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Abstract

This thesis presents a unified method for simultaneous solution of three prob-
lems in Information Retrieval— metasearch (the fusion of ranked lists returned
by retrieval systems to elicit improved performance), efficient system evaluation
(the accurate evaluation of retrieval systems with small numbers of relevance
judgements), and pooling or “active sample selection” (the selection of docu-
ments for manual judgement in order to develop sample pools of high precision
or pools suitable for assessing system quality). The thesis establishes a unified
theoretical framework for addressing these three problems and naturally gener-
alizes their solution to the on-line context by incorporating feedback in the form
of relevance judgements.

The algorithm— Rankhedge for on-line retrieval, metasearch and system
evaluation— is the first to address these three problems simultaneously and also
to generalize their solution to the on-line context. Optimality of the Rankhedge
algorithm is developed via Bayesian and maximum entropy interpretations. Re-
sults of the algorithm prove to be significantly superior to previous methods
when tested over a range of TREC (Text REtrieval Conference) data. In the
absence of feedback, the technique equals or exceeds the performance of bench-
mark metasearch algorithms such as CombMNZ and Condorcet. The technique
then dramatically improves on this performance during the on-line metasearch
process. In addition, the technique generates pools of documents which in-
clude more relevant documents and produce more accurate system evaluations
than previous techniques. The thesis includes an information-theoretic exami-
nation of the original Hedge algorithm as well as its adaptation to the context of
ranked lists. The work also addresses the concept of information-theoretic sim-
ilarity within the Rankhedge context and presents a method for decorrelating
the predictor set to improve worst case performance. Finally, an information-
theoretically optimal method for probabilistic “active sampling” is presented
with possible application to a broad range of practical and theoretical contexts.
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Chapter 1

Introduction

This thesis presents a simultaneous solution to several interrelated problems in

Information Retrieval (IR) arising in the context of the effective use of ranked

retrieval lists provided by a collection of retrieval systems. These problems—

metasearch, system evaluation, and pooling— are usually treated as separate

issues in the IR literature. But we demonstrate that each of the problems may

be viewed as a particular aspect of the more general problem of combination of

expert advice in an on-line setting.

The thesis proceeds along parallel practical and theoretical courses. We

begin by introducing a practical solution to the three IR problems based on the

Hedge on-line learning algorithm of Freund and Schapire [37]. We shall refer to

our particular variant of the algorithm, adapted specifically to the context of

ranked lists, as Rankhedge. As defined in this paper, Rankhedge is demonstrated

to be an approximation of an optimal Bayesian on-line algorithm and thus

approaches an optimal solution of the three IR problems.

As is often the case, the practical considerations associated with adapting

an algorithm to a new domain provide an opportunity to engage in a thorough

theoretical exploration of the underpinnings of the original algorithm, and we
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provide an exact information-theoretic interpretation of the Hedge algorithm

and demonstrate optimality of our particular variation to the problem of on-

line learning in the context of ranked lists. This information-theoretic analysis,

in turn, suggests enhancements to the algorithm; and we present several theo-

retically grounded methods for improving performance, including a method for

decorrelation of the initial distribution of predictors and an optimal method for

actively sampling the instance space which employs a probabilistic technique to

maximize expected learning or retrieval rates.

1.1 Challenges in On-line Retrieval

Our focus in information retrieval is on three interrelated problems associated

with the use of ranked retrieval lists returned by a group of experts in response

to a query or queries. The first problem, metasearch, may be described as the

efficient fusion of ranked lists of documents in order to obtain a high-quality

combined list. The on-line context for the metasearch problem, as developed in

this thesis, generalizes the original definition of metasearch in which the algo-

rithm is assumed to operate in the absence of feedback. Our on-line method is

the first to efficiently incorporate user feedback into the metasearch process, and

the Rankhedge learning algorithm provides a natural, theoretically consistent

basis for incorporating iterative feedback.

Since the ability to effectively merge retrieval lists is dependent upon an al-

gorithm’s ability to estimate the quality of the underlying retrieval systems, our

second IR problem, the accurate evaluation of retrieval systems, may be thought

of as in some ways precedent to the on-line metasearch problem. We may define

succinctly the problem of system evaluation as the accurate assessment of the

quality of retrieval systems, given a limited number of relevance judgements.

Ability to incorporate feedback in the service of these two goals in an efficient

2



manner demands a method for actively selecting samples for user feedback. In

the IR literature, the collection of judged documents is often referred to as the

pool, and pooling is most often described as the selection of document collections

which provide a sufficient basis for the fair and accurate evaluation of retrieval

systems. An alternate treatment is that pooling is the selection of document

collections containing a large fraction of relevant documents— with the implicit

assumption that these collections will provide a good basis for system evaluation.

Thus, the third IR problem we consider, pooling, may be seen as a component of

the algorithm employed to solve the metasearch and system evaluation problems.

1.1.1 Machine Learning and Information Theoretic Per-

spectives

In the field of Information Retrieval, these three problems—metasearch, system

evaluation, and pooling— are usually treated as separate issues. Our work

recasts the problems in a single unified framework and demonstrates that all

three can be efficiently and effectively solved with a single technique based on

the Hedge algorithm for on-line learning.

Hedge predictions of the labels associated with unlabelled instances are based

on a weighted linear combination of predictions provided by a finite set of ex-

perts. As we shall demonstrate in the course of our analysis, if the update

method of Hedge has access to a reasonable estimate of the posterior distri-

bution over instance labels, the method may be defined in a manner which

approximates an optimal Bayesian on-line algorithm. For metasearch purposes,

this property translates to the fact that evidence from various experts is com-

bined to generate predictions on the unlabelled instances in a manner which is

consistent with a best estimate of the posterior probabilities of the labels as con-

ditioned by the evidence from the labelled sample set. In our implementation of

Rankhedge we define a method for estimation of the posterior probabilities of

3



relevance of instances which is demonstrated to be both empirically and theo-

retically consistent with the expected behavior of the ranked predictions. Thus,

Rankhedge may be viewed as a natural generalization of the metasearch process

which incorporates on-line feedback into the retrieval process in a manner which

approximates the optimal Bayesian solution.

To show Rankhedge’s utility as a method for system evaluation, we shall

present an information-theoretic analysis which demonstrates that the exponen-

tial update rule governing evolution of the weight distribution over predictors

in Rankhedge adheres to desirable maximum entropy principles, resulting in

a distribution which is defined solely by the performance of the predictors in

response to the actual constraints associated with the pool of judged samples.

The evolution of the distribution over predictors is consistent with a common

notion of sample complexity, which may be defined in terms of the log poste-

rior volume of possible configurations of labels on the unlabelled sample set. In

the case of a weighted linear combination of finite length predictors, an analo-

gous definition of the posterior function volume corresponds to the maximum

Kullback Liebler distance of the distribution over predictors from the optimal

distribution as defined by the labelling of the entire sample set.

