practice, using various platforms and imaging parameters (Vande Vyvere et al.
2019).

Ethical approval was obtained in accordance with all relevant laws and regulations for each recruit-
ing site, and informed consent by patients or their legal representative or next of kin was obtained15

according to local laws and regulations (Maas, Menon, Steyerberg, et al. 2015). A complete ethics
statement, which contains a comprehensive list of sites, ethical committees, and approval num-
bers, is available online at https://www.center-tbi.eu/project/.

3.2.2 Procedures
For development and internal validation, we use two datasets from CENTER-TBI: dataset 1 and20

dataset 2. We used a two-step process to acquire a large number of annotated scans (see Fig-
ure A.1). The scans in dataset 1 were annotated manually in a bespoke segmentation tool (ImSeg,
version 1.9, BioMedIA, London, UK) by trained personnel (FM and KA) and checked by two other
experts (VFJN and TD). These segmentations were used to develop the initial segmentation model
and then excluded from any subsequent training or evaluation to avoid skewing the analysis of25

results.

With the model developed on dataset 1, we did automatic lesion segmentation on dataset 2. These
automatic segmentations were refined manually by trained personnel (FM and KA) using ITK-SNAP
(version 3.8.0-beta), and the corrections were reviewed by two experts (VFJN and TD) to provide
high-quality, accurate ground truth lesion segmentations. The refined segmentations contained30

four lesion types: intraparenchymal haemorrhage; extra-axial haemorrhage, which includes sub-
dural haematoma, extradural haematoma, and traumatic subarachnoid haemorrhage; perilesional
oedema (hereafter referred to as oedema); and intraventricular haemorrhage. Small petechial
haemorrhages, which probably arise from diffuse vascular injury and are thought to be a surro-
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gate for accompanying diffuse axonal injury (Figueira Rodrigues Vieira and Guedes Correa 2020;
Haacke et al. 2010), were classified as intraparenchymal haemorrhage.

To establish whether the semi-automatic annotation procedure of dataset 2 provided adequate re-
producibility, we did repeat manual segmentation on 20 scans by a single expert (FM) to assess
intra-rater reproducibility, and on 25 scans by a second expert (DW) to assess inter-rater variabil-5

ity.

For the subsequent analyses, we split dataset 2 into a training and test set. Different scans from
the same patient were placed together in either the training or the test set to avoid the correlation
between repeat scans biasing the results. Only scans with more than 1 mL of lesion load were
included in the training set to ensure that there was enough training signal for the CNN.10

For external validation, we used the CQ500 dataset, a publicly available, anonymised, TBI CT dataset
provided by the Centre for Advanced Research in Imaging, Neurosciences and Genomics, New
Delhi, India available at http://headctstudy.qure.ai/dataset. This dataset provides image-level la-
bels as opposed to voxel-wise segmentations. However, it is the largest labelled TBI cohort avail-
able publicly, and no other dataset provides voxel-wise segmentations.15

3.2.3 Image pre-processing, model and training
For pre-processing, we resampled images to an isotropic resolution of 1×1×1 mm and bounded
the intensities between -15 and 100 Hounsfield units (HU) before scaling the range between -1 and
1. We do not perform skull-stripping (Monteiro, Kamnitsas, et al. 2019). We note that all evaluation
and statistical analysis was done after mapping the output of the CNN back to the image’s original20

native resolution.

The segmentation model used is called DeepMedic (Kamnitsas, Ferrante, et al. 2016; Kamnitsas,
Ledig, et al. 2017), a convolutional neural network (CNN) designed for lesion segmentation on
three-dimensional brain images. The network processes image patches at full, three-times down-
sampled, and five-times down-sampled resolution to gather the necessary context for the segmen-25

tation. To keep the architecture up to date with the state-of-the-art we use residual connections
(He et al. 2016a), batch-normalization (Ioffe and Szegedy 2015), and pre-activation blocks (He et al.
2016b).

The network was trained for 1200 epochs with an initial learning rate of 0.001. The learning rate was
halved at the following milestones: 440, 640, 800, 900, 980, and 1050 epochs. We employed the30

RMSprop optimizer (Tieleman and Hinton 2012) with a momentum 0.6, alpha 0.9 and a l2 weight
penalty of 0.0001. We used a standard cross-entropy loss and a batch size 10 for training. The
patch sampling procedure is as follows. At each epoch, 50 images are randomly sampled from the
training set. From each image, 20 patches of size 110×110×110 mm are extracted according to
a sampling scheme - a patch centred on a background voxel is sampled with a probability of 30%35
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and on one of the four lesion classes with a probability of 17.5% each (70% total for any lesion).
Since no padding is used, the network outputs a prediction with size 30× 30× 30 mm.

For data-augmentation, with a probability of 50%, we applied one or more of the following transfor-
mations to the input : random intensity histogram deformation (intensity shift 0.00±0.05, intensity
scale 1.00±0.01); random flipping of the x and/or y-axis; random right-angle rotation of the of the5

x and/or y-axis; random elastic deformation using a procedural generated noise to create plausible
distortions in the anatomy (Monteiro, Kamnitsas, et al. 2019).

To account for the stochasticity of neural network training, we trained twelve models with the same
configuration but different random seeds. The final segmentation prediction for a test image was
obtained by averaging over the individual predictions of each model.10

3.2.4 Statistical analysis
Classic sample size calculation is not directly applicable to CNN-based segmentation. The sample
sizes in this work followed the common principle in current deep learning research whereby more
data tends to yield better results. Thus, we attempted to maximise the number of scans for training
and testing under the constraint of finite resources for expert annotations.15

Evaluation metrics were computed and stratified by lesion class and volume. A virtual lesion class
(any lesion) consisting of the combined lesion map that merged all lesion types into one was cre-
ated to allow for evaluation in terms of lesion versus non-lesion.

To assess the performance of the algorithm, we used the Dice similarity coefficient (DSC), which
measures the agreement between manual and automatic segmentation. Since the mean DSC is20

sensitive to lesions with small volumes or scans on which lesions are not present, we report DSC
scores for lesions above several volume thresholds. DSC is a well accepted metric for assess-
ing accuracy in image segmentation (Menze et al. 2014). The Dice similarity coefficient is defined
as DSC = 2TP

2TP+FP+FN
, where TP denotes true positives, FP denotes false positives and FN

denotes false negatives. This is equivalent to the statistical measure F1-score which is the har-25

monic mean between sensitivity and positive predictive value. However, it is not meaningful when
assessing performance with respect to clinical utility. In a multiclass setting, where most scans
do not contain all lesion classes if a scan does not contain a certain lesion class (TP + FN = 0)
and the algorithm mislabels one voxel as being from that class (FP = 1), then that scan will count
as a zero towards the average DSC of that class. In the same scenario, if the algorithm does not30

make a mistake (FP = 0), then the DSC is not defined, and thus the scan will not increase the av-
erage even though the prediction is perfect. This property of the metric inevitably misrepresents
the performance of the algorithm by disproportionally penalizing cases with small or non-existent
lesions. For example, consider a scan where there is one large EAH but no other lesion types. If
the algorithm perfectly segments the EAH lesion but also mislabels one voxel as oedema, then this35

scan will count as zero towards the average DSC of the oedema class, heavily penalizing the metric
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even though the prediction for the whole scan was near perfect. As a result, DSC alone is not appro-
priate to assess the clinical utility of the algorithm. For a clinically relevant assessment, we have
provided additional metrics such as lesion volume estimates and receiver operating characteristic
(ROC) curves for lesion detection and lesion volume classification.

To assess the accuracy of the algorithm at estimating lesion volume, we extracted lesion volumes5

from the manual and predicted segmentations to calculate volume error, which we summarised in
Bland-Altman plots. We also assessed the accuracy of the algorithm at quantifying lesion progres-
sion. To obtain the error in volume change, we calculated the true volume difference and predicted
volume difference between repeat scans for patients in the test set who had repeat scans for which
both timepoints could be established.10

The output of the segmentation algorithm can be used for lesion detection and lesion volume clas-
sification. We used the true lesion volume to set a classification target (e.g., target is positive if
the true volume is greater than 1 mL and negative otherwise). We then used the predicted lesion
volume as the score on which a threshold was varied to calculate ROC curves. We addressed three
key lesion detection and lesion volume classification problems to assess the clinical applicability15

of the model: (1) ability to detect lesions, which is equivalent to classifying lesions with a volume
greater than 0 mL; (2) classification of lesions with a volume greater than 1 mL, to enable compari-
son with findings from datasets that did not contain small lesions; and (3) classification of lesions
with a volume greater than 25 mL, equivalent to Marshall grade V/VI (Marshall et al. 1991), which
may indicate lesions requiring surgical intervention.20

For each curve, we computed the area under the curve (AUC), its 95% CI using the Hanley and
McNeil approach (Hanley and McNeil 1982), the sensitivity and specificity of the two operating
points (sensitivity at a specificity of 0.90 and vice versa), and their 95% CIs using the Clopper-
Pearson method (Clopper and Pearson 1934).

We used our algorithm to segment the scans in the CQ500 dataset and to calculate lesion volumes.25

These are used as the classification score to compare with the ground truth image-level labels pro-
vided. This dataset was used only at the end for final validation, never during development. This
approach validated the lesion detection performance of our algorithm on an external, indepen-
dent dataset from a different patient population. CQ500 was not annotated for oedema, and so
instead of our summated any lesion class we report on intracranial haemorrhage, which includes30

all haemorrhage classes in our analysis: intraparenchymal haemorrhage, extra-axial haemorrhage,
and intraventricular haemorrhage.

Miguel Monteiro Probabilistic and causal deep learning in medical imaging 38



3.2. Materials and Methods Segmentation of Traumatic Brain Injury

Table 3.1: Cohort details for both datasets.

Dataset 1 (n=27) Dataset 2 (n=512)

Age (years) 46 (16–77) 58 (6–89)

Sex
Female 5 (19%) 163 (32%)
Male 22 (81%) 349 (68%)

Mechanism of injury
Acceleration or deceleration 7 (26%) 111 (22%)
Blow to head or hit object 4 (15%) 77 (15%)
Fall from height 13 (48%) 208 (41%)
Multi-mechanistic 2 (7%) 99 (19%)
Unknown 1 (4%) 17 (3%)

Injury severity
Mild (GCS 13–15) 7 (26%) 299 (58%)
Moderate (GCS 9–12) 2 (7%) 57 (11%)
Severe (GCS <9) 18 (67%) 136 (27%)
Missing 0 20 (4%)

Time from injury to first CT scan (h) 2.4 (1.2–8.0) 2.0 (0.2–77.0)

Repeat scan done 26 (96%) 412 (80%)

Time from injury to second CT scan (h) 16.0 (5.0–79.0) 19.0 (0.9–190.0)

Interval between CT scans (h) 14.0 (3.6–77.0) 16.0 (0.1–190.0)

Marshall score
I 2 (7%) 120 (23%)
II 11 (41%) 234 (46%)
III 2 (7%) 29 (6%)
IV 0 6 (1%)
V 0 2 (<1%)
VI 12 (44%) 121 (24%)

Presence of:
Epidural haematoma 10 (37%) 54 (11%)
Acute subdural haematoma 13 (48%) 223 (44%)
Traumatic subarachnoid haemorrhage 20 (74%) 313 (61%)
Intraventricular haemorrhage 6 (22%) 88 (17%)
Intraparenchymal haemorrhage 18 (67%) 224 (44%)
Cisternal compression 9 (33%) 99 (19%)
Midline shift >5 mm 8 (30%) 71 (14%)

Glasgow Outcome Score at 6 months
1 6 (22%) 66 (13%)
2 0 0
3 9 (33%) 84 (16%)
4 7 (26%) 126 (25%)
5 2 (7%) 199 (39%)
Missing 3 (11%) 37 (7%)
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3.3 Results
Dataset 1 consisted of 98 different CT scanning sessions from 27 patients from one centre (Cam-
bridge University NHS Foundation Trust, Cambridge, UK). Data from this centre were available first
as part of a preliminary proof-of-concept study. Dataset 2 consisted of 839 different CT scanning
sessions from 512 patients and 38 different centres from which data were available at the time of5

the study, including Cambridge NHS Foudation Trust. The procedure of semi-automatic segmen-
tation enabled the creation of a much larger dataset (839 vs 98 scans) without a commensurate
increase in resource requirements. Table 3.1 shows the cohort characteristics of both datasets,
representing the broad spectrum of TBI. From dataset 2, 184 scans were included in the training
subset and 655 scans were included in the test subset. Consistent with the known heterogeneity10

of TBI, 744 (89%) of 839 scans did not contain all four lesion types (Maas, Menon, Adelson, et al.
2017; Steyerberg et al. 2019). The distribution of lesions is available in Table A.1.

Figure 3.1 shows qualitative results for five different cases from our test set, showing the visual
agreement between the true and predicted segmentations. Figure 3.2 shows DSC boxplots. The
median DSC for the any lesion class was 36.0% (IQR 0.0–63.4) when including all 599 scans (46915

with lesions plus 130 with no lesions but where our model predicted a lesion). In addition to cal-
culating DSCs using all the test scans, we chose the following preplanned thresholds to address
different performance levels: 0 mL, 1 mL, and 5 mL (see Table 3.2). Limiting the analysis to the

Figure 3.1: Qualitative multiclass segmentation results. IPH is shown in red, EAH in green, perile-
sional oedema in blue, and IVH in yellow.
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Figure 3.2: Per-class boxplots of DSC stratified by volume threshold. For each class, each boxplot
progressively excludes lesions with volume smaller than a threshold. For each individual boxplot,
the central line represents the median and the black circle the mean. The box shows the IQR and
is indented to indicate the 95% CI of the median. Whiskers adjacent to the boxes represent 1.5
times the IQR. Coloured circles are outliers. Table 3.2 shows the same results in tabular format.
DSC=Dice similarity coefficient. EAH=extra-axial haemorrhage. IPH=intraparenchymal haemor-
rhage. IVH=intraventricular haemorrhage. *Not plotted owing to insufficient data.

469 scans with lesions increased the median DSC to 49.4% (IQR 21.5–67.1), and the exclusion of
lesions of 1 mL or smaller further increased the DSC to 59.3% (42.6–73.1, n=328). A similar re-
lationship between lesion volume and DSC was noted for individual lesion classes (Figure 3.2).
For lesions with a volume greater than 1 mL, the median DSC was 65.2% (IQR 50.6–77.8, n=167)
for intraparenchymal haemorrhage, 55.3% (39.1–71.0, n=262) for extra-axial haemorrhage, 44.8%5

(15.5–64.1, n=208) for oedema, and 47.3% (38.1–60.3, n=21) for intraventricular haemorrhage; for
lesion volumes greater than 5 mL, these numbers increased to 72.6% (58.1–81.6, n=90) for in-
traparenchymal haemorrhage, 67.5% (52.5–78.2, n=160) for extra-axial haemorrhage, and 54.6%
(32.0–68.1, n=137) for oedema. To compare with previous literature, we combined intraparenchy-
mal haemorrhage and extra-axial haemorrhage and obtained a median DSC of 72.0% (59.2–80.1,10

n=210) for lesion volume greater than 5 mL.

Figure 3.3 shows Bland-Altman plots of the agreement between the true and predicted lesion vol-
umes. The mean difference was 0.86 mL (95% CI -5.23 to 6.94) for intraparenchymal haemor-
rhage, 1.83 mL (-12.01 to 15.66) for extra-axial haemorrhage, 2.09 mL (-9.38 to 13.56) for oedema,
and 0.07 mL (-1.00 to 1.13) for intraventricular haemorrhage. For lesions with a volume greater15

than 5 mL, the median absolute error was 3.57 mL (IQR 1.96 to 7.97, n=90) for intraparenchymal
haemorrhage and 4.57 mL (2.18 to 8.88, n=160) for extra-axial haemorrhage. For further discussion
regarding absolute volume error see Section A.1. Regarding the reproducibility of the manual anno-
tation procedure, for intra-rater reproducibility (n=20) and inter-rater variability (n=25), we obtained
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Table 3.2: Evaluation Metrics stratified by volume threshold. Numbers presented as number of
scans (n), mean (standard deviation), median (range). For lesion change the volume group is de-
fined by the initial lesion volume.

class thresh DSC (%) Absolute Error (mL) Lesion Change Abs Error (mL)
count mean median count mean median count mean median

lesion
(any)

all 599 35.3 (30.4) 36.0 (63.4) 655 5.32 (10.73) 0.74 (5.76) 98 3.57 (6.00) 0.47 (3.38)
>0mL 469 45.0 (27.3) 49.4 (47.6) 469 7.26 (12.07) 2.32 (8.36) 73 4.45 (6.20) 1.46 (4.72)
>1mL 328 56.5 (21.2) 59.3 (30.4) 328 10.24 (13.37) 5.72 (11.11) 45 5.92 (6.39) 3.10 (9.27)
>5mL 251 62.2 (17.7) 66.9 (22.8) 251 12.95 (14.21) 8.27 (12.36) 34 7.31 (6.69) 3.94 (10.63)
>10mL 210 65.1 (16.1) 69.0 (20.0) 210 14.83 (14.81) 9.33 (12.58) 26 7.47 (6.79) 3.94 (10.63)
>25mL 134 68.2 (14.5) 70.7 (19.2) 134 19.84 (16.37) 15.68 (15.12) 13 11.08 (7.35) 12.73 (13.79)

IPH

all 361 37.6 (32.9) 41.9 (67.6) 655 1.03 (3.05) 0.03 (0.52) 98 0.81 (2.20) 0.03 (0.37)
>0mL 306 44.4 (31.3) 51.9 (64.4) 306 2.15 (4.18) 0.54 (1.91) 40 1.73 (3.16) 0.31 (1.99)
>1mL 167 61.7 (20.9) 65.2 (27.2) 167 3.77 (5.12) 1.82 (3.04) 17 3.71 (4.05) 2.24 (2.65)
>5mL 90 68.2 (17.2) 72.6 (23.5) 90 5.97 (6.14) 3.57 (5.71) 13 3.30 (3.17) 2.24 (2.65)
>10mL 57 71.0 (17.2) 76.0 (23.0) 57 8.20 (6.69) 6.13 (7.85) 8 3.25 (2.46) 2.65 (2.40)
>25mL 19 70.7 (16.5) 73.7 (23.3) 19 13.27 (8.23) 14.41 (11.57) 2 3.01 (0.77) 3.01 (0.77)

EAH

all 559 28.7 (29.8) 20.7 (53.9) 655 2.38 (6.89) 0.34 (1.82) 98 1.25 (2.28) 0.31 (1.07)
>0mL 402 39.9 (28.1) 40.7 (50.1) 402 3.72 (8.49) 1.09 (3.37) 67 1.80 (2.59) 0.85 (1.95)
>1mL 262 54.0 (21.8) 55.3 (31.9) 262 5.49 (10.07) 2.43 (4.64) 36 2.29 (2.66) 1.36 (2.30)
>5mL 160 63.5 (18.6) 67.5 (25.7) 160 8.10 (12.15) 4.57 (6.70) 24 2.98 (3.00) 2.32 (2.71)
>10mL 127 67.0 (17.0) 70.4 (21.7) 127 9.49 (13.25) 5.59 (7.55) 15 3.26 (3.59) 2.16 (2.67)
>25mL 61 71.9 (16.5) 75.7 (15.7) 61 14.63 (17.42) 8.85 (10.99) 4 3.80 (5.16) 0.97 (3.13)

oedema

all 355 27.7 (29.0) 17.5 (52.6) 655 2.34 (5.76) 0.02 (1.62) 98 2.21 (4.49) 0.12 (1.93)
>0mL 287 34.2 (28.6) 32.0 (54.6) 287 5.17 (7.69) 2.20 (5.86) 35 4.59 (5.21) 3.03 (7.85)
>1mL 208 41.6 (27.8) 44.8 (48.5) 208 7.05 (8.29) 3.93 (7.20) 25 6.33 (5.24) 4.18 (7.18)
>5mL 137 51.3 (24.1) 54.6 (36.1) 137 9.72 (9.09) 6.87 (8.23) 14 7.49 (4.99) 7.26 (5.63)
>10mL 95 55.2 (23.0) 59.2 (26.3) 95 12.11 (9.93) 9.46 (11.49) 9 8.85 (5.22) 8.73 (5.77)
>25mL 36 61.2 (22.6) 64.4 (31.8) 36 18.45 (12.57) 18.54 (14.19) 4 10.86 (6.54) 8.88 (5.99)

IVH
all 237 12.7 (22.3) 0.0 (21.2) 655 0.09 (0.54) 0.00 (0.02) 98 0.15 (0.81) 0.00 (0.03)
>0mL 96 31.4 (25.4) 30.1 (55.5) 96 0.56 (1.30) 0.19 (0.33) 11 0.63 (1.48) 0.11 (0.13)
>1mL 21 47.4 (17.6) 47.3 (22.2) 21 1.92 (2.31) 0.97 (0.82) 2 0.11 (0.08) 0.11 (0.08)

agreements in the range of 0.90-1.00 for all lesion types (see Table A.2).

