64 research outputs found

    On-line Metasearch, Pooling, and System Evaluation

    Get PDF
    This thesis presents a unified method for simultaneous solution of three problems in Information Retrieval--- metasearch (the fusion of ranked lists returned by retrieval systems to elicit improved performance), efficient system evaluation (the accurate evaluation of retrieval systems with small numbers of relevance judgements), and pooling or ``active sample selection (the selection of documents for manual judgement in order to develop sample pools of high precision or pools suitable for assessing system quality). The thesis establishes a unified theoretical framework for addressing these three problems and naturally generalizes their solution to the on-line context by incorporating feedback in the form of relevance judgements. The algorithm--- Rankhedge for on-line retrieval, metasearch and system evaluation--- is the first to address these three problems simultaneously and also to generalize their solution to the on-line context. Optimality of the Rankhedge algorithm is developed via Bayesian and maximum entropy interpretations. Results of the algorithm prove to be significantly superior to previous methods when tested over a range of TREC (Text REtrieval Conference) data. In the absence of feedback, the technique equals or exceeds the performance of benchmark metasearch algorithms such as CombMNZ and Condorcet. The technique then dramatically improves on this performance during the on-line metasearch process. In addition, the technique generates pools of documents which include more relevant documents and produce more accurate system evaluations than previous techniques. The thesis includes an information-theoretic examination of the original Hedge algorithm as well as its adaptation to the context of ranked lists. The work also addresses the concept of information-theoretic similarity within the Rankhedge context and presents a method for decorrelating the predictor set to improve worst case performance. Finally, an information-theoretically optimal method for probabilistic ``active sampling is presented with possible application to a broad range of practical and theoretical contexts

    Learning to select for information retrieval

    Get PDF
    The effective ranking of documents in search engines is based on various document features, such as the frequency of the query terms in each document, the length, or the authoritativeness of each document. In order to obtain a better retrieval performance, instead of using a single or a few features, there is a growing trend to create a ranking function by applying a learning to rank technique on a large set of features. Learning to rank techniques aim to generate an effective document ranking function by combining a large number of document features. Different ranking functions can be generated by using different learning to rank techniques or on different document feature sets. While the generated ranking function may be uniformly applied to all queries, several studies have shown that different ranking functions favour different queries, and that the retrieval performance can be significantly enhanced if an appropriate ranking function is selected for each individual query. This thesis proposes Learning to Select (LTS), a novel framework that selectively applies an appropriate ranking function on a per-query basis, regardless of the given query's type and the number of candidate ranking functions. In the learning to select framework, the effectiveness of a ranking function for an unseen query is estimated from the available neighbouring training queries. The proposed framework employs a classification technique (e.g. k-nearest neighbour) to identify neighbouring training queries for an unseen query by using a query feature. In particular, a divergence measure (e.g. Jensen-Shannon), which determines the extent to which a document ranking function alters the scores of an initial ranking of documents for a given query, is proposed for use as a query feature. The ranking function which performs the best on the identified training query set is then chosen for the unseen query. The proposed framework is thoroughly evaluated on two different TREC retrieval tasks (namely, Web search and adhoc search tasks) and on two large standard LETOR feature sets, which contain as many as 64 document features, deriving conclusions concerning the key components of LTS, namely the query feature and the identification of neighbouring queries components. Two different types of experiments are conducted. The first one is to select an appropriate ranking function from a number of candidate ranking functions. The second one is to select multiple appropriate document features from a number of candidate document features, for building a ranking function. Experimental results show that our proposed LTS framework is effective in both selecting an appropriate ranking function and selecting multiple appropriate document features, on a per-query basis. In addition, the retrieval performance is further enhanced when increasing the number of candidates, suggesting the robustness of the learning to select framework. This thesis also demonstrates how the LTS framework can be deployed to other search applications. These applications include the selective integration of a query independent feature into a document weighting scheme (e.g. BM25), the selective estimation of the relative importance of different query aspects in a search diversification task (the goal of the task is to retrieve a ranked list of documents that provides a maximum coverage for a given query, while avoiding excessive redundancy), and the selective application of an appropriate resource for expanding and enriching a given query for document search within an enterprise. The effectiveness of the LTS framework is observed across these search applications, and on different collections, including a large scale Web collection that contains over 50 million documents. This suggests the generality of the proposed learning to select framework. The main contributions of this thesis are the introduction of the LTS framework and the proposed use of divergence measures as query features for identifying similar queries. In addition, this thesis draws insights from a large set of experiments, involving four different standard collections, four different search tasks and large document feature sets. This illustrates the effectiveness, robustness and generality of the LTS framework in tackling various retrieval applications

    感性推定のためのDeep Learning による特徴抽出

    Get PDF
    広島大学(Hiroshima University)博士(工学)Doctor of Engineeringdoctora

    IRGAN: A Minimax Game for Unifying Generative and Discriminative Information Retrieval Models