Evolution of the complexity of a sample pool may be seen as the dual of the

the evolution of the distribution over predictors, and the increase in complexity

due to inclusion of a sample in the pool provides a measure of the expected in-

stantaneous learning rate (or equivalently the constraint of the function volume)

due to the sample. We define a method for active sample selection suggested by

the optimal gambling paradigm used to prove information-theoretic optimality

of Hedge, which may be used to maximize either the expected instantaneous

learning rate or the expected instantaneous return (relevance) of the sample.

4



1.2 Contributions

The contributions of this thesis fall into three categories. In this section, we first

discuss the practical results of the algorithm as applied to our basic problems

of generalized metasearch, assessment of the quality of retrieval systems, and

selection of efficient sample pools suitable for these tasks. Next, we delineate the-

oretical contributions which ground our Hedge algorithm for ranked lists and its

modifications in an information-theoretic framework. And finally, we mention

contributions which we shall refer to as contextual. The information-theoretic

discussion of the Hedge on-line learning technique exposes the elemental con-

nections between the Hedge technique and other methodologies from learning

theory as well as from other disciplines such as statistical mechanics with the

aim of broadening the context of applicability of Hedge related techniques.

1.2.1 Practical Contributions

The thesis presents a single theoretically grounded solution for several important

problems in information retrieval which have, to date, been treated separately in

the IR literature. In developing our algorithm, we establish a unified framework

for addressing the three problems of generalized metasearch, pooling, and system

evaluation. Our basic algorithm, Rankhedge, is a modified version of the Hedge

algorithm which has been adapted to the context of the ranked lists returned by

retrieval systems in the TREC contest. In making these and other modifications,

we take a Bayesian viewpoint and base our Hedge loss function on an estimate

of prior probability of relevance at rank. In conjunction with our theoretic

explorations, we suggest several other useful algorithmic modifications to the

basic algorithm.

5



1.2.2 Basic Results

The testbed for Rankhedge is the data from retrieval system submissions and

hand-judged feedback of the annual TREC conference retrieval track. In exper-

iments with the algorithm on multiple TREC data sets, the initial unmodified

Rankhedge algorithm produced excellent results on a representative collection

of TREC data (TREC’s 3, 5, 6, 7, 8, and 9). As we shall demonstrate in Chap-

ter Three, tests of the basic algorithm yielded the following results: (1) As an

algorithm for metasearch, the technique combines ranked lists of documents in

the absence of feedback in a manner whose performance equals or exceeds that

of benchmark algorithms such as CombMNZ and Condorcet, and then dramat-

ically improves on this performance through seamless integration of relevance

judgements into the on-line metasearch process. (2) As an algorithm for pooling

and system evaluation, our technique generates sets of documents which both

include more relevant documents and result in more accurate system evaluations

than standard techniques such as TREC-style depth pooling (i.e. the inclusion

of all documents returned by any system to depth-n).

1.2.3 Modifications

Our most significant modifications of the Rankhedge algorithm consist of ma-

nipulations of the loss function. Two different models of expected relevance at

rank are implemented via loss models defined in terms of functions on ranks.

As shown in Chapter Five, the first method corresponds roughly to a logarith-

mic loss at rank and has the advantage in the IR context that the net loss is

defined in terms of a familiar measure of the quality of retrieval systems (aver-

age precision). The second method employs a loss function defined directly in

terms of the expected prior relevance at rank, resulting in a maximum entropy

method which has a Bayesian interpretation, also discussed in Chapter Five.

Both methods prove successful in practice, but results of the second method
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appear to approach optimality.

A main advantage of the Hedge algorithm over ad-hoc methods for on-line

prediction is the fact that the exponential update method provides a theoreti-

cally grounded means for eliminating the bias-error associated with the overlap

or lack of independence among the more generic retrieval systems. The sec-

ond modification to our basic algorithm explores the effect of eliminating this

bias error in the initial distribution of predictor weights. The method attempts

to debias the initial predictor space using an information-theoretic similarity

measure which is implicitly defined by the exponential update method. By

eliminating correlations in the initial distribution over predictors, we reduce the

volume of the initial predictor set, resulting in an improved worst case bound

on performance of the algorithm. Results associated with this modified version

of Rankhedge are presented in Chapter Six.

All Rankhedge results are dependent on our ability to efficiently select sam-

ples to add to the pool. A successful active learning method for selection of

samples for pooling results in improved performance in metasearch and system

evaluation. The basic Rankhedge algorithm employs a simple greedy selection

method which attempts to maximize the instantaneous expected accuracy of

samples selected for the pool. Chapter Seven introduces an alternative method

for sample selection which probabilistically draws from a distribution over the

unlabelled sample space with instances weighted in proportion to the expected

relevance (to maximize instantaneous retrieval accuracy) or expected risk or er-

ror rate (to maximize the instantaneous learning rate). It is expected that, as a

general technique, the sampling method will have applicability to a broad class

of problems beyond the context of the Rankhedge algorithm.
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1.2.4 Theoretical Contributions

To be able to address the various subtleties associated with the retrieval context,

we embark on an information-theoretic examination of the original Hedge algo-

rithm of Freund and Schapire. We establish an expression for the exact loss of

the Hedge algorithm based on the Kullback Liebler Distance or relative entropy

between successive instances of the distribution over predictors. A corollary to

our proof demonstrates a derivation of a simple lower bound on Hedge loss as

well as an upper bound which is independent of the evolution of the sample

distribution and thus is consistent with the original Hedge analysis.

To adapt the Hedge algorithm to the retrieval context, we develop a rank-

sensitive version of the algorithm, Rankhedge, in which rank effects are incor-

porated into the loss function via an estimate of prior probability of relevance

at rank which is both empirically and theoretically justified. An examination

of the aggregate behavior of the retrieval systems across queries demonstrates

that the simple relevance at rank curve (based on the harmonic series) used by

Rankhedge provides an accurate representation of observed behavior.

We examine bounds on algorithmic performance relative to several quantities

of interest and demonstrate that the algorithm performs well, given reasonable

definitions of loss and accuracy. We demonstrate via counterexample that a

worst case bound on the loss of the algorithm measured in terms of the accuracy

of the output list of selected samples is poor. However, the usual Hedge bound

on the loss suffered by the algorithm (that is, a loss defined in terms of expected

accuracy of the output list, rather than in absolute terms) is still available.

Likewise, a worst case bound on the quality of the estimate of predictor accuracy

is demonstrated, via counterexample, to be poor due to the effects of predictor

bias; but an average case analysis provides an acceptable bound on estimated

quality of the predictors.

To address the issue of lack of independence in the predictor set, the rela-
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tionship of the ranked lists provided by predictors is defined via an information-

theoretic similarity measure on the space of ranked lists. The log of the exponen-

tial loss associated with a list, given the expected relevance of the sample set as

defined by a second list provides the basis for a similarity measure appropriate

for debiasing the predictors. Both worst case and expected case measures are

provided with the expected case measure corresponding to a familiar measure

of similarity known as the dice coefficient [35].