98 patients in the test set who had repeat scans for which both timepoints could be established
(196 scans) were included in the calculations of true and predicted volume difference. Figure 3.4
presents Bland-Altman plots of the agreement between the true and predicted lesion volume change.
The mean difference was 0.46 mL (95% CI -4.04 to 4.97) for intraparenchymal haemorrhage, -0.375

mL (-5.42 to 4.69) for extra-axial haemorrhage, 0.68 mL (-9.03 to 10.39) for oedema, and 0.12 mL (-
1.48 to 1.71) for intraventricular haemorrhage. In Sectionn A.2, we show that our algorithm enables
localisation of lesions (i.e., the quantification of lesion volume by brain region).

Table 3.3 and Figure 3.5 show the results of lesion volume classification and lesion detection for
external validation. For image-level detection of lesions, we obtained an AUC of 0.89 (95% CI 0.86–10

0.91) for the any lesion class, 0.87 (0.85–0.90) for the intraparenchymal haemorrhage class, 0.89
(0.86–0.91) for the extra-axial haemorrhage class, 0.89 (0.86–0.92) for the oedema class, and 0.89
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Figure 3.3: Bland-Altman plots for lesion volume estimation. The solid horizontal lines are means
and the shaded regions are 95% CIs. The x-axes are on a logarithmic scale to improve visualisation.
Axes are plotted on different scales across plots for clarity. Absolute volume errors are shown in
Tables 3.2 and A.3.

(0.85–0.93) for the intraventricular haemorrhage class. For the 1 mL threshold, the AUCs increased
to 0.96 (0.95–0.98), 0.99 (0.98–1.00), 0.97 (0.95–0.98), 0.94 (0.92–0.96), and 0.99 (0.95–1.00), in-
dicating that most of the missed lesions are very small. For the classification of large lesions (> 25

mL), the AUCs were 0.99 (0.98–1.00) for any lesion, 0.99 (0.97–1.00) for intraparenchymal haem-
orrhage, 0.99 (0.98–1.00) for extra-axial haemorrhage, and 0.98 (0.95–1.00) for oedema. On the5

external validation set, we reported an AUC of 0.83 (95% CI 0.79–0.87) for the intracranial haem-
orrhage class, 0.90 (0.86–0.94) for the intraparenchymal haemorrhage class, 0.80 (0.75–0.85)
for the extra-axial haemorrhage class, and 0.95 (0.89–1.00) for the intraventricular haemorrhage
class.

3.4 Discussion10

In this study, we found that the voxel-wise segmentation produced by a CNN can be used for volu-
metric quantification and detection and classification of multiclass TBI lesions in head CT, as well
as for the assessment of lesion progression. We were able to accurately quantify and detect le-
sions on an external, independent dataset. To our knowledge, this is the largest study so far to use a
ground truth reference of manually annotated and manually corrected automatic segmentations of15

CT scans. The size and diversity of this multicentre dataset provide insights into the performance
of deep learning in a real-world clinical scenario. We extend findings from previous studies (Chil-
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Figure 3.4: Bland-Altman plots for lesion progression. The solid horizontal lines are means and the
shaded regions are 95% CIs. The x-axes are on a logarithmic scale to improve visualisation. Axes
are plotted on different scales across plots for clarity. Absolute volume change errors are shown
in Tables 3.2 and A.3.

amkurthy et al. 2018; Jain et al. 2019; Kuo et al. 2019) by providing quantitative volumetric results
separately for intraparenchymal haemorrhage, extra-axial haemorrhage, intraventricular haemor-
rhage, and perilesional oedema.

The CNN provided a well calibrated prediction of lesion volume since differences between the true
and predicted volumes were small when compared with the overall lesion volume. The funnelling5

observed can be explained by lesions being predicted where there were none and vice versa, which
mostly occurs for smaller lesions. For comparison, previous work (Jain et al. 2019) reported a
median absolute error of 8.83 mL (n=39) for intraparenchymal haemorrhage and extra-axial haem-
orrhage lesions combined while considering only lesions with a volume greater than 5.5 mL. In
our analysis, we did fine-grained segmentation of these two classes individually and validated our10

CNN on a larger dataset. For lesions with a volume greater than 5 mL, our median absolute error
was smaller than that reported previously (Jain et al. 2019) for intraparenchymal haemorrhage and
extra-axial haemorrhage.

The potential clinical applicability of the volume estimates is further confirmed by our results on
lesion progression. Such progression of intracranial lesions represents a major target for thera-15

pies in the acute phase. For example, cerebral contusions are common after TBI, occurring in up
to two-thirds of patients admitted to hospital (Collaborators et al. 2004, 2005), and progression of
such lesions is common, occurring in up to half of patients within the first 24-48 h (Kurland et al.
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Figure 3.5: Receiver operating characteristic curves for lesion detection and classification. Classi-
fication of lesions with a volume greater than 0 mL (A), greater than 1 mL (B), and greater than 25 mL
(C) on the internal validation set, and detection of lesions on the external validation set CQ500 (D).
AUC=area under the curve. EAH=extra-axial haemorrhage. IPH=intraparenchymal haemorrhage.
IVH=intraventricular haemorrhage.

2012; Narayan et al. 2008; Oertel et al. 2002). The ability to automatically monitor lesion progres-
sion offers key opportunities to improve patient stratification, guide and monitor management, and
investigate potential causes and risk factors for lesion progression in large cohort studies such as
CENTER-TBI (Steyerberg et al. 2019). Until now, the identification of factors that predict or cause
contusion progression, or both, has been hampered by the need to estimate lesion volume and5

change manually, restricting analyses to small sample sizes (Kurland et al. 2012; Narayan et al.
2008; Oertel et al. 2002).

Regarding the underlying lesion segmentation, the DSC increased with lesion volume, illustrating
that the DSC is sensitive to small or non-existent lesions, which is a limitation of the metric. The
median DSC of 73.% (n=39) reported previously for large intraparenchymal haemorrhage and extra-10

axial haemorrhage lesions combined (lesion volume > 5.5 mL) (Jain et al. 2019) is similar to that
found in our study.

The algorithm performed less well at quantifying perilesional oedema, and by extension mixed
density lesions. However, the ability to undertake such quantification has not been reported pre-

Miguel Monteiro Probabilistic and causal deep learning in medical imaging 45



3.4. Discussion Segmentation of Traumatic Brain Injury

Table 3.3: Multiclass detection and classification results for three volume thresholds and detection
results for the external validation dataset CQ500. The high specificity and high sensitivity operating
points were obtained using a cutoff of 0.90 or the closest possible available. The 0 mL threshold
is equivalent to lesion detection. EAH=extra-axial haemorrhage. ICH=intracranial haemorrhage.
IPH=intraparenchymal haemorrhage. IVH=intraventricular haemorrhage.

Number of scans High-specificity operating point High-sensitivity operating point Area under the curve
(95% CI)

Positives Negatives Mean sensitivity
(95% CI)

Mean specificity
(95% CI)

Mean sensitivity
(95% CI)

Mean specificity
(95% CI)

>0 mL
Any lesion 469 186 0.70 (0.66–0.74) 0.90 (0.85–0.94) 0.90 (0.87–0.93) 0.61 (0.54–0.68) 0.89 (0.86–0.91)
IPH 306 349 0.77 (0.72–0.82) 0.90 (0.87–0.93) 0.81 (0.76–0.85) 0.85 (0.80–0.88) 0.87 (0.85–0.90)
EAH 402 253 0.72 (0.67–0.76) 0.90 (0.86–0.94) 0.90 (0.87–0.93) 0.63 (0.57–0.69) 0.89 (0.86–0.91)
Perilesional oedema 287 368 0.80 (0.75–0.85) 0.90 (0.87–0.93) 0.85 (0.80–0.89) 0.82 (0.77–0.85) 0.89 (0.86–0.92)
IVH 96 559 0.70 (0.60–0.79) 0.90 (0.87–0.93) 0.90 (0.82–0.95) 0.75 (0.71–0.78) 0.89 (0.85–0.93)

>1 mL
Any lesion 328 327 0.89 (0.85–0.92) 0.90 (0.86–0.93) 0.90 (0.87–0.93) 0.87 (0.83–0.91) 0.96 (0.95–0.98)
IPH 167 488 0.96 (0.92–0.98) 0.90 (0.87–0.93) 0.90 (0.85–0.94) 0.97 (0.94–0.98) 0.99 (0.98–1.00)
EAH 262 393 0.89 (0.85–0.93) 0.90 (0.87–0.93) 0.90 (0.86–0.93) 0.89 (0.85–0.92) 0.97 (0.95–0.98)
Perilesional oedema 208 447 0.86 (0.80–0.90) 0.90 (0.87–0.93) 0.90 (0.86–0.94) 0.86 (0.83–0.89) 0.94 (0.92–0.96)
IVH 21 634 0.95 (0.76–1.00) 0.90 (0.87–0.92) 0.90 (0.70–0.99) 0.97 (0.95–0.98) 0.99 (0.95–1.00)

>25 mL
Any lesion 134 521 0.98 (0.94–1.00) 0.90 (0.87–0.92) 0.90 (0.84–0.95) 0.96 (0.94–0.98) 0.99 (0.98–1.00)
IPH 19 636 1.00 (0.82–1.00) 0.90 (0.88–0.92) 0.95 (0.74–1.00) 0.94 (0.92–0.96) 0.99 (0.97–1.00)
EAH 61 594 0.98 (0.91–1.00) 0.90 (0.87–0.92) 0.90 (0.80–0.96) 0.97 (0.96–0.99) 0.99 (0.98–1.00)
Perilesional oedema 36 619 0.89 (0.74–0.97) 0.90 (0.88–0.92) 0.92 (0.78–0.98) 0.89 (0.87–0.92) 0.98 (0.95–1.00)

External validation set CQ500
ICH 205 285 0.59 (0.51–0.65) 0.90 (0.86–0.93) 0.90 (0.85–0.94) 0.51 (0.45–0.56) 0.83 (0.79–0.87)
IPH 134 356 0.76 (0.68–0.83) 0.90 (0.87–0.93) 0.89 (0.82–0.94) 0.74 (0.69–0.79) 0.90 (0.86–0.94)
EAH 119 371 0.49 (0.39–0.58) 0.90 (0.87–0.93) 0.91 (0.84–0.95) 0.38 (0.33–0.43) 0.80 (0.75–0.85)
IVH 28 462 0.89 (0.72–0.98) 0.90 (0.87–0.93) 0.93 (0.76–0.99) 0.68 (0.63–0.72) 0.95 (0.89–1.00)

viously; hence, we are unable to benchmark it against previous work. Although detection and
delineation of high-intensity haemorrhagic lesions are straightforward, precise delineation of hy-
pointense oedema can be challenging, even for radiologists. The ability of our algorithm to do this
task, in addition to quantifying other lesion types, may be important for prognostication, aid de-
tection and avoidance of secondary injury, the evaluation of neuroprotective measures, and as an5

intermediate biomarker for clinical trials aimed at the reduction of cerebral oedema and contusion
growth (Mathieu, Zeiler, et al. 2020).

The accuracy of our CNN was lower in segmenting small haemorrhagic lesions. From a clinical
perspective, however, this reduced accuracy is mitigated by the fact that the volume of these small
lesions is less important in terms of prognostication or deciding on therapy. These small lesions10

are typically microhaemorrhages associated with diffuse vascular injury and are clinically used as
a surrogate marker for diffuse axonal injury. Consequently, their clinical significance is dependent
on number and distribution, rather than volume of individual lesions (Haacke et al. 2010).

Although our model was not designed for classification specifically, as a byproduct of the seg-
mentation algorithm, it is able to do so with comparable performance to state-of-the-art methods15

Miguel Monteiro Probabilistic and causal deep learning in medical imaging 46



3.4. Discussion Segmentation of Traumatic Brain Injury

developed solely for detection (Chilamkurthy et al. 2018; Kuo et al. 2019). On the CQ500 dataset,
previous work (Chilamkurthy et al. 2018) reported an AUC of 0.94 (95% CI 0.92–0.97) for intracra-
nial haemorrhage, 0.95 (0.93–0.98) for intraparenchymal haemorrhage, 0.95 (0.91–0.99) for sub-
dural haematoma, 0.97 (0.91–1.00) for extradural haematoma, 0.97 (0.92–0.99) for traumatic sub-
arachnoid haemorrhage, and 0.93 (0.87–1.00) for intraventricular haemorrhage (Chilamkurthy et5

al. 2018). Apart from the intraventricular haemorrhage class, the AUCs we report on the same data
are lower. However, our algorithm also has the ability to quantify lesion volume, shape, and loca-
tion, which can be used to extract other radiological features of potential interest. Additionally, our
results are not directly comparable with the previous work by Chilamkurthy et al. (2018) because
they used certain rules to select the optimum scan per patient processed by their algorithm and we10

were not able to determine those rules for comparison. Instead, we processed all available scans
for each patient (up to eight) and calculated the mean predicted volume for subsequent classifica-
tion. Using a selected set of scans, as done in previous work, is likely to improve our results.

The ability to distinguish between different lesion types is important to aid understanding of patho-
physiology and to implement personalised care. The heterogeneity of TBI is well described, encom-15

passing a wide spectrum of pathologies, from axonal injury to focal contusions and extracranial
bleeding. The large annotated dataset used in this study is representative of this clinical spectrum.
The CENTER-TBI study (Ma et al. 2015; Steyerberg et al. 2019) allowed a large variety of vendors
and acquisition protocols to be used. Images in this analysis were contributed from 38 centres.
Consequently, the performance is not manufacturer or acquisition dependent. The ability to gen-20

eralise is supported by validation on an external, independent dataset from a different continent,
for which the results for lesion detection were comparable with the results obtained on internal
data.

Adding the ability to distinguish the different types of extra-axial haemorrhage is important, partic-
ularly given that extradural haematomas portend a better prognosis, and the presence of traumatic25

subarachnoid haemorrhage is a marker for worse outcomes in prognostic models (Collaborators et
al. 2004, 2005; Murray et al. 2007). Furthermore, expanding on the capability of lesion localisation
may help answer key research questions and support clinical reporting of scans.

Future work needs to focus on the optimal incorporation of such algorithms into clinical prac-
tice, which must be accompanied by a rigorous assessment of performance, strengths, and weak-30

nesses. Such algorithms will find clear research applications, and, if adequately validated, may be
used to help facilitate radiology workflows by flagging scans that require urgent attention, aid re-
porting in resource-constrained environments, and detect pathoanatomically relevant features for
prognostication and a better understanding of lesion progression.
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Chapter 4

Stochastic Segmentation Networks:
modelling spatially correlated aleatoric
uncertainty5

This chapter is based on the following publication:

• Monteiro, M., Le Folgoc, L., Coelho de Castro, D., Pawlowski, N., Marques, B., Kamnitsas,
K., Wilk, M. van der, and Glocker, B. (2020). “Stochastic segmentation networks: Modelling
spatially correlated aleatoric uncertainty”. In: Advances in Neural Information Processing
Systems 33, pp. 12756–12767

MM and LL developed the idea. MM did the implementation, experiments, and wrote the
manuscript. MM, NP and MvdW conceived the toy experiment. BM prepared the data for the
LIDC experiment. LL, DCC, NP, BM, KK, MvdW and BG provided useful discussion and feedback
to MM on the method, experiments and manuscript. BG secured the funding.

Code available at:

• https://github.com/biomedia-mira/stochastic segmentation networks

4.1 Introduction
The task of semantic image segmentation is a highly structured prediction problem where the out-
put label maps should capture the spatial consistency of the objects to be segmented. While cast-
ing image segmentation as a dense pixel-wise classification task is at the heart of most machine
learning approaches (Criminisi et al. 2012; Everingham et al. 2015; Long et al. 2015), this paradigm10

largely ignores the underlying spatial structure. Methods will often rely on inductive biases to cap-
ture structure as opposed to modelling it directly. While this approach may yield reasonable, single
deterministic predictions, it is insufficient to model the underlying distribution over multiple plau-
sible outputs. In image segmentation, there is often more than one plausible solution for a given
input. The exact location of object boundaries is often ambiguous, and ideally, the model should15

be able to capture this inherent uncertainty.

Uncertainty can be decomposed into aleatoric, which is inherent to the observations, and epistemic
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uncertainty, which relates to the ambiguity about the model’s parameters and can be explained
away with more data (Kendall and Gal 2017), e.g., a noisy regression problem with many data points
has low epistemic but high aleatoric uncertainty. In segmentation, aleatoric uncertainty is both
spatially correlated and heteroscedastic, since an image can have both regions with higher and
lower uncertainty. The ideal model should represent the joint probability distribution of the labels5

at every pixel given the image, enabling sampling multiple plausible label maps.

Because aleatoric uncertainty cannot be reduced by acquiring more data, modelling it explicitly
is crucial in risk-sensitive applications. In medical imaging, the images are often noisy, and the
boundaries between tissue types may not be well defined, which leads to disagreement even be-
tween experts. The ability to automatically generate multiple plausible hypotheses to choose from10

is of high value in applications such as radiotherapy, where trade-offs have to be made about which
anatomical regions to include for invasive treatment. Additionally, providing confidence intervals
alongside tumour boundaries would allow uncertainty to be taken into account when making criti-
cal decisions.

Fully convolutional neural networks (FCNNs) are the state-of-the-art for semantic segmentation (L.15

Chen et al. 2018; Long et al. 2015; Ronneberger et al. 2015). In principle, FCNNs are probabilistic
models, since their output is a set of independent categorical distributions per pixel, parameterised
by a softmax layer. Because these distributions are independent given the last layer’s activations,
sampling from this model would result in spatially incoherent segmentations (grainy label noise
in the uncertain regions). We argue that any method that only produces independent pixel-wise20

uncertainty estimates is unable to generate spatially coherent label maps, and thus incapable of
fully capturing the structured uncertainty.

Recent work extends FCNNs to model the joint distribution over labels given the image, allow-
ing for multiple plausible segmentations (Baumgartner et al. 2019; Kohl, Romera-Paredes, et al.
2019, 2018). These methods have rigid, hierarchical, memory-intensive architectures, loss func-25

tions with manually tuned hyper-parameters, and require one partial forward pass per new sample.
We introduce stochastic segmentation networks (SSNs), a lightweight and flexible alternative that
efficiently captures correlations between pixels by modelling the logit map as a low-rank multi-
variate normal distribution. In contrast with previous approaches, our method is less complex,
achieves higher predictive performance and can generate multiple samples from a single forward30

pass. In addition, it can be used with any existing architecture, and its efficiency makes it applicable
to high-dimensional problems such as 3D imaging.

4.2 Related Work
In data constrained scenarios, Bayesian methods are useful for quantifying epistemic uncertainty
for previously unseen examples. Seminal works by MacKay (1992) and Neal (1993) inspired infer-35
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ence methods in Bayesian deep learning such as Markov chain Monte-Carlo (Ma et al. 2015; Welling
and Teh 2011) and variational inference methods (Blundell et al. 2015; Gal and Ghahramani 2016).
These methods focus on estimating the posterior over the weights of a neural network which al-
lows for estimating epistemic uncertainty independently of the task. Ensemble (Lakshminarayanan
et al. 2017) and multi-head (Lee, Purushwalkam, et al. 2015; Lee, Purushwalkam Shiva Prakash, et5

al. 2016; Rupprecht et al. 2017) methods follow a frequentist approach to modelling the weight
distributions. In the case of label disagreement or noise, defined as aleatoric uncertainty, the issue
is not the lack of data. Still, both uncertainties are complementary. In classification, there is work
on estimating aleatoric uncertainty by predicting Dirichlet distributions (Malinin and Gales 2018,
2019; Sensoy et al. 2018) as well as post-training calibration of the predicted class probabilities10

(Guo et al. 2017; Kull et al. 2019). In segmentation, attempts at quantifying aleatoric uncertainty
on a pixel-wise level (Jungo et al. 2020; Kendall and Gal 2017; Tanno et al. 2017; Wang et al. 2019)
ignore the joint distribution over labels.