    Get PDF
    This paper provides a unified account of two schools of thinking in information retrieval modelling: the generative retrieval focusing on predicting relevant documents given a query, and the discriminative retrieval focusing on predicting relevancy given a query-document pair. We propose a game theoretical minimax game to iteratively optimise both models. On one hand, the discriminative model, aiming to mine signals from labelled and unlabelled data, provides guidance to train the generative model towards fitting the underlying relevance distribution over documents given the query. On the other hand, the generative model, acting as an attacker to the current discriminative model, generates difficult examples for the discriminative model in an adversarial way by minimising its discrimination objective. With the competition between these two models, we show that the unified framework takes advantage of both schools of thinking: (i) the generative model learns to fit the relevance distribution over documents via the signals from the discriminative model, and (ii) the discriminative model is able to exploit the unlabelled data selected by the generative model to achieve a better estimation for document ranking. Our experimental results have demonstrated significant performance gains as much as 23.96% on Precision@5 and 15.50% on MAP over strong baselines in a variety of applications including web search, item recommendation, and question answering.Comment: 12 pages; appendix adde

    Semantic multimedia modelling & interpretation for search & retrieval

    Get PDF
    With the axiomatic revolutionary in the multimedia equip devices, culminated in the proverbial proliferation of the image and video data. Owing to this omnipresence and progression, these data become the part of our daily life. This devastating data production rate accompanies with a predicament of surpassing our potentials for acquiring this data. Perhaps one of the utmost prevailing problems of this digital era is an information plethora. Until now, progressions in image and video retrieval research reached restrained success owed to its interpretation of an image and video in terms of primitive features. Humans generally access multimedia assets in terms of semantic concepts. The retrieval of digital images and videos is impeded by the semantic gap. The semantic gap is the discrepancy between a user’s high-level interpretation of an image and the information that can be extracted from an image’s physical properties. Content- based image and video retrieval systems are explicitly assailable to the semantic gap due to their dependence on low-level visual features for describing image and content. The semantic gap can be narrowed by including high-level features. High-level descriptions of images and videos are more proficient of apprehending the semantic meaning of image and video content. It is generally understood that the problem of image and video retrieval is still far from being solved. This thesis proposes an approach for intelligent multimedia semantic extraction for search and retrieval. This thesis intends to bridge the gap between the visual features and semantics. This thesis proposes a Semantic query Interpreter for the images and the videos. The proposed Semantic Query Interpreter will select the pertinent terms from the user query and analyse it lexically and semantically. The proposed SQI reduces the semantic as well as the vocabulary gap between the users and the machine. This thesis also explored a novel ranking strategy for image search and retrieval. SemRank is the novel system that will incorporate the Semantic Intensity (SI) in exploring the semantic relevancy between the user query and the available data. The novel Semantic Intensity captures the concept dominancy factor of an image. As we are aware of the fact that the image is the combination of various concepts and among the list of concepts some of them are more dominant then the other. The SemRank will rank the retrieved images on the basis of Semantic Intensity. The investigations are made on the LabelMe image and LabelMe video dataset. Experiments show that the proposed approach is successful in bridging the semantic gap. The experiments reveal that our proposed system outperforms the traditional image retrieval systems

    Representations and representation learning for image aesthetics prediction and image enhancement

    Get PDF
    With the continual improvement in cell phone cameras and improvements in the connectivity of mobile devices, we have seen an exponential increase in the images that are captured, stored and shared on social media. For example, as of July 1st 2017 Instagram had over 715 million registered users which had posted just shy of 35 billion images. This represented approximately seven and nine-fold increase in the number of users and photos present on Instagram since 2012. Whether the images are stored on personal computers or reside on social networks (e.g. Instagram, Flickr), the sheer number of images calls for methods to determine various image properties, such as object presence or appeal, for the purpose of automatic image management and curation. One of the central problems in consumer photography centers around determining the aesthetic appeal of an image and motivates us to explore questions related to understanding aesthetic preferences, image enhancement and the possibility of using such models on devices with constrained resources. In this dissertation, we present our work on exploring representations and representation learning approaches for aesthetic inference, composition ranking and its application to image enhancement. Firstly, we discuss early representations that mainly consisted of expert features, and their possibility to enhance Convolutional Neural Networks (CNN). Secondly, we discuss the ability of resource-constrained CNNs, and the different architecture choices (inputs size and layer depth) in solving various aesthetic inference tasks: binary classification, regression, and image cropping. We show that if trained for solving fine-grained aesthetics inference, such models can rival the cropping performance of other aesthetics-based croppers, however they fall short in comparison to models trained for composition ranking. Lastly, we discuss our work on exploring and identifying the design choices in training composition ranking functions, with the goal of using them for image composition enhancement
    corecore