Finally, a new method for active learning based on probabilistic sampling

of the unlabelled sample set is presented. The method is based on a Bayesian

or expected case notion of sample complexity as defined by the convergence of

the posterior volume of functions to a target distribution due to the constraints

inherent in a sample. As in our earlier analyses, an information-theoretic anal-

ysis of the evolution of the distribution over predictors given the probabilistic

sampling scheme demonstrates optimal expected convergence toward the target

distribution (the true probability of relevance of the predictors on the sample

set).

1.2.5 Hedge in a Broader Context

In the course of our practical and theoretical explorations, we demonstrate sev-

eral equivalences between the Hedge on-line algorithm and other methods for

on-line learning. By viewing the exponential update rule as the limiting con-

tinuous approximation of a discrete proportional update process, we are able

to place the Hedge algorithm in a Bayesian context; and we demonstrate that

Hedge is, in fact, a generalization of the Bayesian on-line prediction technique

of Cesa-Bianchi, et al. [19].

Our results in prediction and system evaluation derive from the duality of

the learning process as viewed in terms of the evolution of the posterior dis-

tribution on the predictors, or alternatively, in terms of the sample complexity
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defined in terms of the constraint volume associated with an arbitrary sample

set. The close relationship of an instantaneous snapshot of the Hedge algorithm

to a familiar construction in statistical physics known as the Gibbs Distribu-

tion is noted, and this serves as an introduction to the notion of the inherent

duality of the predictor and sample axes via an examination of Gibbs Distribu-

tions’ companion entity, the Markov Random Field. Further examination of the

learning algorithm via this dual representation yields the information-theoretic

definition of a similarity measure on the space of predictors.

The duality of the evolving distribution over predictors and the informa-

tional complexity of the sample set is delineated in Bayesian terms by Haussler,

et al. in [45] for the lossless context where the best predictor has an error rate

ε = 0. In the course of our development of active selection techniques, we

demonstrate that the Bayesian view of Hedge implies that this Haussler learn-

ing method is actually an instance of the Hedge algorithm with β restricted to

zero. This allows us to incorporate the sample complexity arguments of [45]

into our discussion of active selection methods.

We also mention the connections of our algorithm to two other specific tech-

niques from the literature of information retrieval. The application of Hedge

to the context of ranked lists is demonstrated to be closely related to a tech-

nique for combining rankings due to Lebanon and Lafferty known as Cranking

[55]. While Hedge produces a linear combination of predictor lists, the Cranking

method uses gradient descent to determine the minimum energy configuration in

the space of permutations. These two techniques may be seen as related meth-

ods for localizing the optimal configuration within the space of permutations,

with both employing an exponential distance relationship, explicitly defined in

Cranking and implicitly defined in Hedge.
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1.3 Outline

In the chapters that follow, we first establish our three goals for the Rankhedge

technique in the context of Information Retrieval. Chapter Two provides some

background for the IR problems, examining some of the fundamental issues

encountered by metasearch, system evaluation and pooling techniques as well

as discussing several systems which have been developed in the three areas.

In Chapter Three, we present a unified solution to the three problems based

on the machine learning algorithm known as Hedge. Our modified version of

the Hedge algorithm adapted to the context of ranked lists (Rankhedge) is

presented, and results of the application of Rankhedge are demonstrated to be

uniformly excellent across a representative collection of TREC conferences.

After presentation of our early results, we examine the theoretical basis for

success of the algorithm. Chapters Four through Seven delve into the underlying

theory of the Hedge algorithm and its application here to ranked lists. Taking an

information-theoretic perspective, the connection between the Hedge algorithm

and Bayesian methods for on-line prediction is established, allowing a rigorous

examination of the on-line algorithm in terms of expected (as opposed to worst-

case) behavior. The resulting analysis leads to several methods for enhancing

behavior of the algorithm.

Chapter Four examines the specific modifications of the Hedge algorithm

required to adapt it to the context of the combination of ranked lists. Examples

of earlier machine learning algorithms directed toward combination of ranked-

lists are provided, followed by a discussion of our Rankhedge scheme based on

an explicit estimate of prior probability of relevance at rank. Both theoretical

and empirical evidence for our definition of prior probability of relevance at

rank is given, as well as an analysis of worst-case results for both quality of

the output list and estimates of system accuracy. Finally, a discussion of the

optimal selection of an exponential decay rate leads to a method for improving
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the basic algorithm by adapting the decay rate in accordance with the evolution

of the probability of sample relevance with rank.

In Chapter Five, we establish the fundamental relationship of the Bayesian

and Hedge methods for on-line learning by demonstrating that the Hedge algo-

rithm reflects a continuous approximation of a discrete on-line algorithm corre-

sponding to a proportional betting scheme. Continuing with the information-

theoretic analysis indicated by this relationship to proportional gambling, we

further establish exact bounds for the Hedge algorithm in terms of the rela-

tive entropy (Kullback Liebler distance) between successive distributions over

predictors.

Chapters Six and Seven expand upon this information-theoretic framework

and develop algorithmic enhancements to address the initial bias error of pre-

dictors as well as a method for active selection of samples. The method for

debiasing predictors in Chapter Six proceeds directly from the development of

an information-theoretic similarity measure on the space of ranked lists. The

similarity measure has potential practical application beyond its direct uses in

the context of the Hedge algorithm and we employ it to demonstrate a nega-

tive result in the area of pseudoevaluation of retrieval systems (the attempt to

evaluate retrieval systems in the absence of user feedback).

Chapter Seven addresses the question of directed selection of samples or

active sampling by switching the focus of interest in the learning process from

the evolution of the distribution of predictors to that of the constraint volume

associated with the sample set. Connections to sample complexity results of

Haussler, et al. [45] are examined, and the Hedge algorithm is demonstrated

to be a generalization of the Bayesian on-line learning algorithm of [45]. The

algorithm of [45] is defined in the lossless context in which a predictor with

zero error is guaranteed to exist. Hedge provides a practical and theoretically

justifiable means for extending the results obtained in the lossless situation to
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the lossy context in which the best predictor has an error rate ε > 0. A new

probabilistic method for sample selection is presented, with unlabelled instances

sampled in proportion to their expected risk (a property closely related to the

sample complexity). Optimal convergence of the distribution over predictors

given the probabilistic sampling method is demonstrated.

We conclude, in Chapter Eight, with an examination of possible areas for

future research.
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Chapter 2

IR Background

In this section, we provide the background for our discussion of the three basic

Information Retrieval problems under consideration and examine some of the

fundamental issues encountered by metasearch, system evaluation and pooling

techniques. We describe earlier approaches to these problems and discuss sys-

tems which have been developed in each of the areas. The chapter begins with

a discussion of pooling and system evaluation techniques, since the ability to

accurately estimate the quality of a retrieval system is (at least implicitly) a

prerequisite for generation of a quality fused list in the metasearch task. We

proceed with an examination of metasearch, and the chapter moves from dis-

cussion of early ad-hoc techniques toward the Bayesian metasearch technique

of Aslam and Montague which is an intellectual precursor to our current algo-

rithm. We conclude with an examination of the Cranking method of Lebanon

and Lafferty.
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2.1 Pooling for System Evaluation

Collections of retrieval systems are traditionally evaluated by (1) constructing a

test collection of documents (the “corpus”), (2) constructing a test collection of

queries (the “topics”), (3) judging the relevance of the documents to each query

(the “relevance judgments”), and (4) assessing the quality of the ranked lists

of documents returned by each retrieval system for each topic using standard

measures of performance such as Mean Average Precision (MAP). Much thought

and research has been devoted to each of these steps in, for example, the annual

TREC conference [43].