Historically, probabilistic graphical models (PGMs) such as conditional random fields (CRFs) (Blake
et al. 2011; Krähenbühl and Koltun 2011) have been used to explicitly model the joint probability15

distribution over labels. However, the inference was mostly limited to predicting the maximum a
posteriori (MAP) estimate. Although there is work on obtaining the M-best diverse solutions for
a given input image (Batra et al. 2012; Kirillov et al. 2015), these models are restricted to a fixed
number of solutions and have computationally expensive inference. Work on combining PGMs and
FCNNs to enforce label dependencies as a post-processing step (Arnab et al. 2018; L. Chen et al.20

2018; Kamnitsas, Ledig, et al. 2017) or even within a single model (Zheng et al. 2015) suffers from
the same limitations as classic PGMs when quantifying aleatoric uncertainty.

Recently, Kohl, Romera-Paredes, et al. (2019, 2018) and Baumgartner et al. (2019) have built on
conditional variational auto-encoders (Kingma and Welling 2014; Sohn et al. 2015) to extend FC-
NNs for modelling spatially correlated aleatoric uncertainty. Hu et al. (2019) extend this framework25

by regressing the uncertainty maps in a supervised manner. Zhu, Zhang, et al. (2017) also make
use of deep generative models for the related task of image-to-image translation with multiple pos-
sible outputs for a single input. These methods encode the image into one or more uncorrelated
multivariate normal latent variables and rely on the decoder to translate the added uncorrelated
stochasticity into meaningful spatial variation. Like variational auto-encoders, these models have30

the flexibility to transform the latent distributions into arbitrarily complex distributions with corre-
lations between pixels. However, the placement of the latent variables within the network means
that one partial forward pass is required for every new sample. Furthermore, this flexibility comes
at the cost of having to use a cumbersome variational inference framework which makes use of a
training-only posterior network and manually tuned hyper-parameters weighing the Kullback-Leibler35

divergence regularisation term of the loss. These overly expressive distributions might not justify
their cost, a more constrained distribution could suffice and allow the use of simpler inference
methods.
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4.3 Methods
4.3.1 Background
We start by analysing the independence assumptions made to obtain the cross-entropy loss typi-
cally used in image segmentation. Consider a standard segmentation problem in which an image,
x, with K channels and S pixels, maps to a one-hot label map of the same size, y, with C classes:5

xi ∈ RK and yi ∈ {0, 1}C for i ∈ {1, . . . , S}. In a classic CNN, the probability of one label,
p(yi|x), is the output of a softmax layer taking as input the logit, ηi. Before any independence
assumptions, the MAP estimate for the negative log-likelihood can be written as:

− log p(y|x) = − log

∫
p(y|η)pϕ(η|x)dη , (4.1)

where pϕ(η|x) is the probability of the logit map given the image under a model with parametersϕ.
To obtain the standard cross-entropy loss, we assume that the logit map is given by a deterministic10

function, η = fϕ(x), which means pϕ(η|x) can be written as:

pϕ(η|x) = δfϕ(x)(η) =
S∏

i=1

δ[fϕ(x)]i(ηi) . (4.2)

Due to this deterministic function, given the image and model, the logits, ηi for i ∈ {1, . . . , S}, are
conditionally independent of each other, i.e., given the image and model, no new information can be
gained about a single logit by observing its neighbours. Secondly, we must assume that the labels,
yi for i ∈ {1, . . . , S}, are independent of each other when given their respective logit:15

p(y|η) =
S∏

i=1

p(yi|η) =
S∏

i=1

p(yi|ηi) . (4.3)

This is a two-part assumption: first, it assumes that labels, yi, are independent of each other
when given the full logit map, η, and second, it assumes that each label, yi, only depends on its
respective logit,ηi, i.e., no new information can be gained about a label by observing the true values
of its neighbours. Incorporating the assumptions of Equations 4.2 and 4.3 into Equation 4.1, and
substituting p(yi|ηi) by a categorical distribution parameterised by the softmax transform of ηi,20

we arrive at the familiar form for the cross-entropy:

− log
S∏

i=1

p(yi|ηi) = − log
S∏

i=1

C∏
c=1

(softmax(ηi)c)
yic = −

S∑
i=1

C∑
c=1

yic log softmax(ηi)c . (4.4)

Whereas in image-level classification these independence assumptions may be valid, in segmen-
tation the labels at each pixel are clearly correlated, which should be taken into account.
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Figure 4.1: Probabilistic graphical model for a two-pixel segmentation problem: (a) neural network;
(b) conditional random field; (c) proposed. x is the image, y the label map and η the logits. Circles
represent random variables and rhombi represent deterministic variables. Shaded variables are
observed and unshaded variables are unobserved.

4.3.2 Stochastic segmentation networks
In this work, we propose using weaker independence assumptions by using a more expressive
distribution over logits. Specifically, we use a multivariate normal distribution whose parameters
are the output of a neural network η|x ∼ N (µ(x),Σ(x)), where µ(x) ∈ RS×C and Σ(x) ∈
R(S×C)2 . A non-diagonal multivariate normal distribution is the simplest distribution that models5

dependencies between pixels. However, the size of the full covariance matrix scales with the square
of the number of pixels times the number of classes making it infeasible to compute for anything
but very small images. For this reason, we use a low-rank parameterisation of the covariance matrix
of the form:

Σ = PP T +D , (4.5)

where the covariance factor, P , is a matrix of size (S × C) × R, where R is a hyper-parameter10

defining the rank of the parameterisation, and D is a diagonal matrix whose diagonal has S × C

elements. Note that the covariance matrix dependencies are not only spatial but also class-wise.
This low-rank parameterisation ensures that the three components describing the distribution: the
mean, covariance factor, and covariance diagonal can be efficiently computed by a neural net-
work.15

By plugging this distribution into Equation 4.1, we no longer assume that logits, ηi, are independent
of each other. However, the integral also becomes intractable because of the softmax transform
on the normal distribution. For this reason, we approximate the integral using Monte-Carlo integra-
tion:

− log

∫
p(y|η)p(η|x)dη ≈ − log

1

M

M∑
m=1

p(y|η(m)), η(m)|x ∼ N (µ(x),Σ(x)) , (4.6)

where M is the number of Monte-Carlo samples used to approximate the integral. Because the20

distribution only has a few degrees of freedom, the Monte-Carlo integral has low variance. Making
use of the assumptions in Equation 4.3 and using the logsumexp operator for numerical stability,
we obtain a loss function which we can back-propagate through using the re-parameterisation
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trick:

− logsumexpM
m=1

(
S∑

i=1

log(p(yi|η(m)
i ))

)
+ log(M), η(m)|x ∼ N (µ(x),Σ(x)), (4.7)

where log(p(yi|η(m)
i )) can be solved as in Equation 4.4. For inference, with a single forward pass,

we can sample from the distribution multiple times to obtain logit maps, which can be transformed
into a probability or label maps. To obtain the most likely logit sample, we use the mean of the
distribution.5

Figure 4.1 shows the probabilistic graphical models of a classic neural network, a CRF and the pro-
posed model. While the neural network does not model dependencies between output labels, the
CRF explicitly models these dependencies at the cost of an expensive inference procedure. In con-
trast, by implicitly modelling label dependencies in the logit space and then making independence
assumptions, we can capture label dependencies while keeping the efficient inference of a neural10

network. The overhead of the proposed method is minimal: it involves using three maps instead
of one at the end of the network, and sampling from a low-rank normal distribution to compute
the loss, which is linear with the rank: O(rank). Thus, the overall cost is largely dominated by the
underlying network.

4.4 Results15

4.4.1 Toy problem
Consider a dataset on a one-dimensional 21-pixel line with one image for which there are two
equiprobable label maps. For both label maps, the first third of the line is labelled 1 (on), and
the last third is labelled 0 (off). However, the middle third is off for the first label map, and on for
the second label map (see visual examples on the far right of Figure 4.2). In this setting, the labels20

of the middle third are uncertain but not independent. Since there is only one input, it is a constant
and hence can be disregarded for further modelling. Thus, the goal of the problem becomes to find
a generative model for the distribution of the two label maps.

A deterministic model would correctly learn the mean of the distribution but would yield implausible
predictions. The first and last thirds would be correct, but the middle third would be arbitrarily fixed.25

For example, if the label maps were not equiprobable, the model would always generate the most
probable one. Next, we consider two stochastic models where the distribution over logits is a
multivariate normal distribution: one with a diagonal covariance matrix and one with a low-rank
covariance matrix (rank = 2). We train these models with gradient descent and the loss function
in Equation 4.7 using 200 Monte-Carlo samples for 10000 iterations. The results are shown in30

Figure 4.2. We observe that the diagonal model is able to learn the mean of the distribution and
even which pixels have higher uncertainty. However, it cannot learn the structure of the noise and
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Figure 4.2: Toy problem results for the diagonal model (a) and a low-rank model (b). For both
sub-figures, from left to right: mean, covariance matrix, and 14 random samples. The mean and
samples are one-dimensional but expanded horizontally for improved visualisation. Colour bars
indicate intensity values.

thus produces samples with uncorrelated noise. In contrast, the low-rank model is able to learn the
correct noise structure and produce samples matching the desired distribution, yielding a higher
log-likelihood, -0.93, when compared to the diagonal model, -4.87.

Caveat: Under our model, we can deduce that the true generative model is as follows: the mean is
zero for the middle third,+∞ for the first third, and−∞ for the last the third. The covariance matrix5

is +∞ for all entries regarding self and cross covariances of pixels in the middle third and zero
elsewhere. This area of infinite covariance caused numerical stability issues since the covariance
quickly grew to infinity producing overflow errors. Furthermore, we found that the covariance grew
much faster than the mean causing the model to get stuck in suboptimal local minima. To address
these issues, we pre-train the mean first and use early stopping to obtain the last model before an10

overflow error occurs. In the real data we used, the only area with infinite covariance is the air in
the background of brain scans. We addressed the issue by masking out the background.

4.4.2 Lung nodule segmentation in 2D
To compare with previous work, we evaluated our model on the LIDC-IDRI dataset (Armato III et al.
2011) using the task defined by Kohl, Romera-Paredes, et al. (2018). The dataset consists of 101815

3D thorax CT scans where four radiologists have annotated multiple lung nodules in each scan. The
dataset was annotated by 12 radiologists, and it is not possible to match an annotation to an expert.
Thus, the four sets of annotations are not self-consistent in “style” across images. Regardless,
this type of data is ideal for validating models which seek to capture the inherent uncertainty in
the data — evident from the disagreement between experts. Kohl, Romera-Paredes, et al. (2018)20

preprocessed the data by extracting 2D slices centred around the annotated nodules. When at
least one expert has segmented a nodule, a slice of the image and four expert segmentations were
extracted. Empty segmentations were introduced when there were less than four annotations for
a slice. This process yielded a dataset of 15096 slices each having four segmentations.

We compared with three baseline models: a deterministic U-Net (Ronneberger et al. 2015), a prob-25
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Figure 4.3: Qualitative results on the LIDC-IDRI dataset for the proposed model trained on four ex-
pert annotations: (a) CT image; (b-e) radiologist segmentations; (f) mean prediction; (g-j) samples.

abilistic U-Net (Kohl, Romera-Paredes, et al. 2018) and the PHiSeg model (Baumgartner et al. 2019)
(the best performing variant reported). We used the pre-processed data provided by Kohl, Romera-
Paredes, et al. (2018) and the code, configurations, and hyper-parameters provided by Baumgartner
et al. (2019). The models were trained for 500000 iterations using the Adam optimiser (Kingma and
Ba 2015) with a learning rate of 0.001 and a batch size of 12. The images were randomly augmented5

through flipping, rotating, and scaling. We implemented our algorithm on top of the provided de-
terministic U-Net with rank = 10 for the low-rank model, and, for comparison, we tested a model
with a diagonal covariance matrix. By using the same backbone, code and hyper-parameters, we
ensured a fair comparison with previous work.

We measured the predictive performance using the Dice Similarity Coefficient,DSC = 2TP
2TP+FN+FP

,10

where TP is true positives, FN is false negatives, and FP is false positives. Even if all four radi-
ologists annotated a nodule, disagreements about its borders combined with the 3D to 2D prepro-
cessing introduce several empty annotations (on average 1.6/4 = 40.4%). A non-empty prediction
on an empty annotation results in a zero towards the averageDSC , heavily penalising it. Therefore,
we also report DSCnod defined as the DSC computed only where the ground-truth annotations15

are not empty. Pixel-wise metrics for uncertainty quantification and calibration are not appropri-
ate for spatially structured prediction such as segmentation. Hence, we used sample diversity to
quantify the amount of uncertainty, and the distance between the expert and predicted distribu-
tions to quantify uncertainty calibration. Given the ground-truth distribution defined by the four
expert segmentations, p, and the predicted distribution, p̂, we measure the distance between the20

two using the generalised energy distance (Kohl, Romera-Paredes, et al. 2018; Székely and Rizzo
2013):

D2
GED(p, p̂) = 2 E

y∼p,ŷ∼p̂
[d(y, ŷ)]− E

y,y′∼p
[d(y, y′)]− E

ŷ,ŷ′∼p̂
[d(ŷ, ŷ′)], (4.8)

where d = 1 − IoU(·, ·), if both segmentations are empty d = 0. In a multi-class setting, we
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Table 4.1: Quantitative results on the LIDC-IDRI dataset for the five models trained on one set and
four sets of annotations. Numbers are presented as mean ± standard error. Arrows in the column
headers indicate the direction of increased performance.

model trained
on

DSC (%) ↑ DSCnod (%) ↑ D2
GED ↓ sample

diversity

deterministic U-Net set 0 37.5 ± 0.4 50.3 ± 0.4 0.698 ± 0.009 0.000 ± 0.000
probabilistic U-Net 38.4 ± 0.4 57.2 ± 0.4 0.516 ± 0.007 0.290 ± 0.004
PHiSeg 39.1 ± 0.4 51.3 ± 0.5 0.456 ± 0.008 0.215 ± 0.003
proposed (diagonal) 37.1 ± 0.4 51.2 ± 0.4 0.734 ± 0.009 0.001 ± 0.000
proposed (low-rank) 40.7 ± 0.4 58.6 ± 0.4 0.365 ± 0.005 0.399 ± 0.004

deterministic U-Net all 35.9 ± 0.4 43.5 ± 0.5 0.607 ± 0.009 0.000 ± 0.000
probabilistic U-Net sets 39.0 ± 0.4 50.6 ± 0.5 0.252 ± 0.004 0.469 ± 0.003
PHiSeg 33.8 ± 0.4 40.3 ± 0.5 0.224 ± 0.004 0.496 ± 0.003
proposed (diagonal) 37.0 ± 0.4 46.2 ± 0.5 0.622 ± 0.009 0.007 ± 0.001
proposed (low-rank) 43.6 ± 0.4 68.5 ± 0.3 0.225 ± 0.002 0.609 ± 0.002

average over the IoU of the individual classes, excluding the background class. We define sam-
ple diversity as Eŷ,ŷ′∼p̂[d(ŷ, ŷ

′)]. Note how both these metrics are bounded between zero and
one.

To measure how models deal with increasing uncertainty in the labels, we trained each model using
only one and all four annotations per image. We divided the data into train, validation and test sets5

(60/20/20%), and trained all models for 500k iterations with the same configuration described in
Baumgartner et al. (2019). For the proposed loss function, we used 20 Monte-Carlo samples. We
computed D2

GED and sample diversity using 100 random samples. The prediction for the proba-
bilistic baselines was obtained by averaging the probability maps of these samples (Baumgartner
et al. 2019). For the proposed model, we used the mean of the logit map distribution. We com-10

puted the DSC between the prediction and the four ground-truths before averaging over sets of
annotations and slices.

Table 4.1 shows the results for the five models and Figure 4.3 shows qualitative results for the
proposed low-rank model trained on four sets of annotations. In terms of predictive performance,
the proposed low-rank model outperformed the baselines for both settings. Of note, our model is15

the only method which benefits from the additional annotations yielding improved predictive per-
formance. For uncertainty calibration, our model yielded the lowest D2

GED except for the PHiSeg
model with four annotations where their performance was comparable. In both settings, the pro-
posed and baseline models obtained some measure of sample diversity, while the diagonal model
nearly collapsed to a deterministic model, yielding very little sample diversity. For reference, the20

diversity between experts is 0.399 ± 0.002.
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We note that the DSC reported for the baseline models is different from what is reported in the
literature because we calculate DSC differently. The DSC (which is equivalent to the F1-score)
reported in our work is lower than the results reported in PHiSeg (Baumgartner et al. 2019). The
authors used a convention where the DSC is 1.0 if both the predicted and ground-truth slices are
empty. We argue that this choice skews results since an algorithm that always predicts an empty5

label map would achieve an average DSC equal to the fraction of empty slices in the dataset,
e.g. if the dataset has 40% of empty slices the average DSC is also 40%. In contrast, we used
the standard definition of DSC , where these cases are undefined and thus excluded from the
calculation of the average DSC . This changes the range of the numbers we report but not the
underlying performance. When we calculated the DSC using the convention used in previous10

literature, we observed the baseline models performance to match that of what was previously
reported in (Baumgartner et al. 2019).

4.4.3 Brain tumour segmentation in 3D
We also applied our method to the BraTS 2017 dataset (Bakas, Akbari, et al. 2017; Bakas, Reyes,
et al. 2018; Menze et al. 2014). This dataset consists of 285 3D multimodal MRI images (four15

channels: T1, T1ce, T2 and Flair) where one radiologist has segmented four classes: background,
non-enhancing/necrotic tumour core (NET), oedema (OD) and enhancing tumour core (ET). We
implemented the proposed method on top of an implementation of DeepMedic (Kamnitsas, Ledig,
et al. 2017; Kingma, Salimans, et al. 2016), a network specifically developed for brain segmentation.
We use rank = 10 for the low-rank model and omit the diagonal only model since it converged to20

a deterministic model. For an ablation study on the impact of the rank on the performance metrics
see Section 4.4.4. The images have a resolution of 1×1×1 mm and a size of 240×240×155

voxels, making them too large to train on whole images. We trained the baseline and proposed
models on image patches of 110 mm3 (1mm3 = 1 voxel), which, since no padding was used, result
in label map patches of 30 mm3. To test the effect of including longer distance dependencies25

between voxels, we also trained the proposed model on image patches of 140 mm3 which result in
label map patches of 60 mm3. Note that, increasing the patch size of the baseline does not change
its behaviour since the model is fully convolutional and its receptive field is 81 mm3 (which is larger
than 60 mm3).

We split the data into training, validation and test sets (60/10/30%) and trained the models for30

Table 4.2: Quantitative results on the BraTS 2017 dataset. Numbers are presented as mean ±
standard error. Arrows in the column headers indicate the direction of increased performance.

model DSCWT (%) ↑ DSCNET (%) ↑ DSCOD (%) ↑ DSCET (%) ↑ D2
GED ↓ sample diversity

Deepmedic 88.2 ± 1.3 60.5 ± 2.9 72.1 ± 2.3 67.3 ± 3.5 0.886 ± 0.043 0.000 ± 0.000
low-rank 30 mm 88.0 ± 1.3 59.3 ± 3.1 71.7 ± 2.3 68.7 ± 3.5 0.635 ± 0.029 0.312 ± 0.014
low-rank 60 mm 88.7 ± 1.3 59.6 ± 3.0 72.4 ± 2.2 69.2 ± 3.5 0.689 ± 0.031 0.217 ± 0.012
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Figure 4.4: Qualitative results on the BraTS 2017 dataset for 30 mm3 model: (a) T1ce slice; (b)
ground-truth segmentation; (c) prediction of deterministic model; (d) prediction of proposed model;
(e) marginal entropy; (f-h) samples. Samples were selected to show diversity.

1200 epochs. At each epoch, we randomly sampled 50 images and extracted 20 patches from
each image. We randomly sampled the patches centred around a lesion or background voxel with
equal probability. We used the RMSProp optimiser (Tieleman and Hinton 2012) with momentum
0.6 and a learning rate of 0.001 which we halved at the following epochs: 440, 640, 800, 900,
980, 1050. For augmentation, we used random elastic deformations, right-angle rotations, flips5

and linear intensity transformations. We used a batch size of 10, except for the 60 mm3 model
where we used a batch size of 4 due to GPU memory constraints. During inference, we stitched
together the patches of the mean, covariance factor and diagonal to build a distribution over the
entire image from which we can sample, this ensures no artefacts appear at patch borders. Due
to the fully convolutional nature of the model, after it is trained, the patch size used for inference10

has no impact on the final result. We measured the DSC of the three lesion classes and the whole
tumour (WT), consisting of all lesion combined. We measured sample diversity and D2

GED using
only 20 samples due to the quadratic dependency on the number of samples and the large image
size. To calculate uncertainty maps, we used the marginal entropy of the categorical distributions
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Figure 4.5: Distribution of sample average class DSC per case. The yellow bars denote the frac-
tion of samples whose DSC is higher than the mean prediction, which is represented by a cross.
The dashed line is the average fraction of samples better than the mean prediction (average height
of the bars).