As it involves the manual intervention of a human agent, step (3) can quickly

become excessively burdensome. For example, in TREC, participating systems

return ranked lists of up to 1000 documents for 50 queries, based on estimated

relevance of documents. Clearly, it would be impractical to assess the relevance

of each document to each topic. With a document space on the order of millions,

heuristics must be employed for limiting the size of pools of documents to be

judged. In practice a relatively small subset of the documents is chosen, and the

relevance of these documents to the topics is assessed. The method by which a

subset of a document collection is chosen for purposes of system evaluation is

referred to as the pooling technique.

Pools are used to evaluate retrieval systems in the following manner. The

documents within a pool are manually judged to determine whether they are

relevant to the given user query or topic. Documents not contained within

the pool are assumed to be non-relevant. The ranked lists returned by the

retrieval systems are then evaluated using standard measures of performance

(such as Mean Average Precision) using this “complete” set of relevance judg-

ments. Since documents not present in the pool are assumed non-relevant, the

quality of the assessments produced by such a pool is often in direct proportion

to the fraction of relevant documents found in the pool (its recall).
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The current pooling technique employed by the annual TREC conference [43],

is Depth-n pooling. In this method, the “pool” of documents to be judged is

constructed by taking the union of the top n documents returned by each sys-

tem in response to a given query. In TREC, n = 100 has been shown to be an

effective cutoff in evaluating the relative performance of retrieval systems [43].

Both shallower and deeper pools have been studied [102, 43], both for TREC

and within the greater context of the generation of large test collections [23].

Depth-n pooling has proven to be an effective technique since many of the

documents relevant to a topic will appear near the top of the lists returned by

(quality) retrieval systems. These relevant documents will be judged and used

to effectively assess the performance of the collected systems. In addition, the

Depth-n pooling method is a “fair” method for establishing system quality, given

a restricted sample pool, since all systems’ lists are guaranteed to be sampled

to equivalent depths. The results of the method are also relatively “complete”

in terms of the set of relevant documents retrieved, given a sufficient depth of

sampling.

Judging all documents appearing in the depth-100 pool is still quite expen-

sive, however. For example, in TREC 8 86,830 manual relevance judgments

were used to assess the quality of the retrieved lists submitted by 129 systems

in response to 50 topics [95] . An inventory of the number of documents at

various pool depths for multiple TRECs is shown in Table 2.1.

Both “blind” pooling techniques (techniques using no relevance judgements)

and on-line pooling techniques— where user feedback is solicited to direct the

pooling process— have been proposed as alternative solutions to attempt to

identify relevant documents as quickly as possible.
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TREC
Pool 3 5 6 7 8 9

Depth n = 40 n = 82 n = 79 n = 103 n = 129 n = 105
1 19 38 38 32 40 38
2 39 68 67 55 69 68
3 47 98 95 76 95 95
4 60 126 120 95 119 120
5 73 153 146 114 144 146
6 85 181 172 134 167 171
7 96 208 197 152 191 196
8 107 234 221 170 215 220
9 118 262 246 189 238 245

10 129 288 271 207 260 269
15 183 418 393 297 379 388
20 235 543 513 389 494 502
30 336 791 743 571 717 726
40 436 1034 969 754 939 942
50 531 1273 1191 936 1155 1178
60 626 1509 1410 1114 1366 1366
70 718 1745 1629 1299 1574 1575
80 811 1978 1845 1486 1777 1782
90 903 2206 2058 1675 1978 1983

100 995 2434 2271 1860 2176 2184

Table 2.1: The size of the pool (averaged over 50 queries) for various pool depths
if the pooling is performed TREC-style. Here n is the number of input systems
contributing to the data set.

2.1.1 Pooling without Relevance Judgements

In a recent work [84], Soboroff, et al. presented a method for pseudoevaluation

of retrieval systems which probabilistically selects documents from the pool of

documents returned by systems in a TREC retrieval track according to various

models of how relevant documents should occur in the document pool. The

selected documents were assumed to be relevant and formed the basis for a

pseudo-qrel (a qrel being a vector of relevance judgements) against which the

performance of the retrieval systems could be evaluated. Different sampling

methods included viewing the pool of documents as a set versus as a multiset

and sampling at various pool depths. The resultant rankings proved to be well
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Figure 2.1: “TRECstyle 100 normal” method vs. actual rankings— TREC 8.

correlated with actual TREC rankings.

As noted in [84], the pseudoevaluations suffered from a common phenomenon,

further explored by Aslam and Savell in [11]. While the bulk of the systems were

classified correctly, the best systems in terms of precision (also most important

for metasearch purposes) were consistently ranked with the poor performers

(see Figure 2.1). The intuition behind this phenomenon is, of course, that

the better systems are doing something significantly different from the more

generic systems in the pack. An example of this effect may be seen in Figure 2.1

which compares the actual TREC-8 rankings to rankings produced by Soboroff’s

“TRECstyle 100 normal” technique, which corresponds to a random sampling

of the set (unique documents included once) of all documents returned to depth-

100 by all systems. In this sampling technique, the ranking phenomenon is a

result of correlations among non-relevant items in the pool, which tend to en-

hance retrieval rates of similar systems. The results are consistent with those
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of the other sampling methods and of pseudoevaluation techniques in general

which tend to produce an enhanced ranking of the generic systems and to un-

derestimate the quality of the best predictors.

The susceptibility of pseudoevaluation methods to a “tyranny of the masses”

effect or “bias error” introduces a theme which is common to methods seeking to

limit pool sizes for system evaluation as well as to metasearch methods operating

in the absence of relevance judgements. That is, methods reliant upon document

popularity as an indicator of relevance, while capable of weeding out the worst

performers, also tend to weed out the best.

2.1.2 On-line Pooling with Priority Queues

An interesting and surprisingly effective ad-hoc technique for dealing with these

sorts of errors by utilizing on-line relevance judgements is presented in Cormack,

et al. [23]. The algorithm employs a priority queue to keep track of systems

which have most recently yielded a relevant document.

In the algorithm presented in Figure 2.2, systems are initially placed in ran-

dom order into a priority queue. At each iteration, the system with highest

priority is withdrawn from the heap. Documents from this system’s list which

have not previously been judged are examined in descending order. If a relevant

document is found, the system’s priority is set to the maximum. Documents

are drawn until a non-relevant document is found (whether or not it has been

previously judged), and then the system is returned to the heap with its priority

decremented by one. Figure 2.3 shows the relative effectiveness of the priority

queue method in discovering relevant documents relative to the Depth-n pool-

ing technique. This figure provides TREC 8 results, but the method proved

similarity effective across all TREC’s tested.

A brief analysis demonstrates how this simple ad-hoc algorithm greatly in-

creases the rate of relevant documents found over normal Depth-n pooling. With
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ALGORITHM: On-line Pooling via Priority Queue():

1 Randomly place all systems on heap with max priority.
2 WHILE unjudged documents remain:
3 Remove system s from top of heap.
4 WHILE any document in list of s:
5 IF unjudged document:
6 Assign document relevance.
7 IF document relevant:
8 Set priority of s to maximum.
9 ELSE:
10 Decrement priority of s.
11 Return s to heap.
11 BREAK.

Figure 2.2: On-line Pooling Algorithm (Cormack et al. [23]).
.
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N as the number of systems, dreli as the number of relevant documents returned

by an arbitrary system s at ranks 1 to i and dnreli as the corresponding number

of nonrelevant documents, one may estimate the expected rate of discovery of

relevant documents returned by system s.

Given that: a) a system which has recently drawn a non-relevant document

will have to wait on the order of N draws before returning to the top of the

heap, and b) there is no waiting when a relevant document is drawn— the

cost of seeing the top i documents of an arbitrary system s is approximately

N ∗ dnreli for N of significant size. Thus, the expected rate of discovery of

the dreli relevant documents occuring in the first i documents returned by s

is approximately dreli/(N ∗ dnreli). In other words, a document returned by

system s at rank i is sampled at a rate proportional to the expected odds of

relevance of documents returned by s at ranks 1 to i − 1. As demonstrated in

Figure 2.2, this technique of sampling a system list at a rate proportional to the

odds of relevance proves to be quite effective, and we shall see in future chapters

that the technique of proportional sampling at expected rates of accuracy serves

also as the foundation of the Hedge based methods presented in this thesis.

2.2 Metasearch

Metasearch is the well-studied process of fusing the ranked lists of documents

returned by a collection of systems in response to a given user query into a

single ranked list. The use of data fusion to combine retrieval results has been an

active area of study in IR since 1972, when Fisher and Elchesen [32] showed that

document retrieval results could be improved by combining the results of two

Boolean searches: one over the title words of documents, and one over manually-

assigned terms. This early work was followed by many more extensive studies,

[12, 13, 14, 25, 33, 48, 56, 57, 61, 69, 70, 79, 83, 86, 87, 89, 91, 92, 93, 94, 96].
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For a survey of the earlier literature, see [26]. Direct ancestral influences of this

thesis may be found in [5, 7, 63, 64, 65, 55].

In general, metasearch algorithms produce quality ranked lists of documents

by fusing the ranked lists provided by a collection of underlying systems. Given

ranked lists produced by good but sufficiently different underlying systems, these

techniques can produce fused lists whose performance exceeds that of any of the

underlying lists. Likewise, given ranked lists produced by possibly correlated

systems of varying performance, these metasearch techniques will most often

produce fused lists whose performance exceeds that of the “average” underlying

list but which rarely exceeds that of the best underlying list.

The great majority of metasearch techniques involve formulating a weighted

linear combination of the ordered lists of documents returned by the underlying

retrieval systems using one of a number of diverse document scoring methods.

In this context, the relationship to system evaluation methods is clear, since a

reasonable estimate of predictor quality provides a valuable input to the doc-

ument weighting function. In the following sections, we examine the details of

several metasearch methods.

2.2.1 CombMNZ, CombSum, and CombANZ

The benchmark technique CombMNZ [34, 81, 57] is one of a group of ad-

hoc methods— CombMNZ, CombSum, and CombANZ— defined in terms of

weighted combinations of the normalized relevance scores given to each docu-

ment by the underlying systems. Central to these techniques is the implicit

assumption that a document’s relevance score provided by a retrieval system

corresponds to a system’s best estimate of the document’s relative probability

of relevance.

Fox and Shaw [34] present three different methods which attempt to bias the

simple weighted linear combination of relevance scores by weighting each docu-
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ment d more or less heavily according to the number of systems that returned

the document. With nd corresponding to the number of systems returning doc-

ument d, the general formula for relevance is:

rel(d) = nγd
∑
i reli(d)

with γ ∈ {−1, 0, 1}.

When γ = −1, the system is equivalent to the average relevance over systems

that returned d, and is referred to as “CombANZ”. When γ = 0, the result is

the sum of the relevance scores over all systems or “CombSum”. Assuming, as

in the paper, a similarity of zero for documents not returned, “CombSum” is

simply the average relevance over all systems. Finally, with γ = 1, the result is

“CombMNZ” (Multiply-by-number-Non-Zero). In this case, multiplication by

the number of systems returning document d tends to bias the results toward

documents with broader support in the predictor set.

In the original work, Fox and Shaw find CombSum to be slightly more ef-

fective than CombMNZ. But later experiments such as those by Lee [57] have

tended to favor CombMNZ. Due to the ease of implementation and relative ef-

fectiveness in the absence of relevance judgements, CombMNZ scores are often

cited as a baseline for comparison by other metasearch techniques. A variation

of CombMNZ (rCombMNZ) which uses ranks rather than relevance scores is

also popular and produces comparable results.

2.2.2 Voting Methods: Borda Fuse and Condorcet

Several algorithms by Aslam and Montague [7, 65] approach the metasearch

problem as a multi-candidate election where the documents are candidates and

the systems are voters expressing preferential rankings among the candidates.

These techniques are based on two fair methods for determining the winner of

a multi-candidate election. These fair voting algorithms were originally defined
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by two French theorists Borda and Condorcet in the 1780’s [18, 29]. The branch

of decision theory which has since evolved to address questions of cooperative

decision making is known as “Social Choice Theory” [17, 52, 73, 66].

The first technique, Borda-Fuse [7] is based on a positional method— a

method which is defined in terms of a function on the ranks of the candidates—

known as Borda-Count. The Borda Count works as follows. Each voter ranks a

fixed set of c candidates in order of preference. For each voter, the top ranked

candidate is given r points, the second ranked candidate is given r−1 points, and

so on. If there are some candidates left unranked by the voter, the remaining

points are divided evenly among the unranked candidates. The candidates are

ranked in order of total points, and the candidate with the most points wins

the election. As shown by [76, 77], Borda Count is optimal in the sense that it

satisfies all of the symmetry properties that one would expect of a reasonable

election strategy.

To adapt Borda Count to the metasearch problem, a simple weighting scheme

multiplies the points assigned to a document by system s by the system weight

ws. Documents are then ranked by weighted linear combination score(d) =∑
s ws ∗ (N − r(s,d)), with N corresponding to the number of candidates ranked

by system s.

A second voting algorithm, the Condorcet method [65], achieves slightly bet-

ter performance. It is based on a majoritarian algorithm in which an ordering

of candidates is achieved through a series of pairwise runoff elections. The Con-

dorcet winner among a series of candidates is the candidate that wins (or ties)

in every possible pairwise majority contest. An important result from Social

Choice Theory known as May’s theorem states that in a two-candidate election,

“majority voting is the only method that is anonymous (equal treatment of vot-

ers), neutral (equal treatment of the candidates), and monotonic (more support

for a candidate cannot jeopardize its election)”. Since the Condorcet winner
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is the candidate that wins or ties in every possible pairwise majority contest,

May’s theorem lends strong support to the selection of Condorcet as a voting

algorithm. Cycles in the Condorcet graph are possible and are often treated

in the literature as paradoxes. However, Aslam and Montague point out that

these cycles are a natural artifact of the complexity of the voting profile. In the

context of metasearch, it is possible to treat these cycles as ties and this is the

method implemented in [65].