Figure 4.6: Sample manipulation after inference: (a) T1ce slice; (b) ground-truth segmentation; (c)
sample surrounded by manipulated sample with scaling ranging from -3x to 3x.

predicted for each voxel i:

H[yi|x] = E
x

[
−

C∑
c=1

p(yi = c|x) logC p(yi = c|x)

]
≈ E

x

[
−

C∑
c=1

p̄ic logC p̄ic

]
, (4.9)

where p̄ic = 1
M

∑M
m=1 p(yi = c|η(m)

i ) ≈ Ep(η|x)[p(yi = c|ηi)] = p(yi = c|x).

Table 4.2 shows the quantitative results for the deterministic and stochastic models. The stochas-
tic models had no loss in performance when compared to the deterministic model. Comparing the
two stochastic models, we observe that the added spatial context did not increase performance5

or yield a better-calibrated distribution. Regardless, the amount of needed spatial context is ap-
plication dependent. Figure 4.4 shows qualitative results for six cases for the stochastic 30 mm3

model. We observe entire structures in the segmentation appear and disappear between samples
in regions of high uncertainty (e.g., row 4). Furthermore, mistakes made by the deterministic model
or the stochastic model are corrected in at least one of the samples (e.g., row 2). Lastly, the high10

uncertainty in lesion borders makes them shrink and expand consistently between samples (e.g.,
row 1). For more samples see Figures B.1 – B.4.

Figure 4.5 shows per case sample distributions of the average lesion class DSC (100 samples).
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Figure 4.7: Impact of rank on different performance metrics for the BraTS dataset. Results are
shown as mean and standard error over five random seeds.

As expected, for most cases, the majority of samples are worse than the mean prediction. How-
ever, on average, 26.0% samples are better than the mean prediction (dashed line). When looking
at the best samples, the average (over the dataset) 95% quantile of the average class DSC was
70.3% when compared with the deterministic model average class DSC of 66.8%. This gain is
not uniformly distributed as it tends to be higher for cases with low performance and decrease5

as the performance increases. In addition to being able to sample repeatedly after inference, an-
other advantage of outputting a full distribution is the ability to manipulate samples post-inference.
Since the covariance matrix has entries which are separable per class, by scaling only the part of
the matrix relating to a given class, we are able to manipulate samples to increase or reduce the
presence of that class. This can be used to correct possible mistakes or adjust borders, as shown10

in Figure 4.6. Similarly, we can trade sample diversity for quality by scaling the temperature of the
entire distribution.

4.4.4 Rank ablation study
Intuitively, the rank of the multivariate normal distribution controls the number of independent clus-
ters of pixels that are controlled together, thus, limiting the maximum possible sample complexity.15

In this section, we provide an ablation study of how the rank of the multivariate normal distribution
impacts the performance metrics on the BraTS dataset using models trained on 110 mm image
patches. Figure 4.7 shows the sample diversity, generalised energy distance and average class
DSC for different six rank values: rank ∈ [1, 2, 5, 10, 15, 20]. The results are shown as the
mean and standard error over five random seeds, that is 6 × 5 = 30 total training runs. We ob-20

serve that as long as the rank is greater than one, there seems to be no clear relation between the
rank and the performance metrics. From Figure 4.8, we see that increasing the rank increases the
visual sample complexity, with more intricate structures appearing. Even though we haven’t quan-
tified sample complexity, we speculate that the increase in sample complexity does not improve
performance because the structure of the aleatoric uncertainty in this dataset is very simple. This25

property is dataset-specific, which should be taken into account when choosing the rank for a new
dataset.
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Figure 4.8: Visual impact of rank on samples for one case. Each row represents a model with
different rank, and each column a different sample. Rank is increasing from top to bottom: rank ∈
[1, 2, 5, 10, 15, 20].

4.4.5 Application to generative models
This section is based on the following publication:

• Langley, J., Monteiro, M., Jones, C., Pawlowski, N., and Glocker, B. (2022). “Structured
Uncertainty in the Observation Space of Variational Autoencoders”. In: Transactions on
Machine Learning Research

The publication is a result of JL master thesis project. JL applied the core idea of SSNs to
generative modelling with VAEs. MM and BG came up with the idea. JL implemented the
idea, developed the code and performed the experiments. CJ helped JL with the experiments.
MM, NP and BG provided guidance throughout the project. JL, CJ, MM and BG co-wrote the
publication’s manuscript. BG secured the funding.

Code available at:

• https://github.com/biomedia-mira/sos-vae

The flexibility of the proposed approach means we can easily transfer it to other image tasks where
modelling dependencies between pixels would be beneficial, such as image generation. One of
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the most used and widespread classes of generative models is the Variational Autoencoder (VAE)
(Kingma and Welling 2014). VAEs explicitly model the distribution of observations by assuming a
latent variable model with low-dimensional latent space that is mapped to the observation space
using a neural network decoder. This flexibility allows us to model arbitrarily complex observa-
tional distributions. However, one often-overlooked aspect is the choice of observational distribu-5

tion. As an explicit likelihood model, the VAE assumes a distribution in observation space. The
default choice for modelling natural images is a set of per-pixel independent normal distributions
or, equivalently, a multivariate normal distribution with a diagonal covariance matrix. As we have
demonstrated, sampling from this distribution would lead to grainy independent pixel noise, which
results in poor image fidelity in the case of image generation.10

Motivated by the above, we apply the same low-rank covariance matrix to the observational dis-
tribution of the VAE. The only modification necessary is a simplification. In the case of image
generation, the target variable is continuous, as opposed to discrete in segmentation. As a result,
we can compute the likelihood in closed form using the expression for the multivariate normal
likelihood without using Monte Carlo estimation as we had to in segmentation.15

The likelihood of a multivariate normal distribution with k dimensions distribution is given by:

p(x) = (2π)−
k
2 det(Σ)−

1
2 exp(−1

2
(x− µ)TΣ−1(x− µ)). (4.10)

To calculate the likelihood of a multivariate normal distribution, we must invert the covariance ma-
trix and compute its determinant. For a full-rank covariance matrix, the computational cost and
memory footprint make this infeasible for all except very small images since these costs scale
quadratically with image size. However, with the low-rank parametrisation, the full matrix never20

needs to be used directly. The inverse and determinant of the covariance matrix can be efficiently
computed using the Woodbury matrix identity (Max 1950) and the matrix determinant lemma, re-
spectively. Since both the covariance factor and the diagonal elements scale linearly with the size
of the image, the computational costs of computing the log-likelihood scales linearly as well, in
contrast to a full-rank covariance matrix where costs increase quadratically.25

Figure 4.9 shows an example of images generated from a standard VAE when sampling from the
pixel-wise independent observational distribution compared to samples from a VAE with a low-
rank multivariate normal observational distribution. As we can see, regardless of other modelling
choices, sampling from the observational distribution will result in spatially-incoherent samples
with independent pixel noise unless we properly model the joint pixel distribution.30
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Figure 4.9: Top: Samples generated by sampling from the observational distribution of a standard
VAE. Bottom: Samples generated by sampling from a VAE with a low-rank multivariate normal
observational distribution. We can see the pixel-wise independent noise on the top and the spatially
coherent samples on the bottom.

4.5 Discussion
We introduced an efficient approach for modelling spatially correlated aleatoric uncertainty in seg-
mentation. We have shown that our method outperforms the baselines while being much sim-
pler, improves predictive performance with added uncertainty, and the samples it generates can
be better than those of a deterministic approach. The simplicity of the method enables it to be5

easily implemented over any existing neural network architecture, which enabled its use in a 3D
application, something which had previously not been attempted. The ability to generate multiple
plausible hypotheses post-inference is of value in human-in-the-loop scenarios, such as radiology,
where a human could manipulate the segmentation semi-automatically according to the model’s
uncertainty. Furthermore, even in fully-autonomous systems such as autonomous vehicles being10

able to reason about spatially correlated uncertainty is essential. For example, uncertainty about
whether a region is a pedestrian or not should be correlated over all pixels in the region.

Proper uncertainty quantification is crucial to increase trust and interpretability in deep learning
systems, which is of particular importance in healthcare applications. Reliable uncertainty esti-
mates could help inform clinical decision making, and importantly, provide clinicians with feed-15

back on when to ignore automatically derived measurements. Moreover, uncertainty estimates
could be propagated to downstream clinical tasks such as radiotherapy planning, e.g., the amount
of radiation delivered to each anatomical region. In medicine, the notion of a second opinion is
well established and an essential part of scrutinising the decision process. The ability to gen-
erate and manipulate multiple plausible hypotheses could be of great benefit in semi-automatic20
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settings, such as machine aided image segmentation, and help minimise the risk of missing im-
portant modes of the target distribution. A complementary prediction might be contradictory yet
still very informative.
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Chapter 5

Measuring axiomatic soundness of
counterfactual image models

This chapter is based on the following publication:

• Monteiro, M., Ribeiro, F. D. S., Pawlowski, N., Castro, D. C., and Glocker, B. (2023). “Measur-
ing axiomatic soundness of counterfactual image models”. In: The Eleventh International
Conference on Learning Representations

MM developed the idea. MM did the implementation and experiments for the MNIST and 3d
shapes datasets. FRdS did the implementation and experiments for the Celeb-A dataset. MM
wrote the manuscript with the help of FRdS. FRdS, NP, DCC and BG provided useful discus-
sion and feedback to MM on the method, experiments and manuscript. BG secured the fund-
ing.

5.1 Introduction5

Faithfully answering counterfactual queries is a key challenge in representation learning and a cor-
nerstone for aligning machine intelligence and human reasoning. While significant advances have
been made in causal representation learning, enabling approximate counterfactual inference, there
is surprisingly little methodology available to assess, measure, and quantify the quality of these
models.10

The structural causal model (SCM) is a mathematical tool that describes causal systems. It of-
fers a convenient computational framework for operationalising causal and counterfactual infer-
ence (Pearl 2009). An SCM is a set of functional assignments (called mechanisms) that represent
the relationship between a variable, its direct causes (called parents) and all other unaccounted
sources of variation (called exogenous noise). In SCMs, we assume that the mechanisms are al-15

gorithmically independent of each other. Further, in Markovian SCMs, which we can represent by
DAGs, we assume that the exogenous noise variables are statistically independent of each other
(Peters et al. 2017). From here on out, by SCM, we mean Markovian SCM. When the functional form
of a mechanism is unknown, learning it from data is a prerequisite for answering counterfactual
queries (Bareinboim et al. 2022).20
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In the context of high-dimensional observations, such as images, the power and flexibility of deep
generative models make them indispensable tools for learning the mechanisms of an SCM. How-
ever, these same benefits make model identifiability impossible in the general case (Khemakhem et
al. 2020; Locatello, Bauer, et al. 2020; Peters et al. 2017), which can cause entanglement of causal
effects (Pawlowski 2021) and lead to poor approximations of the causal quantities of interest. Re-5

gardless, even if the model or counterfactual query is unidentifiable, we can still measure the quality
of the counterfactual approximation (Pearl 2010). However, evaluating image-counterfactual mod-
els is challenging without access to observed counterfactuals, which is unrealistic in real-world
scenarios.

In this paper, we focus on what constraints a counterfactual inference model must satisfy and10

how we can use them to measure the model’s soundness without having access to observed coun-
terfactuals or the SCM that generated the data. We begin by framing mechanisms as functional
assignments that directly translate an observation into a counterfactual, given its parents and coun-
terfactual parents. Next, we use Galles and Pearl 1998’s axiomatic definition of counterfactual to
restrict the space of possible functions that can represent a mechanism. From these constraints,15

we derive a set of metrics which we can use to measure the soundness of any arbitrary black-box
counterfactual inference engine. Lastly, we show how simulated interventions can mitigate model
estimation issues due to confounding.

5.2 Related Work
Representation learning aims to capture semantically meaningful disentangled factors of variation20

in the data. Arguably, these representations can provide interpretability, reduced sample complex-
ity, and improved generalisation (Bengio et al. 2013). From a causal perspective, these factors
should represent the parents of a variable in the SCM (Schölkopf et al. 2021). Although there has
been extensive research into unsupervised disentanglement (C. P. Burgess et al. 2018; R. T. Chen
et al. 2018; Higgins et al. 2017; H. Kim and A. Mnih 2018; Kumar et al. 2018; Peebles et al. 2020),25

recent results (Locatello, Bauer, et al. 2020) reaffirm the impossibility of this task since the true
causal generative model is not identifiable by observing a variable in isolation (Peters et al. 2017). In
contrast, supervised disentanglement, where we observe the variable’s parents, and weakly super-
vised disentanglement, where we observe “real” counterfactuals, can lead to causally identifiable
generative models (Locatello, Bauer, et al. 2020).30

The integration of causal considerations has led to the emerging field of causal representation
learning (Schölkopf et al. 2021). In the supervised setting, extensive research has been conducted
in adapting deep models for individualised treatment effect estimation (Jesson et al. 2020; Louizos
et al. 2017; Madras et al. 2019; Shi et al. 2019; M. Yang et al. 2021; Yoon et al. 2018). Notably,
Louizos et al. (2017) use deep latent variable models to estimate individualised and population-35

level treatment effects. M. Yang et al. (2021) use deep latent variable models for learning to trans-
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form independent exogenous factors into endogenous causes that correspond to causally related
concepts in the data. In the weakly-supervised setting, recent work has focused on using observa-
tions of “real”-counterfactuals instead of a variable’s parents to obtain disentangled representations
(Bouchacourt et al. 2018; Hosoya 2019; Locatello, Poole, et al. 2020; Shu et al. 2020). Besserve,
Mehrjou, et al. (2020) and Besserve, Sun, et al. (2021) show how relaxing identifiability constraints5

can lead to some degree of identifiability in unsupervised settings.

In the context of image counterfactuals, Pawlowski et al. (2020) demonstrate how to jointly model
all the functional assignments in an SCM using deep generative models. Despite presenting a gen-
eral theory for any generative model, the authors implement only VAEs (Kingma and Welling 2014;
Rezende et al. 2014) and normalising flows (Papamakarios et al. 2021), which Dash et al. (2022)10

complement by using GANs (Goodfellow, Pouget-Abadie, et al. 2020). Sanchez and Tsaftaris (2022)
use diffusion models for the counterfactual estimation. Looveren and Klaise (2021) use class pro-
totypes for finding interpretable counterfactual explanations. Sauer and Geiger (2021) use a deep
network to disentangle object shape, object texture and background in natural images. Parascan-
dolo et al. (2018) retrieve a set of independent mechanisms from a set of transformed data points15

in an unsupervised manner using multiple competing models. Additionally, many image-to-image
translation models can be considered informal counterfactual inference engines (Choi et al. 2018;
J. Hoffman et al. 2018; Isola et al. 2017; D. Li et al. 2021; M.-Y. Liu et al. 2017; Zhu, Park, et al.
2017).

The flexibility of deep models makes them susceptible to learning shortcuts (Geirhos et al. 2020).20

Consequently, when the data is biased, the effects of the parents can become entangled (Pawlowski
2021; Rissanen and Marttinen 2021). These issues create identifiability problems even when ac-
counting for causality in representation learning. Simulating interventions through data augmen-
tation or resampling can be used to debias the data (An et al. 2021; Ilse et al. 2021; Von Kügelgen
et al. 2021). In a closely related field, research has focused on learning from biased data (Nam et al.25

2020) or how to become invariant to a protected/spurious attribute (B. Kim et al. 2019).

From an algorithmic perspective of causality, Janzing and Schölkopf (2010) show how looking at
the causal Markov condition in terms of conditional algorithmic independence allows causal infer-
ence with only one observation (a non-statistical scenario). Even though algorithmic independence
is a more fundamental principle than statistical independence, in the general case, algorithmic30

mutual information (a.k.a. joint Kolmogorov complexity) is provably intractable due to the halting
problem.

5.3 Methods
Generating counterfactuals is commonly performed in multiple steps. First, we abduct the exoge-
nous noise from the observation and its parents. Second, we act on some parents. Finally, we use35
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a generative model to map the exogenous noise and the counterfactual parents back to the obser-
vation space. For deep models, true abduction is impossible in the general case, and identifiability
issues are ubiquitous (Khemakhem et al. 2020; Locatello, Bauer, et al. 2020; Peters et al. 2017).
There can exist multiple models capable of generating the data, and the true causal model cannot
be identified from data alone. We argue that viewing counterfactual inference engines as black5

boxes, where we focus on what properties the model’s output must obey rather than the model’s
theoretical shortcomings, leads us to a set of actionable and principled model constraints. While
a full causal model of the data generation process is necessary to create new samples from a
joint distribution, in many applications, we are only interested in generating counterfactuals for
real observations. In this case, we can directly model the mapping between observation and coun-10

terfactual. We call this mapping a counterfactual function in which we consider the abduction to
be an implicit process rather than an explicit step in the counterfactual inference.

5.3.1 Counterfactual Functions
Let x be a random variable (i.e., the observation) with parents pa, x∗ a counterfactual of x with
parentspa∗, and ϵ the exogenous noise variable pertaining to x. The functional assignment for x is15

given by x := g(ϵ,pa), and for its counterfactual by x∗ := g(ϵ,pa∗). Conceptually, counterfactual
reasoning is a three-step process: 1) Abduction: infer the exogenous noise from the observation
and its parents; 2) Action: intervene on the targeted parents; 3) Prediction: propagate the effect of
the intervention through the modified model to generate the counterfactual (Pearl 2009). However,
when the values for all the counterfactual parents are known, abduction, action and prediction do20

not need to be performed sequentially but can be formulated as a single functional assignment
taking as arguments the observation, the parents and the counterfactual parents, as formalised in
the following.

The abduction process involves inverting the mechanism with respect to the exogenous noise
ϵ := g−1(x,pa). In general, the mechanism is not invertible since there might be several possible25

counterfactuals corresponding to the same observation. In other words, the inverse mapping is not
deterministic since an observation induces a distribution over the exogenous noise, which induces
a distribution over possible counterfactuals: ϵ ∼ P (ϵ|x,pa) =⇒ x∗ ∼ P (x∗ |x,pa). Equiva-
lently, we can formulate abduction as a deterministic functional assignment ϵ := abduct(x,pa)

where the abduction function is drawn from a distribution over functions abduct ∼ P (abduct).30

We can rewrite the functional assignment for the counterfactual as x∗ := g(abduct(x,pa),pa∗)

and obtain an equivalent expression by introducing a new function with the same argumentsx∗ := f(x,pa,pa∗),
where f ∼ P (f). We call these functions counterfactual functions and denote the abduction as im-
plicit since a value for the exogenous noise ϵ is never explicitly produced. Notice how abduct and
f do not depend on the data due to the independence of cause and mechanism (Peters et al. 2017,35

Sec. 2.1).
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5.3.1.1 Function properties from axiomatic definition of counterfactuals

To determine the properties of such functions, we review Pearl’s axiomatic definition of counterfac-
tuals (Pearl 2009, Sec. 7.3.1). The soundness theorem states that the properties of composition,
effectiveness and reversibility hold true in all causal models (Galles and Pearl 1998). The complete-
ness theorem states that these properties are complete (Halpern 2000). Together these theorems5

state that composition, effectiveness and reversibility are the necessary and sufficient properties
of counterfactuals in any causal model. With this in mind. We aim to construct a functional system
that obeys these axioms.

Effectiveness: Intervening on a variable to have a specific value will cause the variable to take on
that value. Thus, suppose Pa(·) is an oracle function that returns the parents of a variable, then10

we have the following equality: Pa(f(x,pa,pa∗)) = pa∗.

Composition: Intervening on a variable to have the value it would otherwise have without the in-
tervention will not affect other variables in the system. This implies the existence of a null trans-
formation f(x,pa,pa) = x since if pa∗ = pa, then x is not affected.