Weighting schemes may be incorporated into the Condorcet paradigm by

running the comparisons after system weights have been applied to the individ-

ual candidate scores. In this case, the value associated with system s’s scoring

of candidate d is defined in terms of the system weight ws and the rank assigned

to d by the system (c(s,d)) so that: score(s, d) = ws ∗ c(s,d).

Though the Condorcet algorithm is combinatorial, the expected outcomes

of the pairwise contests are similar to those of Borda Count; since, for any

document dx returned by a system s, the expectation that dx will win a runoff

election against another randomly chosen candidate dy ranked by the same

system is Pr(dx > dy|c(s,dx)) = (N − c(s,dx))/N , where N corresponds to the

number of candidates ranked by the system. For ranking purposes, this is

equivalent to a Borda Count weighting of r, r− 1, · · · , r− r. Thus, the majority

algorithm may be seen as a more sophisticated manner of combining votes, but

with the expected outcome still determined by score(s, d) =
∑
s ws ∗ c(s,d).

2.2.3 The Probabilistic Model

A Bayesian technique by Aslam and Montague [5, 7] attempts to calculate the

metasearch ranking by using odds of relevance as determined directly from the

estimated probability of relevance at rank under naive Bayes assumptions.

Given the ranked lists of documents returned by n retrieval systems, let ri(d)

be the rank assigned to document d by retrieval system i (a rank of ∞ may be
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used if document d is not retrieved by system i). This constitutes the evidence

of relevance provided to the metasearch strategy concerning document d. For a

given document, let

Prel = Pr[rel|r1, r2, . . . , rn] and

Pirr = Pr[irr|r1, r2, . . . , rn]

be the respective probabilities that the given document is relevant and irrele-

vant given the rank evidence r1, r2, . . . , rn. The Bayes optimal decision rule for

determining the relevance of a document dictates that a document should be

assumed relevant if and only if Prel/Pirr ≥ τ for some threshold τ chosen so as

to optimize the expected loss suffered if incorrect. Since we are interested in

ranking the documents, the algorithm need only compute the odds of relevance

Orel = Prel/Pirr

and rank documents according to this measure.

As shown in the derivation in [7], under naive Bayes assumptions a relevance

measure sufficient for ranking of documents is given by:

rel(d) =
∑
i

log
Pr[ri(d)|rel]
Pr[ri(d)|irr]

, (2.1)

with Pr[ri|rel] the probability that a relevant document would be ranked at level

ri by system i and Pr[ri|irr] the probability that an irrelevant document would

be ranked at level ri by system i. As implemented in [7], the posterior odds

of rank given document relevance are determined by examination of the per-

system statistics generated by the TREC eval program on a randomly chosen

subset of queries.

In the following chapters, we shall eliminate the need to directly sample the

probabilities of relevance at rank by demonstrating the existence of an empiri-
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cally and theoretically grounded univariate family of rank relevance curves based

on the harmonic series. While the Hedge algorithm is not usually considered

to be a Bayesian method, we shall establish in the course of our information-

theoretic analysis of the algorithm that Rankhedge (with an appropriate defi-

nition of loss function) does, in fact, constitute a continuous approximation of

a discrete Bayesian on-line algorithm, and thus may be seen as a descendent of

this earlier Bayesian technique.

2.3 Cranking

Finally, as an alternative to the various methods based on linear combinations

of classifiers, the Cranking Method [55] provides an interesting technique for

generating metasearch lists which is somewhat immune to the problems of bias

error of the other techniques. The Cranking Method seeks to build probability

distributions over rankings of labels— leading to conditional probability models

on permutations of the labels. The method attempts to determine the maximum

a posteriori (MAP) hypothesis in the space of permutations of document rank-

ings. That is, given the evidence of a training set consisting of pairs (π(i), σ(i))

where π(i) is a target ranking of instances i and σ(i) is the set of rankings re-

turned by the underlying retrieval systems, the method tries to find the MAP

hypothesis as fixed by this evidence.

The method utilizes the Mallows conditional ranking modelMd(θ, σ), where

θ ∈ R is a dispersion parameter and σ ∈ Sn is a location parameter from the

symmetric group of order n. The model has the exponential form

p(π|θ, σ) = eθd(π,σ)−ψ(θ,σ)

and d(π, θ) may be any one of a number of distance metrics d : Sn×Sn such as

Kendall’s τ (the minimum number of adjacent transpositions needed to bring
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π to σ), rank correlation (R(π, σ) =
∑n
i=1(π(i) − σ(i))2 ), or Spearman’s foot

rule (F (π, σ) =
∑n
i=1 |π(i) − σ(i)|) and ψ is the cumulant function ψ(θ, σ) =

log
∑
π∈Sn

exp (θ · d(π, σ)).

The Mallows model is generalized to allow multiple instances with each in-

stance associated with a possibly different set of rankings. With σj ∈ Sn and

θj ∈ R for j = 1, · · · , k, the conditional model is defined by:

p(π|σ, θ) =
1

Z(θ, σ)
e

Pk
j=1 θjd(π,σj)

A ranked list may be generated from the model by evaluating the expected

rank of label y(i) associated with instance x(i) as follows:

E[π(y(i))|θ, σ(i)] =
n∑
k=1

kp(π(y) = k|θ, σ(i))

=
n∑
k=1

k
∑

π∈Sδk
π

(i)
k

p(π|θ, σ(i))

where S
δkπ

(i)
k

is the coset of permutations which fix y(i) in position k.

In the Cranking method, the parameters to be set are the θj , which are found

directly via maximum likelihood estimation. Since the method finds weights θ

which best fit the input permutations, it is relatively immune to the bias prob-

lems encountered in the other metasearch methods. The fundamental insight

which is the basis of the Cranking method, that a distance measure may be de-

fined on the space of permutations enabling learning in this space will be further

examined in Chapter Six in which a similarity measure consistent with the ex-

ponential update method of Rankhedge is defined and employed to decorrelate

the predictor set.
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Chapter 3

A Unified Model

In this chapter, we present a unified model which addresses the related prob-

lems of metasearch, pooling and system evaluation (see also [8, 9] ). In the

context of this unified framework, we present an algorithm, Rankhedge, which is

a modified version of the familiar Hedge algorithm for on-line learning adapted

to the setting of ranked lists. Rankhedge may be thought of as a principled

generalization of the metasearch technique to the on-line setting, which with an

appropriate definition of prior probability of relevance at rank elicits a Bayesian

interpretation. In addition, the Rankhedge algorithm incorporates an active

learning component for sample selection to enhance learning rates.

The problem of bias error which is endemic to most of the common metasearch

algorithms and the “pseudoevaluation” methods examined in the previous chap-

ter are naturally and systematically addressed by the Rankhedge algorithm’s

incorporation of on-line relevance judgements. As with the usual form of the

Hedge algorithm, theoretical bounds for Rankhedge are available, guaranteeing

rapid convergence of the algorithm’s performance to that approaching the best

weighted linear combination of the underlying systems. While not the first in-

stance of an application of computational learning methods to the context of
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ordered lists, our algorithm differs from earlier adaptations of Hedge and Boost-

ing algorithms [21, 36] by establishing a theoretically and empirically grounded

loss function, resulting in an approximately Bayesian or pseudo-Bayesian algo-

rithm.

In this Chapter, we introduce the framework for solution of our three stated

problems in IR (metasearch, pooling, and system evaluation) via the Rankhedge

on-line algorithm and follow with a discussion of an early implementation of

Rankhedge which employs a loss function based on the familiar Average Pre-

cision measure of retrieval list accuracy. The relationship of our Rankhedge

algorithm to earlier techniques will be examined in detail in Chapter Four and

connections to Bayesian and Maximal Entropy methods for on-line learning and

metasearch will be presented in Chapter Five.

3.1 The Modified Hedge Algorithm

The results that follow clearly demonstrate the algorithm’s effectiveness as a

metasearch engine. In the absence of feedback, the metasearch performance of

our technique most often equals or exceeds that of benchmark techniques such

as CombMNZ and Condorcet (see Table 3.1). In experiments using TREC data,

Rankhedge effectively equalled the performance of CombMNZ on five out of six

data sets tested (TRECs 3, 5, 6, 7, 8, and 9) and significantly outperformed

TREC MNZ COND Rankhedge-0 %MNZ %COND
3 0.423 0.403 0.418 −1.2 +3.7
5 0.294 0.307 0.309 +5.1 +0.6
6 0.341 0.315 0.345 +1.2 +9.5
7 0.320 0.308 0.323 +0.9 +4.9
8 0.350 0.343 0.352 +1.4 +2.6
9 0.351 0.348 0.358 +1.9 +2.9

Table 3.1: Rankhedge-0 Method (Rankhedge Metasearch List at depth zero) vs.
Metasearch Techniques CombMNZ and Condorcet.
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CombMNZ on TREC 5. The algorithm consistently outperformed Condorcet

on each of the data sets tested, significantly so on TRECs 6 and 7. In the

presence of relevance judgements, Rankhedge rapidly and effectively “learns”

how to fuse the underlying ranked lists, often outperforming the best underlying

system after only a handful of relevance judgments.

As a pooling technique, the method likewise succeeds in generating efficient

pools for effective evaluation of retrieval systems. As the algorithm learns which

documents are likely to be relevant, these documents can then be selected for

judgement and added to the pool, and their relevance judgments can be used as

feedback to improve the learning process— thus generating more relevant docu-

ments in subsequent rounds. The quality of the pools generated can be judged in

two ways: (1) At what rate are relevant documents found (recall percentage as a

function of total judgments)? (2) How well do these pools evaluate the retrieval

systems (score or rank correlations vs. “ground truth”)? In our experiments

using TREC data, Rankhedge found relevant documents at rates nearly double

that of benchmark techniques such as TREC-style depth pooling. When used

to evaluate the underlying retrieval systems, these Rankhedge pools performed

much better than TREC-style depth pools of an equivalent size (as measured by

Kendall’s τ rank correlation, for example). In addition, these Rankhedge pools

seemed particular effective at properly evaluating the best underlying systems,

a task which is difficult to achieve using small pools as was demonstrated in the

discussion of “pseudoevaluation” techniques in Chapter Two.

3.1.1 Intuition

The intuition for our algorithm can be described as follows. Consider a user

who submits a given query to multiple search engines and receives a collection

of ranked lists in response. How would the user select documents to read in

order to satisfy his or her information need? In the absence of any knowledge
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about the quality of the underlying systems, the user would probably begin by

selecting some document which is “highly ranked” by “many” systems. Such a

document has, in effect, the collective weight of the underlying systems behind

it. If the selected document were relevant, the user would begin to “trust”

systems which retrieved this document highly (i.e., they would be “rewarded”),

while the user would begin to “lose faith” in systems which did not retrieve this

document highly (i.e., they would be “punished”). Conversely, if the document

were non-relevant, the user would punish systems which retrieved the document

highly and reward systems which did not. In subsequent rounds, the user would

likely select documents according to his or her faith in the various systems in

conjunction with how these systems rank the various documents; in other words,

the user would likely pick documents which are ranked highly by trusted systems.

How can the above intuition be quantified and encoded algorithmically?

Such questions have been studied in the machine learning community for quite

some time and are often referred to as “combination of expert advice” problems.

One of the seminal results in this field is the Weighted Majority Algorithm due

to Littlestone and Warmuth [60]. In this work, we use a generalization of the

Weighted Majority Algorithm called Hedge due to Freund and Schapire [37].

Hedge is an on-line allocation strategy which solves the problem of systematic

combination of expert advice. The original algorithm of Freund and Schapire

is described in Figure 3.1. Hedge is parameterized by a tunable learning rate

β ∈ [0, 1], and in the absence of any a priori knowledge, begins with an initially

uniform “weight” w1
i for each expert i (in our case, w1

i = 1 ∀ i). The relative

weight associated with an expert corresponds to one’s “faith” in its performance.

For each round t ∈ {1, . . . , T}, these weights are normalized to form a prob-

ability distribution pt where

pti =
wti∑
j w

t
j

,
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Algorithm Hedge(β)

Parameters:

number of systems N.

initial weight vector w1 ∈ [0, 1]N

number of trials T .
β ∈ [0, 1].

Do for t = 1, 2, . . . , T .

1. Choose allocation pt = wtPN
i=1 wt

i

.

2. Receive loss `t ∈ [0, 1]N from environment.

3. Suffer loss pt · `t.

4. Set the new weight vector to be wt+1
i = wt

iβ
`t
i .

Figure 3.1: Hedge Algorithm.

and one places pti “faith” in system i during round t.

This “faith” can be manifested in any number of ways, depending on the

problem being solved. If the underlying experts are making predictions about

which stocks will rise in the next trading day, one might invest one’s money

in stocks according to the weighted predictions of the underlying experts. If a

stock goes up, then each underlying expert i which predicted this rise would

receive a “gain,” and the investor would also receive a gain in proportion to

the money invested, pti. If the stock goes down, then each underlying expert i

which predicted a rise would suffer a “loss,” and the investor would also suffer

a loss in proportion to the money invested. This is encoded in Hedge via the

mixture loss. In each round t, expert i suffers a loss `ti, and the algorithm

suffers a weighted average (mixture) loss of
∑
i p
t
i`
t
i. For the purposes of the

Hedge algorithm and its analysis, it is assumed that the losses and/or gains are

bounded so that they can be mapped to the range [0, 1].