Reversibility: Reversibility prevents the existence of multiple solutions due to feedback loops. In15

recursive systems such as DAGs, it follows trivially from composition. However, in the general
case, these properties are independent. If setting a variable A to a value a results in a value b for a
variable B, and setting B to a value b results in a value a for A, then A and B will take the values a
and b. If a mechanism is invertible, taking a twin network conception of the SCM (see Pearl 2009,
Sec. 7.1.4) and replacing the previous variables with the observation x and its counterfactual x∗, it20

follows that if x∗ := f(x,pa,pa∗), then x = f(x∗,pa∗,pa). In other words, the mapping between
the observation and the counterfactual is deterministic for invertible mechanisms. Otherwise, there
would be a feedback loop. See Appendix C.1 for proof.

5.3.1.2 Partial counterfactual functions

We can also consider partial counterfactual functions, which model the effect of a single parent25

on the observation independently of all other causes. These partial interventions allow us to de-
compose an intervention into steps whereby a single parent is changed while holding the remain-
ing parents fixed. Each step acts on all parents, but only one parent changes value at a time:
x∗ = fk(x, pak, pa

∗
k), where pa∗ = paK\k ∪ {pa∗k}. Notice that this is still an intervention on

all parents, in contrast with atomic interventions where only one variable is intervened upon and30

all others updated according to the SCM. These partial functions can be obtained by taking a full
counterfactual function and fixing all parents to their initial values except one fk(x, pak, pa

∗
k) =

f
(
x,paK\k ∪ {pak},paK\k ∪ {pa∗k}

)
, or they can directly implicitly infer the values of the fixed

parents, as shown in Section 5.3.1.4.
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5.3.1.3 Partial counterfactual function decomposition

We show that a full intervention can be decomposed into a sequence of partial interventions and
that the partial functions must obey the commutative property. Using the process described in
Section 5.3.1, we can write a partial counterfactual function as: x∗ := fk(x, pak, pa

∗
k) where

fk ∼ P (fk). Since the output of fk(·) is counterfactual of x, all the properties from Section 5.3.1.15

still apply. Repeating the process for each parent results in a set of independent partial functions al-
lowing us to write the full counterfactual function as a composition of multiple independent partial
functions:

x∗ :=
[
fK( · , paK , pa∗K) ◦ . . . ◦ f2( · , pa2, pa∗2) ◦ f1( · , pa1, pa∗1)

]
(x) (5.1)

By construction, each partial function models the effect of a single parent on the observation in-
dependently of other parents. As a result, the decomposition in Equation 5.1 must be commuta-10

tive.

5.3.1.4 Learning partial counterfactual functions from data

pa

x

ϵ

x∗

pa∗

(a) Twin network SCM of a mecha-
nism

pak paK\k

ζk

ϵ

x x∗

pa∗k

(b) Twin network SCM with target
parent separated

pak paK\k

ζk

ϵ

x x∗

pa∗k

(c) Twin network SCM after inter-
vention

Figure 5.1: Process of making a parent independent of the remainder using twin network SCMs
and interventions.

Figure 5.1a shows a causal graph for a single mechanism, where there can exist unknown arbitrary
causal links between the variable’s parents. Suppose we take the endogenous causes of x and
convert all but one into exogenous causes resulting in the causal graph in Figure 5.1b. The bidirec-15

tional arrow between the endogenous parent pak and the now exogenous parents paK\k denotes
the unknown causal relationships between them. This manipulation results in a “partial” mech-
anism x∗ := gk(ζk, pak) where only one parent is endogenous and thus susceptible to action.
The remaining parents and the previous exogenous noise are grouped into a new noise variable
ζk := g−1

k (x, pak). However, due to the dependence between the target parent pak and the unob-20

served exogenous parentspaK\k , abducting ζk is impossible. The path between ζk and pak breaks
the assumption of independent exogenous noise variables, making it impossible to separate the
effects of endogenous and exogenous causes. The mechanism induced by ζk now depends on the
cause pak since ζk ⊥̸⊥ pak , violating the principle of independent causal mechanisms.

To preserve the principle of independent causal mechanisms, we must first make pak independent25
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of the remaining parents paK\k. Since the causal direction between pak and paK\k is unknown,
we intervene on both these variables, thus guaranteeing their link is severed. The modified SCM is
shown in Figure 5.1c, where abduction is now possible since the mechanism no longer depends on
the cause. Because there are no backdoor paths between pak and ζk , using do-calculus Pearl 2009,
we have that P (ζk |x, do(pak)) = P (ζk |x, pak). Since x∗ depends on x via ζk the distribution5

over potential counterfactuals P (x∗ |x, pak) remains unchanged after the intervention. After the
intervention, we can learn the partial counterfactual function without confounding being an issue.
The partial function changes one parent while holding the remainder fixed since these are now part
of the exogenous noise.

5.3.2 Measuring soundness of counterfactuals10

We now distinguish between the ideal counterfactual function f(·) and its approximation f̂(·). We
consider a scenario where we want to evaluate how good our estimate of a counterfactual function
is from observational data alone, without access to observed counterfactuals. Using the axiomatic
properties described in Section 5.3.1.1, we can derive a set of soundness metrics that compare the
approximate and ideal models.15

Composition: Since the ideal model cannot change an observation under the null transformation,
we can measure how much the approximate model deviates from the ideal by calculating the dis-
tance between the original observation and the mth time null-transformed observation. The re-
peated application of the function will highlight what types of corruptions the approximate model
produces on the observation. Given a distance metric dX(·, ·), such as the l1 distance, an obser-20

vation x with parents pa and a functional power m, we can measure composition as:

composition(m)(x,pa) := dX

(
x, f̂(m)(x,pa,pa)

)
. (5.2)

See Section C.2 for a discussion on desirable metric properties.

Reversibility: When a mechanism is invertible, the ideal model must be cycle-consistent. Thus we
can measure reversibility by calculating the distance between the original observation and the mth
time cycled-back transformed observation. Setting p̂(x,pa,pa∗) := f̂

(
f̂(x,pa,pa∗),pa∗,pa

)
.25

Given a distance metric dX(·, ·), an observation x with parents pa and a functional power m, we
can measure reversibility as:

reversibility(m)(x,pa,pa∗) := dX

(
x, p̂(m)(x,pa,pa∗)

)
. (5.3)

Note that in most real-world scenarios, the inherent uncertainty regarding exogenous factors makes
it hard to determine whether the true mechanism is invertible.

Effectiveness: Unlike composition and reversibility, which we can measure independently of the30

data distribution, effectiveness is difficult to measure objectively without relying on data-driven
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methods or strong domain knowledge. We propose measuring effectiveness individually for each
parent by creating a pseudo-oracle function P̂ak(·), which returns the value of the parent pak given
the observation. These functions can be human-made programs or machine learning models learnt
from data via classification/regression. The inevitable limitation of the data-driven approach is the
approximation error. Moreover, we must be especially cautious in the presence of confounded par-5

ents to ensure that the pseudo-oracles do not exploit shortcuts and correctly retrieve the desired
parent. To independently measure how well the effect of each parent is modelled, we measure
effectiveness after applying partial counterfactual functions (see Section 5.3.1.2). Using an appro-
priate distance metric dk(·, ·), such as accuracy for discrete variables or l1 distance for continuous
ones, we measure effectiveness for each parent as:10

effectivenessk(x,pa,pa
∗) = dk

(
P̂ak

(
f̂k(x, pak, pa

∗
k)
)
, pa∗k

)
. (5.4)

5.3.3 Simulated Interventions
When learning deep models from biased data, we must be careful not to allow the model to learn
shortcuts which do not reflect the true causal relationships in the data. While some generative
models have inductive priors that make them more robust to confounding (Higgins et al. 2017; D. Li
et al. 2021), discriminative models are quite brittle (Geirhos et al. 2020). The causal approach to15

address confounding is to break the offending causal links in the SCM via an intervention, removing
the possibility of learning shortcuts by de-biasing the data.

Consider the joint distribution of the data P (x,paK\k, pak) = P (x|pak,paK\k)P (pak,paK\k),
where K is the set of all parents of x. If we perform a soft intervention (see Peters et al. 2017,
Sec. 3.2) where we set pak andpaK\k to their respective marginal distributions, we obtain an inter-20

ventional distribution where pak and paK\k are independent. The joint distribution now factorises
as:

P do(pak∼P (pak);paK\k∼P(paK\k))(x,paK\k, pak) = P (x|paK\k, pak)P (pak)P (paK\k) (5.5)

In the absence of interventional data, we use simulated interventions by resampling the data – note
that this is only possible when the observed joint distribution has full support over the product of
marginals. We sample pak andpaK\k according to their respective marginal distributions and then25

randomly sample an observation conditioned on the sampled parent values. To make all parents
independent of each other, following the same logic, we can sample each parent independently
according to its marginal distribution.
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5.3.4 Deep generative models as approximate counterfactual func-
tions

In this section, we discuss two generative models commonly used as approximate counterfactual
inference engines.

Conditional VAE: The evidence lower bound for a classic conditional VAE (Higgins et al. 2017;5

Kingma and Welling 2014) with a β penalty is given by:

ELBOβ(θ, ω) = Eqθ(z|x,pa)[log pω(x|z,pa)]− β DKL[qθ(z |x,pa)∥ p(z)], (5.6)

where qθ(z |x,pa) is a normal distribution parameterised by a neural network encoder with pa-
rameters θ, pω(x|z,pa) is a set of pixel-wise independent Bernoulli or Normal distributions pa-
rameterised by a neural network decoder with parameters ω, and p(z) is an isotropic normal prior
distribution. The model is trained by maximising the ELBO with respect to parameters of the neu-10

ral networks using the re-parametrisation trick to sample from the approximate latent posterior:
z = µθ(x,pa) + σθ(x,pa)⊙ ϵz where ϵz ∼ N (0, I). The construction of the conditional VAE
naturally leads to a composition constraint via the likelihood term. Even though the model can
ignore the conditioning, using a bottleneck or a β penalty pushes the model towards using the
conditioning, thus enforcing effectiveness, making the conditional VAE a natural choice for a coun-15

terfactual model.

We can produce counterfactuals by encoding an observation and its parents, sampling the latent
posterior, and then decoding it along with the counterfactual parents: x∗ ∼ pω(x|z,pa∗), where
z ∼ qθ(z |x,pa). Rewriting the previous expression as: x∗ := f̂θ,ω(x,pa,pa

∗) where f ∼ P (̂f),
we see the parallels to the formulation in Section 5.3.1. Even though it is possible to generate new20

samples from the model by sampling z, the VAE is not a full causal generative model. The latent
variable z is not the same as the exogenous noise of the SCM ϵ. There are no guarantees that
z ⊥⊥ pa|x or that the exogenous noise would be normally distributed. Furthermore, there are no
guarantees that the forward model (decoder) can disentangle the effects of each parent on the
observation.25

Conditional GAN with a composition constraint: Given a joint distribution x,pa ∼ P (x,pa) and
the marginal distribution of each parent pak ∼ P (pak), if we independently sample each par-
ent according to its marginal and perform an intervention, we obtain an interventional distribution
x,pa ∼ P do(x,pa), where the parents are independent of each other pa ∼

∏
k P (pak). We

can obtain this distribution via a simulated intervention or by applying a counterfactual function30

to samples of a source distribution P src(x,pa), which can be the joint or the interventional dis-
tribution itself. Since these distributions must be equal, we can use GANs to minimise statistical
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divergence between the two (Goodfellow, Pouget-Abadie, et al. 2020; Nowozin et al. 2016):

F (θ, ω) = E
x,pa∼P do(x,pa)

[
log
(
Dω(x,pa)

)]
− E

x,pa∼P src(x,pa)
pa∗k∼P (pak)

[
log
(
1−Dω

(
f̂θ(x,pa,pa

∗),pa
))]

,

(5.7)
where the conditional generator f̂θ(x,pa,pa∗) is a neural network parameterised by θ which ap-
proximates the counterfactual function, Dω is the critic function parameterised by parameters ω,
and F (θ, ω) is minimised with respect to θ and maximised with respect to ω.

Unlike VAEs, GANs have no inherent mechanism to enforce composition; thus, we introduce a com-5

position constraint which encourages the null transformed observation to be close to the original
observation. Given distance metric d(·, ·) such as the l2 distance, we can write the following reg-
ulariser, which we add to the GAN objective:

Rcomposition(θ) = E
x,pa∼P src(x,pa)

d
(
x, f̂θ(x,pa,pa)

)
. (5.8)

Similarly, for invertible mechanisms, we can add a reversibility constraint. However, early exper-
iments proved it redundant while adding computational cost. The proposed GAN model has no10

distribution over functions, which is equivalent to assuming that the exogenous noise posterior
P (ϵ|x,pa) is delta distributed. Although this is a strong assumption, assuming a normal poste-
rior as is done in the VAE is also restrictive. Both are unlikely to be a good approximation of the
true noise distribution in most real-world scenarios.

5.4 Results15

We now demonstrate the utility of our evaluation framework by applying it to three datasets that
pose different modelling challenges. For demonstration purposes, we assume invertible mecha-
nisms so we can use the reversibility metric.

5.4.1 Colour MNIST
To illustrate the effect confounding has on counterfactual approximation, we construct a simple20

experiment using the MNIST dataset (LeCun, Bottou, et al. 1998) where we introduce a new parent:
the digit’s hue. We colour each image by triplicating the grey-scale channel, setting the saturation
to 1 and setting the hue to a value between 0 and 1. The hue value is given by one of three possible
SCMs:

• Unconfounded: where we draw the hue from a uniform distribution independently of the digit:25

hue ∼ Uniform(0, 1);

• Confounded without full support: where the hue depends on the digit but the joint distribution
does not have full support: hue ∼ N (digit/10 + 0.05, σ), where σ = 0.05;
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• Confounded with full support: like the previous scenario except we include a percentage
of outliers where the hue is drawn independently of the digit in order to ensure the distri-
bution has full support: b ∼ Bernoulli(p) and hue ∼ N (digit/10 + 0.05, σ) if b = 0 else
hue ∼ Uniform(0, 1), where σ = 0.05 and p = 0.01.

Figure 5.2 shows the joint distribution of digit and hue for the three SCMs, and Figure 5.3 shows5

samples from the confounded and unconfounded joint distributions.

We compare the counterfactual soundness of the following models: a VAE with Bernoulli log-
likelihood and β = {1, 2}, a VAE with Normal log-likelihood with a fixed variance of 0.1 and β = 5,
and a conditional GAN with a composition constraint. To obtain lower bounds for the soundness
metrics, we include two models which, by design, cannot perform abduction: the identity function10

and a VAE without the encoder at inference time (Bernoulli VAE, β = 1).

Listings C.1 and C.2 show the architectures of the VAE and GAN respectively. We trained the models
for 20000 steps with a batch size of 512. For the VAE, we used the AdamW (Loshchilov and Hutter
2019) optimiser with a learning rate of 0.001, β1 = 0.9, β2 = 0.999 and weight decay = 0.0001.
For the GAN, we used the same optimiser with a learning rate of 0.0001, β1 = 0, β2 = 0.9 and15

weight decay = 0.0001. The learning rate is multiplied by 0.5 at 12000 steps and again multiplied
by 0.2 at 16000 steps. Listing C.3 shows the architecture for pseudo-oracles. We trained the
pseudo-oracles for 2000 steps with a batch size of 1024 using the AdamW (Loshchilov and Hutter
2019) optimiser with a learning rate of 0.0005, β1 = 0.9, β2 = 0.999 andweight decay = 0.0001.
For data augmentation we used random translations where the amount of horizontal and vertical20

translation is sampled uniformly from 0 to 10% of the width/height of the image.

For the confounded scenarios, we perform a simulated intervention to break the causal link be-
tween digit and hue. Since the hue is a continuous variable, to simulate the intervention, we cal-
culate the histogram of its marginal distribution (5 bins) and resample it as if it were a discrete

(a) Unconfounded joint distribu-
tion.

(b) Confounded joint distribution
without full support.

(c) Confounded joint distribution
with full support.

Figure 5.2: Colour MNIST joint distribution of digit and hue for different SCMs.
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(a) Samples from the unconfounded joint distribu-
tion.

(b) Samples from the confounded joint distribution.

Figure 5.3: Colour MNIST samples.

Table 5.1: Soundness metrics on colour MNIST over 5 random seeds. We measure composition
after the null intervention and reversibility after one intervention cycle. We measure effectiveness
using digit accuracy and hue absolute error in percentage points since hue ∈ [0, 1]. * GAN always
requires simulated intervention for target distribution and thus cannot be trained w/o full support.

dataset
inter-
ven-
tion

model
null-intervention digit intervention hue intervention

composition effectiveness reversibility effectiveness reversibility
l
(1)
1 ↓ accdigit(%) ↑ aehue(%) ↓ l

(1)
1 ↓ accdigit(%) ↑ aehue(%) ↓ l

(1)
1 ↓

un-
con-
found-
ed

- Identity 0.00 10.50 1.38 0.00 99.18 32.98 0.00

- VAE w/o encoder 19.04 (0.09) 97.08 (0.25) 1.32 (0.05) 19.04 (0.09) 97.24 (0.26) 1.32 (0.06) 19.04 (0.09)

- Bernoulli VAE β=1 5.98 (0.06) 98.68 (0.13) 1.29 (0.04) 7.67 (0.06) 99.45 (0.09) 1.26 (0.05) 7.24 (0.05)

- Bernoulli VAE β=2 6.86 (0.07) 99.52 (0.07) 1.33 (0.15) 9.10 (0.12) 99.60 (0.04) 1.32 (0.15) 8.62 (0.11)

- Normal VAE β=5 6.26 (0.29) 97.24 (0.26) 1.52 (0.28) 8.07 (0.26) 99.38 (0.06) 1.47 (0.27) 7.51 (0.32)

- GAN 4.92 (0.05) 94.28 (1.01) 1.60 (0.22) 9.22 (0.27) 98.98 (0.05) 1.55 (0.23) 5.60 (0.03)

con-
found-
ed
w/o
full
support

no
Bernoulli VAE β=1 9.20 (1.31) 97.12 (1.05) 10.74 (4.77) 11.42 (1.49) 98.89 (0.16) 11.60 (6.14) 11.11 (1.61)

Bernoulli VAE β=2 10.84 (0.45) 98.94 (0.17) 10.36 (1.39) 12.82 (0.45) 99.17 (0.05) 10.07 (1.39) 12.52 (0.41)

Normal VAE β=5 11.21 (0.63) 94.74 (0.51) 14.17 (2.63) 13.32 (0.62) 98.81 (0.22) 14.27 (3.03) 12.69 (0.59)

yes
Bernoulli VAE β=1 8.63 (0.50) 96.94 (0.26) 6.38 (1.58) 11.10 (0.75) 98.88 (0.25) 7.02 (1.96) 10.79 (0.75)

Bernoulli VAE β=2 9.85 (0.33) 95.76 (1.63) 6.44 (1.24) 12.10 (0.39) 95.77 (1.56) 6.44 (1.37) 11.86 (0.29)

Normal VAE β=5 9.32 (1.41) 95.35 (0.71) 7.54 (1.99) 11.29 (1.39) 98.79 (0.28) 7.30 (2.03) 10.85 (1.36)

con-
found-
ed
w/
full
support

no
Bernoulli VAE β=1 6.68 (0.27) 96.62 (2.09) 8.52 (6.93) 8.89 (0.70) 99.20 (0.10) 12.15 (11.69) 8.45 (0.69)

Bernoulli VAE β=2 7.56 (0.10) 99.36 (0.16) 2.70 (0.12) 9.67 (0.06) 99.47 (0.06) 2.54 (0.12) 9.32 (0.09)

Normal VAE β=5 6.72 (0.30) 95.53 (0.28) 3.88 (1.12) 9.06 (0.68) 99.07 (0.04) 3.59 (1.20) 8.45 (0.67)

yes* GAN 6.05 (0.06) 95.17 (0.55) 1.95 (0.07) 11.18 (0.10) 99.18 (0.10) 1.73 (0.11) 7.79 (0.10)

yes

Bernoulli VAE β=1 6.67 (0.10) 99.07 (0.15) 2.31 (0.24) 8.42 (0.16) 99.37 (0.13) 3.08 (1.08) 8.40 (0.48)

Bernoulli VAE β=2 7.84 (0.09) 99.63 (0.03) 2.16 (0.06) 9.63 (0.08) 99.61 (0.06) 2.01 (0.10) 9.34 (0.09)

Normal VAE β=5 6.51 (0.29) 97.75 (0.18) 3.05 (0.44) 8.35 (0.29) 99.31 (0.07) 2.73 (0.47) 7.83 (0.31)

GAN 5.25 (0.06) 96.27 (0.26) 1.84 (0.11) 10.75 (0.34) 99.01 (0.06) 1.77 (0.14) 6.20 (0.04)

variable. We train the models on data generated from the three SCMs but always test on the
unconfounded test set, which mimics a scenario where the correlations in the training data are
spurious and ensures the results of the tests are not biased. Note that if the test set is biased, we
can obtain biased estimates for the soundness metrics; this setting falls out of the scope of this
study. We use accuracy for the digit and the absolute error for the hue. To measure composition5

and reversibility, we use the l1 distance. Table 5.1 shows the results for all models and scenarios.
For the VAEs, we sample a unique function (i.e.latent noise) for each observation but keep it fixed
for repeated interventions.
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(a) Composition. (b) Digit effectiveness. (c) Hue reversibility.

(d) Composition. (e) Digit effectiveness. (f) Hue reversibility.

Figure 5.4: Soundness tests on colour MNIST for a disentangled model (a, b, c) and a entangled
model (d, e, f). Composition (a, d): one sample per row, the first column is the input, each column
after is the result of applying the null intervention to the previous column. Digit effectiveness (b,
e): three sub-panels with one sample per row, the first column is the input, the second column is
the result of the null intervention, the last column is the result of a partial intervention on the digit.
Hue reversibility (c, f); one sample per row, the first column is the input, the second column is
the result of a partial intervention on the hue, the third column is the result of applying the partial
intervention that cycles back to the original hue. The remaining columns repeat the cycle.

Comparing with poor counterfactuals models. We can see that the identity function achieves
perfect composition and reversibility but, as expected, fails at effectiveness. In contrast, the VAE
without encoder performs well in terms of effectiveness but fails at composition and reversibility.
Interestingly, the same VAE with the encoder achieves a composition after ten null interventions of
l
(10)
1 = 17.36 (0.62), close to the value without the encoder l(10)1 = 19.04 (0.09), indicating that5

the VAE progressively loses the identity of the image and converges to a random sample (Fig-
ure 5.4a).

Comparing models and scenarios. For each scenario, we can see how the proposed metrics allow
us to compare models independently of the model class and directly compare the quality of coun-
terfactual approximations. For the confounded scenario without full support, we see a significant10
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drop in performance which we cannot recover even when using a simulated intervention since
the lack of support prevents us from sampling points from some areas of the joint distribution.
Nevertheless, when the confounded distribution has full support, we can recover the performance
using a simulated intervention or selecting an appropriate β penalty for the VAE. In addition to the
numerical results, it is also helpful to visualise the results of the tests. To highlight the impact5

of confounding, in Figure 5.4, we show the soundness tests for a disentangled model (Normal
VAE on the confounded scenario w/ full support and a simulated intervention) and an entangled
model (Normal VAE on the confounded scenario w/o full support and no simulated intervention).
We can see that the entangled model cannot preserve the image’s identity, quickly changing its
colour and distorting its shape (Figure 5.4d). In contrast, the disentangled model is far more capa-10

ble of preserving the image’s identity even if the shape gets distorted over repeated applications
(Figure 5.4a). Regarding effectiveness, we can see that the entangled model consistently fails to
change the digit without changing its hue (Figure 5.4e). Conversely, the disentangled model can
change the digit independently of the hue, and its counterfactuals seem to preserve properties
such as slant and thickness. Finally, regarding hue reversibility, we can see that only the disentan-15

gled model is able to correctly cycle back and forth between hue values even if there is some shape
distortion (Figures 5.4f and 5.4c).

Measuring effectiveness using pseudo-oracles trained on biased data. In the previous exper-
iment, we used pseudo-oracles trained on unconfounded data to compare models. However, in
real-world scenarios where we do not control the data-generation process, we have to use pseudo-20

oracles trained on the available data. If we use pseudo-oracles trained on biased data, we can get
biased estimates for effectiveness. We can use simulated interventions when training the oracles
to address this problem. When training the pseudo-oracles on the confounded scenario w/ full sup-
port, we obtain a digit accuracy of 90.67% and hue absolute error of 6.34% – down from 99.18%
and 1.38% respectively, for the oracles trained on unconfounded data. However, using a simulated25

intervention, we obtained 96.70% and 4.11% for the digit accuracy and hue absolute error, respec-
tively. Regardless, we show in Tables C.1, C.2 that the relative performance ranking of the models
is only slightly affected by the decrease in oracle quality due to confounding. Additionally, we show
in Table C.3 that the ranking is also robust to using linear models (logistic/linear regression) as
pseudo-oracles, giving us some margin for error when measuring the relative effectiveness.30

5.4.2 3D Shapes
Next, we test our evaluation framework on the 3D shapes dataset (C. Burgess and H. Kim 2018),
which comprises procedurally generated images where a 3D object is generated based on six inde-
pendent parents: floor hue, wall hue, object hue, scale, shape and orientation. Each possible combi-
nation of attributes results in an image creating a dataset of 480000 images. In this scenario, there35

are no exogenous noise factors since each image is uniquely determined by its parents.
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We compare the counterfactual properties of a Bernoulli VAE (β = 1) with a constrained GAN. We
used the same training regimes as we used for the colour MNIST experiment with slight modifi-
cations the VAE and GAN architecture (Listings C.4 and C.5) and no data-augmentation. We keep
10% of images as a test set and train on the remaining 90%. We treat all variables as discrete since
even the continuous ones, such as hue, only take a set of discrete values.5

Figures 5.5 shows the a composition/effectiveness plots for both models. Visually we can see that
the models can successfully change all parents without perturbing the remainder. In the numerical
results shown in Table C.4 we see that both models achieve near-perfect effectiveness. However,
we can see that the GAN introduces a slight distortion in the image, which the VAE does not. In
fact, the VAE achieves a composition score of l(1)1 = 1.62 ± (0.07) and l

(10)
1 = 1.62(0.07) while10

the GAN has a score of l(1)1 = 5.11(0.14) and l
(10)
1 = 5.16(0.15). The lack of exogenous factors

explains the consistency in the composition scores after repeated null interventions. Abduction is
trivial since there is nothing to abduct. Thus, the model can ignore the observation and rely solely
on the parents to generate the counterfactual.
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(a) Object hue (VAE). (b) Object shape (VAE). (c) Floor hue (VAE).

(d) Object hue (GAN). (e) Object shape (GAN). (f) Floor hue (GAN).

(g) Wall hue (VAE). (h) Orientation (VAE). (i) Object scale (VAE).

(j) Wall hue (GAN). (k) Orientation (GAN). (l) Object scale (GAN).

Figure 5.5: Effectiveness/Composition tests on 3D shapes for VAE and GAN. Each sub-figure has
one sample per row: the first column is the input, the second column is the result of the null inter-
vention, and the last column is the result of a partial intervention on the specified parent.
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5.4.3 CelebA-HQ
Lastly, we demonstrate our evaluation framework on a natural image dataset which requires more
complex generative models. We used the CelebA-HQ dataset (Karras et al. 2018) with a 64x64
resolution. We randomly split the 30,000 examples into 70% for training, 15% for validation and
15% for testing. We selected the ‘smiling’ and ‘eyeglasses’ binary parent attributes for conditioning5

our generative model. After careful consideration, we opted for these attributes for three main
reasons: (i) they are gender neutral, which mitigates bias and allows us to use the entire dataset
rather than a smaller subset; (ii) they are more objective than other attributes like ‘attractive’ and
‘young’; (iii) we can train reasonably accurate pseudo-oracles for our counterfactual evaluation on
these attributes, which is not the case for some others due to label noise/ambiguity and significant10

class imbalance.

For the model, we opted to extend the VDVAE (Child 2021) to a conditional model to enable counter-
factuals. We follow the general very deep VAE (VDVAE) setup proposed by (Child 2021), and intro-
duce some modifications to accommodate both parent conditioning and our compute constraints.
The architecture is based on the ResNet VAE proposed by (Kingma, Salimans, et al. 2016) but is15

much deeper and uses bottleneck residual blocks. The VDVAE has several stochastic layers of la-
tent variables which are conditionally dependent upon each other, and are organised into L groups
z = {z0, z1, . . . , zL}. These latents are typically output as feature maps of varying resolutions,
whereby z0 consists of fewer latents at low resolution up to many latents zL at high resolution.
The conditioning structure is organised following the ladder structure proposed by (Sønderby et al.20

2016), where both the prior pθ(z) and approximate posterior qϕ(z|x) generate latent latent vari-
ables in the same top-down order. As in previous work, the prior and posterior are diagonal Gaus-
sian distributions and the model is trained end-to-end by optimizing the usual variational bound on
the log-likelihood (ELBO) (Kingma and Welling 2014; Maaløe et al. 2019).

Conditional VDVAE. For our counterfactual generation purposes, we augmented the original
prior and posterior top-down conditioning structure to include x’s parents pa as follows:

pθ(z |pa) = pθ(z0)
L∏
i=1

pθ(zi |zi−1,pa), qϕ(z|x,pa) = qϕ(z0 |x)
L∏
i=1

qϕ(zi |zi−1,x,pa).

(5.9)

We call this the Conditional VDVAE. In practical terms, we simply expand and concatenate the par-25

ent conditioning attributes to the latent variables at each stochastic layer, then merge them into
the downstream via a 1 × 1 convolution. Although there are many other conditioning structures
one could consider, this one proved good enough for our experiments. In order to produce counter-
factuals, we perform abduction by passing images and their parent attributes through the encoder
and retrieving the posterior latent variables at each stochastic layer. We then fix these latents and30
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propagate them through the decoder along with the counterfactual parent conditioning. We also
found it beneficial to replace the original diagonal discretized logistic mixture likelihood (Salimans
et al. 2017) used in VDVAEs with a diagonal discretized Gaussian likelihood (Ho et al. 2020), as it
produced visually sharper counterfactuals in our experiments. Importantly, our model was trained
with a β penalty (Higgins et al. 2017) of 5 which discouraged it from focusing mostly on maximis-5

ing the likelihood term in the ELBO and ignoring counterfactual conditioning at inference time. We
found that this introduces a trade-off between reconstruction quality and obeying counterfactual
conditioning.

We found that a naive application of a VDVAE to produce high resolution counterfactuals leads
to ignored counterfactual parent conditioning. Although the setup we describe next worked well10

enough in our experiments, understanding and overcoming this issue in the general case likely
warrants further investigation.

For our experiments, we used a VDVAE with stochastic latent variables spanning 6 resolution scales
up to the 64 × 64 input resolution: {12, 42, 82, 162, 322, 642}, where each latent variable has 16

channels. We used the following number of residual blocks per resolution scale: {4, 4, 8, 12, 12, 4},15

resulting in a total of 42 stochastic latent variable layers and 19M trainable parameters. Additionally,
we modified the original architecture from a fixed channel width (e.g. 384) across all resolutions to
the following custom channel widths per resolution: {32, 64, 128, 256, 512, 1024}. We found that
reducing the number of channels at higher resolutions and increasing them for lower resolutions
performed well enough in our experiments, whilst reducing both memory and runtime requirements20

significantly.

We trained the VDVAE for 1.7M steps with a batch size of 32 using the AdamW (Loshchilov and
Hutter 2019) optimiser with an initial learning rate of 1e-3, β1 = 0.9, β2 = 0.9 and a weight
decay of 0.01. The learning rate was linearly warmed-up from 0 to 1e-3 over the first 100 steps
then reduced to 1.5e-4 at 175K steps and again to 1.5e-5 at 900K steps. We set gradient clipping25

to 220 and gradient L2 norm skipping threshold to 380, and observed no significant instabilities
during training. The final artefact is an exponential moving average of the model parameters with
a rate of 0.999 which we use at inference time. For data-augmentation, since the initial dataset
was 128 × 128 resolution, during training we applied random cropping to 120 × 120 and resized
to 64× 64 before applying random horizontal flipping with probability 0.5 and finally scaling pixel30

intensities to [−1, 1]. At test time we simply resize to 64× 64.

Our attribute classifiers were trained for 300 epochs with a batch size of 32 using the AdamW (Loshchilov
and Hutter 2019) optimizer with an initial learning rate of 1e-3, β1 = 0.9, β2 = 0.999 and weight
decay of 0.01. The learning rate followed a plateau schedule on the validation set F1-score, where it
was halved after 50 epochs of no improvement. The final artefact is an exponential moving average35

of the model parameters with a rate of 0.99 which we use at inference time. To find the best binary
classification threshold between 0 and 1, we evaluated the validation set at threshold intervals of
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(b) Composition & Reversibility (‘smiling’).
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(c) Effectiveness (‘eyeglasses’).
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(d) Composition & Reversibility (‘eyeglasses’).

Figure 5.6: Measuring CelebA-HQ test set effectiveness, composition and reversibility as a func-
tion of the number of latent variables abducted.

0.001 and took the best performing threshold in terms of F1-score. We ran training from 3 ran-
dom seeds and the final test set F1-score for the ‘smiling’ attribute is 0.9342± 0.0018, and for the
‘eyeglasses’ attribute it is 0.9758± 0.0037. For data augmentation, we followed the VDVAE setup
but also included the torchvision.transforms.AutoAugment() augmentation module from Py-
Torch (Paszke et al. 2019) during training to strengthen regularisation. Since the CelebA-HQ binary5

attributes can be highly imbalanced, we also used a weighted random data sampler (with replace-
ment) during training, which ensures minibatches have balanced representation of each class at
each step.

Since the latent code is hierarchical, the abduction process can be decomposed into abducting
subsets of latent variables at different resolutions. This added complexity enables higher fidelity10

images but makes abduction harder in practice. When producing counterfactuals, abducting all la-
tent variables can result in the model ignoring the counterfactual parent conditioning. Conversely,
abducting only a subset trends the model towards obeying the conditioning at the cost of faith-
fulness to the input observation. In other words, there is a trade-off between effectiveness and
composition/reversibility.15

Figure 5.6 show the evolution of effectiveness, composition, and reversibility with the number of
fixed posterior latent variables. We can see the effectiveness of the counterfactual intervention
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rapidly dropping as we abduct more (posterior) latent variables. The same is not true for the null-
intervention and cycled-back counterfactuals, indicating that the model can maintain the original
parent value at the cost of the ability to change it. Furthermore, we can see the opposite trend
for composition and reversibility as they rapidly increase (decrease in l1) as we abduct more and
more variables. We reveal a trade-off between effectiveness and composition mediated by the5

number of latent variables we abduct. Interestingly, as we abduct more and more variables, the
effectiveness of the null-intervention counterfactual drops slightly, and the effectiveness of the
cycled-back counterfactual dips before coming back up, this behaviour is somewhat unexpected
since we should be closer to the input when we abduct more variables. We believe this can be
explained by the interaction between the data-driven pseudo-oracles and the generative model,10

where examples where the conditioning is more obvious are easier to classify correctly.

Figure 5.7 visually shows the trade-off between effectiveness and composition. Figures 5.7a and
5.7c show ‘smiling’ and ‘eyeglasses’ counterfactuals for a model with 42 latent variables when
abducting all variables. Figures 5.7b and 5.7d show the same counterfactuals when abducting
only a subset of 8 variables. The respective numerical results are available in Table C.5. We can15

see a greater loss of subject identity when abducting only a subset of variables, but the conditioning
is more evident than when abducting all variables. We see that, under full abduction, it is harder
for the counterfactuals to obey the conditioning, but they are more faithful to the input (e.g. higher
‘smiling’ composition l(1)1 = 3.657±0.0006 but lower effectiveness F1-score = 0.848±0.0006. In
contrast, when using partial abduction, we obtain higher effectiveness F1-score = 0.933± 0.00220

at the cost of much lower composition l
(1)
1 = 20.890± 0.018. Figures 5.8 and 5.9 show granular

evolution of the same counterfactuals when abducting fewer and fewer latent variables. We can
see that the identity is progressively lost until we essentially end up with a random sample.
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(a) Smiling (all latents) (b) Smiling (8 latents) (c) Eyeglasses (all latents) (d) Eyeglasses (8 latents)

Figure 5.7: Effectiveness/Composition plots for CelebA-HQ when abducting all 42 latent variables
and only a subset of 8 variables. Each sub-figure has one sample per row: the first column is the
input, the second column is the result of the null intervention, and the last column is the result of
a partial intervention that flips the binary value of the initial parent.
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Figure 5.8: Evolution of ‘smiling’ CelebA-HQ counterfactuals from full abduction (42 latents) to
partial abduction (32-1 latents) and finally random samples (0 latents fixed).
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Figure 5.9: Evolution of ‘eyeglasses’ CelebA-HQ counterfactuals from full abduction (42 latents)
to partial abduction (32-1 latents) and finally random samples (0 latents fixed).
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5.5 Discussion
We have presented a theoretically grounded framework for evaluating counterfactual inference
models without observed counterfactuals or knowledge of the underlying SCM. While guarantees
of truly identifiable models using deep learning are not possible in the general case, we show that
we can measure the soundness of such models by observing which constraints they should obey5

ideally. Further, we show the impact of confounding on training and evaluation of deep counter-
factual inference models and how its effect can be mitigated by using simulated interventions. We
hope the ideas presented here can help inform the development and evaluation of future counter-
factual inference models that use deep models as their base.

The ability to generate plausible image counterfactuals can have both productive and nefarious10

applications. On the positive side, counterfactual explanations have the potential to improve the
interpretability of deep learning models and help bridge the gap between human and machine
intelligence. Counterfactual queries may help to identify disparities in model performance, and
counterfactual data augmentation can mitigate dataset bias against underrepresented groups in
downstream tasks such as classification. With that said, if incorrectly used, counterfactual image15

models may also further exacerbate such biases. Moreover, visually plausible artificially generated
counterfactual images could be misused by ill-intended parties to deceive, mislead or spread mis-
information. We argue that the opportunities and risks of counterfactual image generation must
be carefully considered throughout development and a comprehensive evaluation framework is
integral to this process.20
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Chapter 6

Conclusion

6.1 Summary of contributions
In this section, we summarise the main contributions of the thesis and discuss their impact.5

In Chapter 3, we developed an algorithm for the multiclass semantic segmentation of traumatic
brain injuries (TBI) lesions in head CT. We demonstrated the ability of our algorithm to separately
segment, quantify, and detect multiclass haemorrhagic lesions and perilesional oedema. This work
illustrates the importance of working with clinicians to determine tasks we should tackle and which
metrics are actually clinically relevant. In addition to the future promise of alleviating radiologists’10

workload, our work on automatic segmentation of TBI has already enabled large clinical studies
which otherwise would be unfeasible. Automatically segmenting thousands of scans has enabled
clinical researchers to better understand the disease and the impact of specific treatments on a
population level.

• Mathieu, F., Güting, H., Gravesteijn, B., Monteiro, M., Glocker, B., Kornaropoulos, E. N., Kam-15

nistas, K., Robertson, C. S., Levin, H., Whitehouse, D. P., et al. (2020). “Impact of antithrom-
botic agents on radiological lesion progression in acute traumatic brain injury: a CENTER-TBI
propensity-matched cohort analysis”. In: Journal of neurotrauma 37.19, pp. 2069–2080

• Mathieu, F., Zeiler, F. A., Ercole, A., Monteiro, M., Kamnitsas, K., Glocker, B., Whitehouse, D. P.,
Das, T., Smielewski, P., Czosnyka, M., et al. (2020). “Relationship between measures of cere-20

brovascular reactivity and intracranial lesion progression in acute traumatic brain injury pa-
tients: a CENTER-TBI study”. In: Journal of Neurotrauma 37.13, pp. 1556–1565

• Zeiler, F. A., Mathieu, F., Monteiro, M., Glocker, B., Ercole, A., Beqiri, E., Cabeleira, M., Stocchetti,
N., Smielewski, P., Czosnyka, M., et al. (2020). “Diffuse intracranial injury patterns are asso-
ciated with impaired cerebrovascular reactivity in adult traumatic brain injury: a CENTER-TBI25

Validation Study”. In: Journal of Neurotrauma 37.14, pp. 1597–1608

• Zeiler, F. A., Mathieu, F., Monteiro, M., Glocker, B., Ercole, A., Cabeleira, M., Stocchetti, N.,
Smielewski, P., Czosnyka, M., Newcombe, V., et al. (2021). “Systemic Markers of Injury and In-
jury Response Are Not Associated with Impaired Cerebrovascular Reactivity in Adult Traumatic
Brain Injury: A Collaborative European Neurotrauma Effectiveness Research in Traumatic Brain30

Injury (CENTER-TBI) Study”. In: Journal of Neurotrauma 38.7, pp. 870–878
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• Whitehouse, D. P., Monteiro, M., Czeiter, E., Vyvere, T. V., Valerio, F., Ye, Z., Amrein, K., Kamnit-
sas, K., Xu, H., Yang, Z., et al. (2022). “Relationship of admission blood proteomic biomarkers
levels to lesion type and lesion burden in traumatic brain injury: A CENTER-TBI study”. In:
EBioMedicine 75, p. 103777

In Chapter 4, we presented an algorithm that models aleatoric uncertainty in semantic segmen-5

tation by considering dependencies between pixels. Unlike previous approaches, our model can
produce spatially coherent label-map samples and more accurate uncertainty estimates. In short,
it is a better model for the observed data distribution. Proper uncertainty estimation is crucial
when applying deep learning to critical decision-making. For example, uncertainty estimation and
the ability to produce multiple plausible outputs could be instrumental in applications such as ra-10

diotherapy planning. The simplicity of our approach means it is not limited to segmentation, and
thus it has since been extended for image generation.

• Langley, J., Monteiro, M., Jones, C., Pawlowski, N., and Glocker, B. (2022). “Structured Un-
certainty in the Observation Space of Variational Autoencoders”. In: Transactions on Machine
Learning Research15

In Chapter 5, we proposed a framework for evaluating counterfactual inference engines. Starting
from the axiomatic definition of counterfactual, we developed a set of metrics that allows us to
compare our approximate model to the ideal model without access to the latter. Our framework
can be used to compare different approximate models and choose the best available. Additionally,
it can be used to diagnose which aspects of identifiability our models are struggling with and point20

to solutions to these issues.

6.2 Limitations and Future Research
This section discusses the limitations of the work presented in this thesis and suggests future
research directions to address these limitations.

6.2.1 Granularity and accuracy of automatic traumatic brain injury seg-25

mentation
Due to the chaotic nature of its mechanism of injury, traumatic brain injury is an extremely hetero-
geneous condition. It can display itself in a variety of different forms, which change over time after
the initial injury. For this reason, its accurate segmentation and quantification are exceptionally
difficult compared to other medical imaging tasks. While the segmentation performance of our30

methods was satisfactory, it is still far from those usually observed in easier tasks. We addressed
this issue by showing that the clinically relevant metrics are not segmentation performance but
lesion volume quantification and lesion detection. However, despite the performance achieved for
those metrics being good enough for clinical research, there is a need for improvement before a
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method like this can be used in clinical practice. Specifically, we need to increase the performance
for extra-axial haemorrhage and perilesional oedema. For this, larger and more diverse datasets
will be crucial.

Another significant limitation of our method is the lack of granularity in our class labels. In or-
der to set ourselves an attainable goal, and given the limited amount of training data, we had to5

merge some classes. We merged petechial haemorrhages and intraparenchymal haemorrhages
and traumatic subarachnoid haemorrhage, extradural haematoma and subdural haematoma. From
a clinical perspective, the presence and volume of these lesion types imply different prognoses and
lead to different treatment decisions. As a result, an important next step would be to develop an
algorithm which can accurately separate these lesions. Alas, the heterogeneity of TBI and the nois-10

iness of CT images make separating these classes challenging even for human experts. Imbuing
an algorithm with this capability would require significantly more data than we currently have, data
whose labelling cost would be extremely high.

Lastly, localising lesions within the brain can add relevant information for prognosis and treatment
decisions. We have shown a proof-of-concept for this capability, but developing a fully-fledged tool15

capable of lesion localisation could enable more in-depth clinical research studies.

6.2.2 Local and global spatially correlated uncertainty
The low-parameterisation of the logit map covariance matrix proposed in Chapter 4 is, by design,
a global parameterisation, meaning it does not consider the spatial proximity between pixels when
measuring the degree of their dependency. Dependencies between pixels are calculated using a20

rank-dimensional vector, allowing the network to structure the covariance as it pleases within the
rank-constrained space. While this gives us an easy and flexible parameterisation, it ignores a
strong inductive prior, which is that pixels close together in space are more likely to have strong
dependencies. Therefore, including a local component in the covariance matrix where we allow
spatially neighbouring pixels to be modelled separately from the global component could improve25

our probabilistic model and give better uncertainty estimates. Our model would be capable of
capturing long and short-range dependencies separately without a significant increase in compu-
tational cost, which is closer to the intuition we have for the true model of the data-generation
process.

Another limitation of our work and of measuring the correctness of aleatoric uncertainty estimates30

in the broader sense is the lack of access to ground-truth uncertainty. The only way of truly mea-
suring the correctness of our aleatoric uncertainty estimates is to compare the predicted and true
data distributions. Given that we are modelling the conditional distribution of the label map given
the input image, the only way of achieving this is to have multiple annotations for the same data
point. While very few datasets like the LIDC-IDRI dataset (Armato III et al. 2011) already have this35

property, this is certainly not common for the vast majority of publicly available datasets. Collecting
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multiple annotations per image is linearly more expensive and time-consuming. However, to make
substantial advances in uncertainty modelling, we will need to invest in its proper measurement
and objective quantification. In the future, we should strive to include uncertainty considerations
from the start and collect multiple annotations for each data-point. We should also develop meth-
ods to understand how many annotations are necessary to provide confident uncertainty measure-5

ments.

Lastly, even correct uncertainty estimates are difficult to interpret and use productively. More in-
vestigation is necessary into how these uncertainty estimates are communicated to humans and
how they can be used to influence decision-making positively.

6.2.3 Effectiveness metric depends on data and lack of full support10

for the observational distribution
The main limitation of the method presented in Chapter 5 is the necessity for pseudo-oracle clas-
sifiers/regressors trained from data to measure the effectiveness of the counterfactual inference
model. Training the pseudo-oracles from data inevitably results in some empirical error that lim-
its the accuracy of our evaluation framework. If we are not careful, it can also result in incorrect15

measurements due to spurious correlations in the data. Even though we showed that the relative
ranking of models does not change much when using less accurate pseudo-oracles, an ideal mea-
surement should be independent of the data. An objective measurement for effectiveness, like
the ones we obtained for composition and reversibility, would increase the utility and confidence
of our framework. However, it is hard to conceive a data-independent and accurate measurement20

for effectiveness for high-dimensional data with complex parents. In reality, we should aim to cre-
ate a data-driven metric that, although imperfect, gives us some theoretical guarantees about the
relative performance of models and its gap to the ideal unattainable metric.

Another related limitation of our method is that simulated interventions are restricted by the avail-
able data. We cannot perform a simulated intervention if the observational distribution does not25

have full support over the parent marginals. The lack of support means that we cannot train
pseudo-oracles to measure the independent effect of a specific parent on the counterfactual in
a disentangled manner. Additionally, in instances where there is full support but it is provided by
a limited amount of data points, the performance of the pseudo-oracle can be hindered by the
repetition of the same data points too often.30
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Maaløe, L., Fraccaro, M., Liévin, V., and Winther, O. (2019). “Biva: A very deep hierarchy of latent
variables for generative modeling”. In: Advances in neural information processing systems 32.

Maas, A. I., Menon, D. K., Adelson, P. D., Andelic, N., Bell, M. J., Belli, A., Bragge, P., Brazinova, A.,
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Appendix A

Supplementary material for segmentation
of traumatic brain injury

A.1 Absolute volume error5

Figure A.4 shows that the absolute error tends to increase with lesion volume. The absolute error in
volume is driven by the surface area of lesions since voxel misclassification typically occurs at the
boundary zone with the surrounding tissue. It follows that large lesions have larger absolute error
because they have a larger surface. However, as can be seen in Figure 3.3, the predicted volume is
still well-calibrated. For small lesions, although there are many cases where volumes are predicted10

even though no lesion is present and vice versa, the absolute error remains low (Figure A.4). Hence,
it follows that the predicted segmentation can still be useful for quantifying the lesion volume even
in cases where location estimates are less accurate.

A.2 Lesion localisation
This section illustrates how predicted segmentation maps can be used to localise and quantify15

lesions within the brain. By registering the image and the model’s prediction to a labelled atlas
space, we can intersect the prediction with the atlas’ labelled regions to obtain how much vol-
ume of each lesion class is present in each of the regions. For demonstrative purposes, we built
a CT atlas by using 20 normal CT scans that show no disease using an iterative unbiased atlas
construction.8 This atlas was subsequently aligned to an MNI MRI atlas where 19 regions were20

labelled: background; brain stem; left cerebellum; right cerebellum; left basal forebrain; left basal
ganglia; left frontal lobe; left insula; left occipital lobe; left parietal lobe; left temporal; right basal
forebrain; right basal ganglia; right frontal lobe; right insula; right occipital lobe; right parietal lobe;
right temporal; ventricles. In Figure A.6, each column represents one case: from top to bottom
(matching slices), we can see the atlas, atlas with labelled regions, image and image overlaid with25

lesion segmentation. The image is registered to the atlas. Once the image is in the same space
as the atlas, since the atlas is labelled, we can intersect the lesion segmentation with the labelled
regions and hence localise the lesions in atlas space. For example, for the second column, after
registration, we now can say that there is an IPH lesion with a volume of 2mL in the left frontal
lobe.30
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A.2. Lesion localisation Appendices
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A.2. Lesion localisation Appendices

Table A.1: Distribution of lesion presence and volume for the train and test set. n denotes the
fraction of scans with lesions over the total number of scans in the set; lesion volume is presented
as mean (standard deviation).

set lesion (any) IPH EAH oedema IVH

n volume
(mL)

n volume
(mL)

n volume
(mL)

n volume
(mL)

n volume
(mL)

train 184/184
(100.0%)

34.49
(40.08)

137/184
(74.5%)

5.51
(11.67)

178/184
(96.7%)

17.79
(29.79)

145/184
(78.8%)

10.64
(16.99)

47/184
(25.5%)

0.55
(4.30)

test
(>=1mL)

328/328
(100.0%)

31.72
(38.77)

246/328
(75.0%)

5.57
(10.53)

309/328
(94.2%)

16.19
(27.26)

254/328
(77.4%)

9.70
(16.69)

74/328
(22.6%)

0.25
(1.05)

test
(<1mL)

141/327
(43.1%)

0.17
(0.27)

60/327
(18.3%)

0.04
(0.12)

93/327
(28.4%)

0.09
(0.19)

33/327
(10.1%)

0.03
(0.10)

22/327
(6.7%)

0.01
(0.07)

Table A.2: Intra-class correlation coefficient (ICC) for intra-rater reproducibility and inter-rater vari-
ability. ICCs are presented as mean (95% CI).

n lesion (any) IPH EAH oedema IVH

intra-rater 20 0.997 (0.992-0.999) 0.999 (0.998-1.000) 0.998 (0.995-0.999) 0.958 (0.894-0.983) 0.989 (0.971-0.996)
inter-rater 25 0.915 (0.813-0.962) 0.978 (0.949-0.990) 0.923 (0.831-0.966) 0.895 (0.773-0.953) 0.908 (0.799-0.959)
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A.2. Lesion localisation Appendices
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Figure A.2: Per-class Bland-Altman plots for intra-rater reproducibility. Means are represented as
solid lines and 95% CIs as dashed lines. The mean difference is -0.03mL (95% CI - 0.48 to 0.43) for
IPH, 0.14mL (95% CI -3.55 to 3.84) for EAH, 0.56mL (95% CI -2.53 to 3.65) for oedema and -0.04mL
(95% CI -0.54 to 0.47) for IVH.
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Figure A.3: Per-class Bland-Altman plot inter-rater variability. Means are represented as solid lines
and 95% CIs as dashed lines. The mean difference is 0.42mL (95% CI - 2.06 to 2.90) for IPH, 7.79mL
(95% CI -17.66 to 33.23) for EAH, -0.35mL (95% CI -8.62 to 7.92) for oedema and 0.30mL (95% CI
-1.14 to 1.74) for IVH.
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Figure A.4: Per-class boxplots of the absolute error for different volume groups. In increasing
shade: [0]; ]0, 1[; [1, 5[; [5, +∞[ mL. The y-axis in on logarithmic scale for visualization. The corre-
sponding table is available in Table A.3.

[0
]

]0
, 1

[
[1

, 5
[

[5
, +

[
[0

]
]0

, 1
[

[1
, 5

[

[5
, +

[
[0

]
]0

, 1
[

[1
, 5

[

[5
, +

[
[0

]
]0

, 1
[

[1
, 5

[

[5
, +

[
[0

]
]0

, 1
[

[1
, 5

[

[5
, +

[

0

1

10

Le
si

on
 V

ol
um

e 
Ch

an
ge

 A
bs

ol
ut

e 
Er

ro
r 

(m
L)

0.0 0.0 0.0 0.0 0.0

0.3
0.1

0.3
0.2 0.1

1.1

2.3

0.7

2.0

0.1

3.9

2.2 2.3

7.3

lesion (any)
IPH
EAH
oedema
IVH

Figure A.5: Per-class boxplots of the absolute error between the true lesion volume change and
the predicted lesion volume change for different volume groups. In increasing shade: [0]; ]0, 1[;
[1, 5[; [5, +∞[ mL. The y-axis in on logarithmic scale for visualization. The corresponding table is
available in Table A.3.
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A.2. Lesion localisation Appendices

Table A.3: Evaluation metrics stratified by volume group. Numbers presented as number of scans
(n), mean (standard deviation), median (range). For lesion change the volume group is defined by
the initial lesion volume.

class group DSC (%) Absolute Error (mL) Lesion Change Abs Error (mL)
count mean median count mean median count mean median

lesion
(any)

[0] 130 0.0 (0.0) 0.0 (0.0) 186 0.45 (2.06) 0.02 (0.15) 25 1.01 (4.46) 0.00 (0.09)
]0, 1[ 141 18.5 (20.5) 12.0 (32.5) 141 0.33 (0.36) 0.25 (0.33) 28 2.09 (5.07) 0.27 (0.60)
[1, 5[ 77 37.8 (20.8) 39.5 (25.3) 77 1.39 (1.18) 1.19 (1.34) 11 1.60 (2.04) 1.12 (1.38)
[5, 10[ 251 62.2 (17.7) 66.9 (22.8) 251 12.95 (14.21) 8.27 (12.36) 34 7.31 (6.69) 3.94 (10.63)

IPH

[0] 55 0.0 (0.0) 0.0 (0.0) 349 0.05 (0.28) 0.00 (0.00) 58 0.17 (0.58) 0.00 (0.04)
]0, 1[ 139 23.7 (28.9) 2.9 (47.4) 139 0.21 (0.26) 0.14 (0.19) 23 0.27 (0.44) 0.13 (0.19)
[1, 5[ 77 54.0 (22.1) 58.2 (26.8) 77 1.20 (0.77) 1.08 (0.96) 4 5.02 (5.89) 2.33 (4.50)
[5, 10[ 90 68.2 (17.2) 72.6 (23.5) 90 5.97 (6.14) 3.57 (5.71) 13 3.30 (3.17) 2.24 (2.65)

EAH

[0] 157 0.0 (0.0) 0.0 (0.0) 253 0.26 (1.05) 0.01 (0.11) 31 0.09 (0.14) 0.01 (0.10)
]0, 1[ 140 13.6 (17.5) 5.5 (22.7) 140 0.40 (0.71) 0.25 (0.33) 31 1.22 (2.37) 0.28 (0.62)
[1, 5[ 102 39.1 (18.0) 40.7 (21.0) 102 1.39 (1.07) 1.09 (1.52) 12 0.90 (0.59) 0.69 (0.85)
[5, 10[ 160 63.5 (18.6) 67.5 (25.7) 160 8.10 (12.15) 4.57 (6.70) 24 2.98 (3.00) 2.32 (2.71)

oedema

[0] 68 0.0 (0.0) 0.0 (0.0) 368 0.12 (1.32) 0.00 (0.00) 63 0.89 (3.36) 0.00 (0.15)
]0, 1[ 79 14.9 (20.5) 0.0 (27.6) 79 0.24 (0.23) 0.15 (0.21) 10 0.24 (0.18) 0.17 (0.18)
[1, 5[ 71 22.8 (24.7) 14.8 (40.8) 71 1.88 (1.25) 1.60 (1.58) 11 4.84 (5.17) 2.04 (5.68)
[5, 10[ 137 51.3 (24.1) 54.6 (36.1) 137 9.72 (9.09) 6.87 (8.23) 14 7.49 (4.99) 7.26 (5.63)

IVH

[0] 141 0.0 (0.0) 0.0 (0.0) 559 0.01 (0.04) 0.00 (0.00) 87 0.09 (0.65) 0.00 (0.01)
]0, 1[ 75 26.9 (25.4) 24.5 (51.2) 75 0.18 (0.16) 0.15 (0.20) 9 0.75 (1.62) 0.11 (0.14)
[1, 5[ 17 51.9 (14.0) 50.5 (26.1) 17 0.85 (0.43) 0.84 (0.57) 2 0.11 (0.08) 0.11 (0.08)
[5, 10[ 4 28.2 (18.6) 32.6 (26.8) 4 6.50 (1.14) 5.93 (0.94) 0 0.00 (0.00) 0.00 (0.00)
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A.2. Lesion localisation Appendices

Figure A.6: Lesion localisation example. From top to bottom: atlas, labelled atlas, image registered
to atlas, image overlaid with lesion segmentation. Lesion location is obtained by intersecting the
lesion segmentation with the labelled atlas. For the lesion segmentation, IPH is segmented in red,
EAH in green, oedema in blue and IVH in yellow.
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Appendix B

Supplementary material for Stochastic
Segmentation Networks
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Appendix C

Supplementary material for axiomatic
quality of counterfactuals

C.1 Reversibility proof5

Lemma C.1.1. Let x = g(ϵ,pa) be a mechanism where x is the observation with parents pa

and exogenous noise variable ϵ. Further, let x∗ be a counterfactual of x with parents pa∗. If the
mechanism is invertible, then the exogenous noise is deterministically given by: ϵ = g−1(x,pa)

or ϵ = g−1(x∗,pa∗). Under these conditions, in the counterfactual function form we have that if
x∗ := f(x,pa,pa∗), then x = f(x∗,pa∗,pa).10

Proof.
x∗ = g(ϵ,pa∗)

= g
(
g−1(x,pa),pa∗)

= f(x,pa,pa∗)

(C.1)

And:
x = g(ϵ,pa)

= g
(
g−1(x∗,pa∗),pa

)
= f(x,pa∗,pa)

(C.2)

C.2 Distance metrics
Given two points a ∈ RN and b ∈ RN and a distance dX(·, ·) : (RN ,RN) → R+, for the distance
to be considered a metric, it must obey the following properties (see Phillips 2021, Sec. 6.1):15

• Non-negativity: dX(a, b) ≥ 0;

• Identity: dX(a, b) = 0 if a = b;

• Symmetry: dX(a, b) = dX(b, a);

• Triangular inequality: dX(a, b) ≤ dX(a, c) + dX(c, b).

In this paper, we opted to use the l1 distance, which is a metric, because we can directly interpret20
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C.2. Distance metrics Appendices

its value as the average pixel intensity by which two images differ. While there is an argument to
be made for the use of perceptual distances for images, they are not metrics and have the same
data-driven weaknesses, which pose a problem for our pseudo-oracles. As a result, we opted for a
data-independent distance/metric.
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Listing C.1: VAE architecture for the colour MNIST dataset.

1 image_encoder = serial(
2 Conv(out_chan=64, filter_shape=(4, 4), strides=(2, 2)),
3 LeakyRelu,
4 Conv(out_chan=64, filter_shape=(4, 4), strides=(2, 2)),
5 LeakyRelu,
6 Flatten,
7 Dense(out_dim=128),
8 LeakyRelu
9 )

10

11 image_decoder = serial(
12 Dense(7 * 7 * 64),
13 LeakyRelu,
14 Reshape((-1, 7, 7, 64)),
15 Resize((-1, 14, 14, 64), method='linear'),
16 Conv(out_chan=64, filter_shape=(4, 4), strides=(1, 1), padding='SAME'),
17 LeakyRelu,
18 Resize((-1, 28, 28, 64), method='linear'),
19 Conv(out_chan=64, filter_shape=(4, 4), strides=(1, 1), padding='SAME'),
20 LeakyRelu,
21 Conv(out_chan=3, filter_shape=(3, 3), strides=(1, 1), padding='SAME')
22 )
23 # encoder
24 encoded_image = image_encoder(image)
25 tmp = Dense(out_dim=128)(concat(encoded_image, parents))
26 mu = Dense(out_dim=16)(tmp)
27 sigma = softplus(Dense(out_dim=16)(tmp))
28 # decoder
29 z = sample_from_standard_normal(mu, sigma)
30 counterfactual = image_decoder(concat(z, counterfactual_parents))
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Listing C.2: GAN architecture for the colour MNIST dataset.

1 image_encoder = serial(
2 Conv(out_chan=64, filter_shape=(4, 4), strides=(2, 2)),
3 LeakyRelu,
4 Conv(out_chan=64, filter_shape=(4, 4), strides=(2, 2)),
5 LeakyRelu,
6 Flatten,
7 Dense(out_dim=128),
8 LeakyRelu
9 )

10

11 image_decoder = serial(
12 Dense(7 * 7 * 64),
13 LeakyRelu,
14 Reshape((-1, 7, 7, 64)),
15 Resize((-1, 14, 14, 64), method='linear'),
16 Conv(out_chan=64, filter_shape=(4, 4), strides=(1, 1), padding='SAME'),
17 LeakyRelu,
18 Resize((-1, 28, 28, 64), method='linear'),
19 Conv(out_chan=64, filter_shape=(4, 4), strides=(1, 1), padding='SAME'),
20 LeakyRelu,
21 Conv(out_chan=3, filter_shape=(3, 3), strides=(1, 1), padding='SAME')
22 )
23 #generator
24 gan_decoder = serial(
25 Dense(out_dim=128),
26 LeakyRelu,
27 image_decoder,
28 Tanh
29 )
30 encoded_image = image_encoder(image)
31 tmp = concat(encoded_image, parents, counterfactual_parents)
32 counterfactual = gan_decoder(tmp)
33

34 # critic
35 critic = serial(
36 Conv(out_chan=64, filter_shape=(4, 4), strides=(2, 2), padding='SAME'),
37 LeakyRelu,
38 Conv(out_chan=64, filter_shape=(4, 4), strides=(2, 2), padding='SAME'),
39 LeakyRelu,
40 Flatten,
41 Dense(out_dim=128),
42 LeakyRelu,
43 Dense(out_dim=128),
44 LeakyRelu
45 Dense(1)
46 )
47 critic_input = concat(image, broadcast_to_shape(parents, image.shape))
48 logits = critic(critic_input)

Miguel Monteiro Probabilistic and causal deep learning in medical imaging 119



C.2. Distance metrics Appendices

Listing C.3: Pseudo-oracle architecture for the colour MNIST and 3D shapes datasets.

1 pseudo_oracle = serial(
2 Conv(out_chan=64, filter_shape=(4, 4), strides=(2, 2)),
3 LeakyRelu,
4 Conv(out_chan=64, filter_shape=(4, 4), strides=(2, 2)),
5 LeakyRelu,
6 Flatten,
7 Dense(out_dim=128),
8 LeakyRelu,
9 Dense(out_dim=num_classes if classification else 1)

10 )
11 y_hat = pseudo_oracle(image)

Listing C.4: VAE architecture for the 3D shapes dataset.

1 image_encoder = serial(
2 Conv(out_chan=64, filter_shape=(4, 4), strides=(2, 2)),
3 LeakyRelu,
4 Conv(out_chan=64, filter_shape=(4, 4), strides=(2, 2)),
5 LeakyRelu,
6 Conv(out_chan=64, filter_shape=(4, 4), strides=(2, 2)),
7 LeakyRelu,
8 Flatten,
9 Dense(out_dim=128),

10 LeakyRelu
11 )
12

13 image_decoder = serial(
14 Dense(8 * 8 * 64),
15 LeakyRelu,
16 Reshape((-1, 8, 8, 64)),
17 Resize((-1, 16, 16, 64), method='linear'),
18 Conv(out_chan=64, filter_shape=(4, 4), strides=(1, 1), padding='SAME'),
19 LeakyRelu,
20 Resize((-1, 32, 32, 64), method='linear'),
21 Conv(out_chan=64, filter_shape=(4, 4), strides=(1, 1), padding='SAME'),
22 LeakyRelu,
23 Resize((-1, 64, 64, 64), method='linear'),
24 Conv(out_chan=64, filter_shape=(4, 4), strides=(1, 1), padding='SAME'),
25 LeakyRelu,
26 Conv(out_chan=3, filter_shape=(3, 3), strides=(1, 1), padding='SAME')
27 )
28 # encoder
29 encoded_image = image_encoder(image)
30 tmp = Dense(out_dim=128)(concat(encoded_image, parents))
31 mu = Dense(out_dim=16)(tmp)
32 sigma = softplus(Dense(out_dim=16)(tmp))
33 # decoder
34 z = sample_from_standard_normal(mu, sigma)
35 counterfactual = image_decoder(concat(z, counterfactual_parents))
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Listing C.5: GAN architecture for the 3D shapes dataset.

1 image_encoder = serial(
2 Conv(out_chan=64, filter_shape=(4, 4), strides=(2, 2)),
3 LeakyRelu,
4 Conv(out_chan=64, filter_shape=(4, 4), strides=(2, 2)),
5 LeakyRelu,
6 Conv(out_chan=64, filter_shape=(4, 4), strides=(2, 2)),
7 LeakyRelu,
8 Flatten,
9 Dense(out_dim=128),

10 LeakyRelu
11 )
12

13 image_decoder = serial(
14 Dense(8 * 8 * 64),
15 LeakyRelu,
16 Reshape((-1, 8, 8, 64)),
17 Resize((-1, 16, 16, 64), method='linear'),
18 Conv(out_chan=64, filter_shape=(4, 4), strides=(1, 1), padding='SAME'),
19 LeakyRelu,
20 Resize((-1, 32, 32, 64), method='linear'),
21 Conv(out_chan=64, filter_shape=(4, 4), strides=(1, 1), padding='SAME'),
22 LeakyRelu,
23 Resize((-1, 64, 64, 64), method='linear'),
24 Conv(out_chan=64, filter_shape=(4, 4), strides=(1, 1), padding='SAME'),
25 LeakyRelu,
26 Conv(out_chan=3, filter_shape=(3, 3), strides=(1, 1), padding='SAME')
27 )
28

29 #generator
30 gan_decoder = serial(
31 Dense(out_dim=128),
32 LeakyRelu,
33 image_decoder,
34 Tanh
35 )
36 encoded_image = image_encoder(image)
37 tmp = concat(encoded_image, parents, counterfactual_parents)
38 counterfactual = gan_decoder(tmp)
39

40 # critic
41 critic = serial(
42 Conv(out_chan=64, filter_shape=(4, 4), strides=(2, 2), padding='SAME'),
43 LeakyRelu,
44 Conv(out_chan=64, filter_shape=(4, 4), strides=(2, 2), padding='SAME'),
45 LeakyRelu,
46 Flatten,
47 Dense(out_dim=128),
48 LeakyRelu,
49 Dense(out_dim=128),
50 LeakyRelu
51 Dense(1)
52 )
53 critic_input = concat(image, broadcast_to_shape(parents, image.shape))
54 logits = critic(critic_input)
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Listing C.6: Pseudo-oracle architecture for the CelebA-HQ dataset.

1 class ConvNet(nn.Module):
2 def __init__(self):
3 super().__init__()
4 self.cnn = nn.Sequential(
5 nn.Conv2d(3, 16, 3, 1, 1),
6 nn.BatchNorm2d(16),
7 nn.ReLU(),
8 nn.Conv2d(16, 32, 3, 2, 1),
9 nn.BatchNorm2d(32),

10 nn.ReLU(),
11 nn.Conv2d(32, 32, 3, 1, 1),
12 nn.BatchNorm2d(32),
13 nn.ReLU(),
14 nn.Conv2d(32, 64, 3, 2, 1),
15 nn.BatchNorm2d(64),
16 nn.ReLU(),
17 nn.Conv2d(64, 64, 3, 1, 1),
18 nn.BatchNorm2d(64),
19 nn.ReLU(),
20 nn.Conv2d(64, 128, 3, 2, 1),
21 nn.BatchNorm2d(128),
22 nn.ReLU(),
23 nn.AdaptiveAvgPool2d(1),
24 )
25 self.fc = nn.Sequential(
26 nn.Linear(128, 128),
27 nn.BatchNorm1d(128),
28 nn.ReLU(),
29 nn.Linear(128, 1)
30 )
31

32 def forward(self, x):
33 return self.fc(self.cnn(x).squeeze())
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Table C.1: Effectiveness results on colour MNIST when using pseudo oracles trained from biased
data without using a simulated intervention. We measure effectiveness using digit accuracy and
hue absolute error in percentage points since hue ∈ [0, 1]. The average model ranking change
compared to Table 5.1 (oracles trained from unbiased data) was 0.8(3) for the dataset without full
support and 0.75 for the dataset with full support.

dataset
inter-
ven-
tion

model
digit intervention hue intervention

avg.
rank

original
rank

abs.
diff.

effectiveness effectiveness
accdigit(%) ↑ aehue(%) ↓ accdigit(%) ↑ aehue(%) ↓

con-
found-
ed
w/o
full
support

no
Bernoulli VAE β=1 53.77 (9.88) 11.43 (4.56) 53.68 (6.08) 11.80 (5.85) 3.5 3.5 0

Bernoulli VAE β=2 48.34 (2.27) 10.42 (1.64) 49.32 (2.01) 10.15 (1.62) 4 2.5 1.5

Normal VAE β=5 57.65 (8.41) 13.92 (3.38) 60.69 (6.96) 13.63 (3.51) 3.5 5.5 2

yes
Bernoulli VAE β=1 49.83 (2.52) 9.15 (0.87) 50.92 (2.07) 9.51 (1.35) 3 2.25 0.75

Bernoulli VAE β=2 46.48 (1.22) 8.51 (0.87) 47.30 (1.34) 8.53 (0.87) 3.5 3.25 0.25

Normal VAE β=5 43.86 (1.28) 8.28 (1.38) 47.19 (1.10) 7.97 (1.34) 3.5 4 0.5

con-
found-
ed
w/
full
support

no
Bernoulli VAE β=1 87.71 (0.92) 10.90 (6.53) 90.15 (0.48) 14.02 (10.59) 7 6.5 0.5

Bernoulli VAE β=2 90.05 (0.44) 5.94 (0.20) 90.64 (0.52) 5.92 (0.23) 5.25 3.25 2

Normal VAE β=5 82.98 (0.91) 6.19 (0.73) 89.23 (0.19) 5.77 (0.65) 6.5 7 0.5

yes* GAN 87.03 (0.62) 4.71 (0.16) 92.51 (0.36) 5.28 (0.34) 3 4.25 1.25

yes

Bernoulli VAE β=1 92.07 (0.25) 5.64 (0.19) 92.19 (0.35) 6.15 (0.59) 3.75 4 0.25

Bernoulli VAE β=2 93.98 (0.26) 5.72 (0.25) 93.76 (0.15) 5.82 (0.23) 2.5 2 0.5

Normal VAE β=5 88.68 (0.33) 5.92 (0.46) 91.85 (0.12) 5.87 (0.47) 4.5 4.75 0.25

GAN 87.40 (0.14) 4.78 (0.18) 90.90 (0.21) 4.90 (0.16) 3.5 4.25 0.75

Table C.2: Effectiveness results on colour MNIST when using pseudo oracles trained from biased
data using a simulated intervention. We measure effectiveness using digit accuracy and hue abso-
lute error in percentage points since hue ∈ [0, 1]. The average model ranking change compared
to Table 5.1 (oracles trained from unbiased data) was 0.8(3) for the dataset without full support
and 0.625 for the dataset with full support.

dataset
inter-
ven-
tion

model
digit intervention hue intervention

avg.
rank

original
rank

abs.
diff.

effectiveness effectiveness
accdigit(%) ↑ aehue(%) ↓ accdigit(%) ↑ aehue(%) ↓

con-
found-
ed
w/o
full
support

no
Bernoulli VAE β=1 57.09 (10.01) 11.17 (4.88) 57.14 (6.63) 11.42 (6.06) 3.5 3.5 0

Bernoulli VAE β=2 53.43 (2.44) 10.08 (1.57) 54.03 (2.57) 9.73 (1.55) 4 2.5 1.5

Normal VAE β=5 62.93 (8.26) 13.81 (3.27) 67.23 (7.21) 13.55 (3.38) 3.5 5.5 2

yes
Bernoulli VAE β=1 53.72 (2.61) 8.57 (1.00) 55.36 (2.37) 8.88 (1.45) 3 2.25 0.75

Bernoulli VAE β=2 50.96 (0.76) 7.93 (0.96) 51.79 (0.72) 7.89 (0.90) 3.5 3.25 0.25

Normal VAE β=5 47.89 (1.75) 7.83 (1.58) 51.23 (2.01) 7.42 (1.59) 3.5 4 0.5

con-
found-
ed
w/
full
support

no
Bernoulli VAE β=1 93.25 (1.48) 8.93 (7.08) 96.57 (0.42) 12.36 (11.61) 7.5 6.5 1

Bernoulli VAE β=2 96.90 (0.40) 3.17 (0.11) 96.94 (0.20) 2.98 (0.14) 4.25 3.25 1

Normal VAE β=5 90.37 (0.45) 4.16 (1.07) 95.92 (0.25) 3.85 (1.11) 7.5 7 0.5

yes* GAN 93.30 (0.69) 2.36 (0.19) 97.47 (0.23) 2.52 (0.09) 3.25 4.25 1

yes

Bernoulli VAE β=1 97.36 (0.18) 2.80 (0.14) 97.70 (0.25) 3.67 (0.83) 3.5 4 0.5

Bernoulli VAE β=2 98.74 (0.11) 2.68 (0.17) 98.84 (0.16) 2.61 (0.16) 2 2 0

Normal VAE β=5 94.68 (0.39) 3.26 (0.24) 97.50 (0.21) 3.20 (0.25) 4.5 4.75 0.25

GAN 93.90 (0.18) 2.38 (0.16) 96.58 (0.15) 2.44 (0.17) 3.5 4.25 0.75
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Table C.3: Effectiveness on colour MNIST when using linear/logistic regression as pseudo oracles
trained from unbiased data. We measure effectiveness using digit accuracy and hue absolute error
in percentage points since hue ∈ [0, 1]. The average model ranking change compared to Table 5.1
(oracles trained from unbiased data) was 0.91(6) for the dataset without full support and 0.6875
for the dataset with full support.

dataset
inter-
ven-
tion

model
digit intervention hue intervention

avg.
rank

original
rank

abs.
diff.

effectiveness effectiveness
accdigit(%) ↑ aehue(%) ↓ accdigit(%) ↑ aehue(%) ↓

con-
found-
ed
w/o
full
support

no
Bernoulli VAE β=1 80.83 (1.91) 17.77 (4.12) 81.79 (1.42) 17.28 (4.14) 4.75 3.5 1.25

Bernoulli VAE β=2 86.18 (0.63) 16.17 (1.32) 86.03 (0.52) 15.91 (1.27) 2.5 2.5 0

Normal VAE β=5 78.67 (4.32) 18.97 (1.56) 82.43 (3.80) 18.37 (1.22) 5.25 5.5 0.25

yes
Bernoulli VAE β=1 82.23 (0.81) 15.22 (0.63) 82.31 (1.01) 14.24 (0.74) 2.75 2.25 0.5

Bernoulli VAE β=2 80.52 (2.11) 15.93 (1.34) 79.37 (2.49) 15.74 (1.41) 4.25 3.25 1

Normal VAE β=5 82.50 (1.61) 14.17 (1.01) 85.20 (1.13) 13.82 (1.08) 1.5 4 2.5

con-
found-
ed
w/
full
support

no
Bernoulli VAE β=1 82.26 (2.97) 18.05 (4.15) 84.23 (1.16) 18.73 (5.29) 7.25 6.5 0.75

Bernoulli VAE β=2 87.55 (0.47) 14.75 (0.19) 87.00 (0.28) 14.80 (0.20) 3.5 3.25 0.25

Normal VAE β=5 81.78 (0.93) 15.14 (0.39) 84.90 (0.59) 14.36 (0.44) 5.25 7 1.75

yes* GAN 80.01 (1.28) 14.71 (0.08) 87.09 (0.84) 14.87 (0.17) 5 4.25 0.75

yes

Bernoulli VAE β=1 87.17 (0.64) 14.88 (0.11) 86.09 (1.73) 14.37 (0.64) 3.75 4 0.25

Bernoulli VAE β=2 89.87 (0.51) 14.70 (0.20) 89.32 (0.34) 14.56 (0.16) 1.5 2 0.5

Normal VAE β=5 85.43 (0.59) 15.00 (0.17) 87.23 (0.53) 14.84 (0.25) 4.5 4.75 0.25

GAN 80.39 (0.56) 14.77 (0.15) 85.51 (0.51) 14.65 (0.12) 5.25 4.25 1

Table C.4: Results of quality tests on 3D shapes: we measure composition after the null interven-
tion and reversibility after one intervention cycle. Effectiveness is measured using accuracy.

intervention model effectiveness (%) reversibility
accfloorhue accobjecthue accobjectorientation accobjectscale accobjectshape accwallhue l

(1)
1 l

(10)
1

floor hue VAE 100.00 100.00 100.00 100.00 100.00 100.00 1.62 (0.07) 1.62 (0.07)

GAN 100.00 100.00 99.90 (0.16) 99.37 (0.13) 99.30 (0.16) 100.00 5.23 (0.15) 5.25 (0.15)

object hue VAE 100.00 100.00 100.00 100.00 100.00 100.00 1.62 (0.07) 1.62 (0.07)

GAN 100.00 99.99 (0.01) 99.91 (0.15) 99.29 (0.16) 99.16 (0.25) 100.00 5.33 (0.16) 5.35 (0.16)

object
orientation

VAE 100.00 100.00 100.00 100.00 100.00 100.00 1.62 (0.07) 1.62 (0.07)

GAN 100.00 100.00 99.88 (0.16) 99.07 (0.15) 99.00 (0.22) 100.00 5.32 (0.14) 5.35 (0.14)

object
scale

VAE 100.00 100.00 100.00 100.00 100.00 100.00 1.62 (0.07) 1.62 (0.07)

GAN 100.00 100.00 99.91 (0.15) 98.83 (0.27) 99.19 (0.27) 100.00 5.30 (0.15) 5.31 (0.15)

object
shape

VAE 100.00 100.00 100.00 100.00 100.00 100.00 1.62 (0.07) 1.62 (0.07)

GAN 100.00 100.00 99.92 (0.12) 98.76 (0.27) 99.10 (0.16) 100.00 5.37 (0.15) 5.39 (0.15)

wall hue VAE 100.00 100.00 100.00 100.00 100.00 100.00 1.62 (0.07) 1.62 (0.07)

GAN 100.00 100.00 99.86 (0.20) 99.30 (0.19) 99.32 (0.19) 100.00 5.27 (0.16) 5.29 (0.16)
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Table C.5: Quality metrics on the CelebA-HQ test set over 3 random seeds, with different subsets of
abducted latent variables from our conditional VDVAE model. Composition is measured via the null
intervention and reversibility after one intervention cycle. Effectiveness of test set counterfactuals
is measured using F1-score given by our ‘smiling’/‘eyeglasses’ attribute classifiers.

smiling intervention eyeglasses intervention

latents composition reversibility effectiveness composition reversibility effectiveness
abducted l

(1)
1 ↓ l

(1)
1 ↓ F1-score ↑ l

(1)
1 ↓ l

(1)
1 ↓ F1-score ↑

1 60.100 (0.127) 59.521 (0.164) 0.984 (0.0005) 60.273 (0.144) 59.263 (0.013) 0.979 (0.002)
2 55.521 (0.068) 54.360 (0.092) 0.982 (0.0008) 55.443 (0.036) 54.314 (0.055) 0.982 (0.005)
4 29.489 (0.018) 30.705 (0.030) 0.957 (0.001) 29.491 (0.048) 30.758 (0.025) 0.976 (0.005)
8 20.890 (0.018) 22.604 (0.025) 0.933 (0.002) 20.896 (0.011) 22.526 (0.005) 0.932 (0.006)
16 15.997 (0.003) 18.269 (0.021) 0.921 (0.003) 16.312 (0.009) 18.323 (0.009) 0.932 (0.019)
24 6.606 (0.001) 9.880 (0.017) 0.886 (0.006) 8.092 (0.002) 9.290 (0.006) 0.872 (0.003)
32 4.160 (0.002) 6.189 (0.015) 0.858 (0.001) 4.451 (0.0006) 5.606 (0.010) 0.865 (0.023)
42 (all) 3.657 (0.0006) 5.701 (0.017) 0.848 (0.0006) 3.656 (0.001) 4.808 (0.004) 0.854 (0.006)
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