The Hedge algorithm updates its “faith” in each expert according to the

losses suffered in the current round, wt+1
i = wtiβ

`ti . Thus, the greater the loss
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an expert suffers in round t, the lower its weight in round t+ 1. The “rate” at

which this change occurs is dictated by the tunable parameter β.

Over time, the “best” underlying experts will develop the “highest” weights,

and the cumulative (mixture) loss suffered by Hedge will be not much higher

than that of the best underlying expert. Specifically, Freund and Schapire show

that if Li =
∑
t `
t
i is the cumulative loss suffered by expert i, then the cumulative

(mixture) loss suffered by Hedge is bounded by

LHedge(β) ≤
mini{Li} · ln(1/β) + lnN

1− β
(3.1)

where N is the number of underlying experts.

3.1.2 Rankhedge for On-line Metasearch and System Eval-

uation

To adapt the Hedge algorithm to on-line metasearch, it is sufficient to define

a measure of document value at rank, a loss function and a pooling method.

Pseudocode for a generic Rankhedge algorithm may be seen in Figure 3.2. The

first three overloaded methods in the figure provide a means for determining the

Hedge loss associated with a sample. The rel() method corresponds to a user

supplied judgement for document d. The value() method shown in Figure 3.3

provides a measure of loss amplitude at rank and is used in conjunction with

rel() by loss() (see also Fig. 3.3) to determine the Hedge loss associated with a

particular document d. The poolDocuments(), generateMetasearchList(), and

evaluateSystems() methods (Figures 3.4, 3.5, and 3.6) correspond, respectively,

to our pooling strategy for selecting a document for judgement, our strategy for

generating a metasearch list given the vectors of system weights, ranked lists,

and previously pooled documents, and our chosen method for evaluating system

accuracy given the document pool.
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Algorithm: On-line Metasearch()

Parameters:
Inputs:

document space D.
retrieval systems S.
number of systems N.
number of trials T .

initial weight vector w1 ∈ [0, 1]N .
β ∈ [0, 1].
span of relevance at rank calculations T ′.
decay constant of prior rel at rank cH .

Outputs:
pool list for output P.
metasearch list for output M.
system ordering for output S′.

Methods:
b =rel(d).
v = value(r, ch, T

′).
L = loss(d,S, value(), rel()).
d = poolDocuments(D,S,w, value()).
M = generateMetasearchList(D,S,w,P, T, value()).
S′ = evaluateSystems(S,P, rel()).

Initialize:
For each query:

1. Choose allocation pt = wtPN
i=1 wt

i

.

2. M = generateMetasearchList(D,S, w,P, T, value()).

Do for t = 1, 2, . . . , T .
For each query:

1. P[t] = d = poolDocuments(D,S,w, value()).

2. Lt = loss(d,S, value(), rel()).

3. Suffer loss: pt · Lt.

4. Set the new weight vector: wt+1
i = wt

iβ
Lt

i .

5. Choose allocation pt = wtPN
i=1 wt

i

.

6. Mt = generateMetasearchList(D,S,w,P, T, value()).

Merge results and:

S′ = evaluateSystems(S,P, rel()).

Figure 3.2: Rankhedge Algorithm for On-line Metasearch.

35



Method: value (k, cH , T
′)

Parameters:
rank k.
decay constant cH .
span of relevance at rank calculations T ′.

For Rankhedge algorithm 1 (log prior):

1. val′(k) =
P

r=k..T ′
1

(1+(cH (r−1)) .

2. return val(k) =
val′(k)P

r=1..T ′ val′(r) ,

For Rankhedge algorithm 2:

1. return val′(k) = 1
(1+(cH (r−1)) .

Method: loss (d,S, value(), rel())

Parameters:
document d.
abs value of loss at r = value(r).
relevance judgement at d = rel(d).

1. ∀s ∈ S : Ls = 1
2 −

1
2
rel(d) · value(rank(d,s)),

with rel() being a binary indicator
function defining relevance of d.

2. return L.

Figure 3.3: RankHedge Subroutines: value() and loss().

Value and Loss Functions

On a per query basis, each underlying retrieval system is an “expert” provid-

ing “advice” about the relevance of various documents to a given query. The

estimate of relevance that a system s attributes to a document d at rank r is de-

termined by the function value(r). For the initial experiments presented in this

chapter, the value of a document at rank was designed to reflect the document’s

incremental contribution to a measure of system performance which is similar

to the Average Precision measure (AP) commonly used in IR applications.
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Let Precision(r) =
∑r
s=1 rel(ds)/r, with rel(ds) an indicator function for the

relevance of ds (i.e., 1 if ds is relevant and 0 if it is not). Then the Average

Precision is defined as the average of Precision(r) taken only at ranks corre-

sponding to relevant documents. In other words, making the usual assumption

that the precision of all unretrieved relevant documents is zero, the expression

for the Average Precision for a list of length N with R corresponding to the

total number of relevant documents returned for the query, is given by:

AP =
1
R
·

∑
i:rel(i)

Precision(i)

=
1
R

N∑
r=1

rel(i) · Precision(i)

=
1
R
·
N∑
i=1

rel(i)
∑
j=1

rel(j)/i

=
1
R
·

∑
1≤j≤i≤N

1
i
· rel(i) · rel(j)

As demonstrated in [10], the average precision effectively assigns an implicit

weight 1
R·i to each pair of ranks (i, j), for all 1 ≤ j ≤ i ≤ N . To compute

the implicit weight associated with a particular rank r, we sum the weights

associated with all pairs involving r, yielding:

r∑
j=1

1
R · r

+
N∑

i=r+1

1
R · i

=
1
R
· (1 +

1
r + 1

+
1

r + 2
+ · · ·+ 1

N
)

=
1
R
· (1 +HN −Hr)

where Hk is the k − th harmonic number.

The Rankhedge loss function in this chapter employs a modified version of

this implicit weight function which takes into account the actual rate of decay

of expected relevance at rank observed in TREC conference data. Since the

constant is lost in the normalization step of the Hedge update process, a value
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function reflecting a document’s contribution to the Average Precision measure

should correspond to the tails of the harmonic series: val(r) = 1
R ·(1+HN−Hr).

Integrating the scaling factor into the decay rate of the series via constant cH ,

the value function in our initial implementation of Rankhedge is given by:

val(k) =
1
Z
∗

∑
r=k..N

1
(1 + (cH(r − 1))

(3.2)

with Z =
∑
r=1..N

1
(1+(cH(r−1)) .

Given this value function, the loss is simply:

` =
1
2
(
1− 1rel(d) · value(r)

)
(3.3)

Due to the close relationship of the value function with the tails of the harmonic

series, we shall at times refer to the Rankhedge implementation based on this

loss function as Rankhedge(Log). The loss function has the advantage of being

simple and “symmetric” (the magnitude of the loss or gain is independent of

relevance). For the purposes of the Rankhedge algorithm, these losses or gains

are mapped to the range [0, 1] by an appropriate shift and scale.

We shall discuss in detail in the next chapter the empirical and theoretical

evidence for a value function based on the inverse rank, but for now we shall

continue with details of the Rankhedge(Log) implementation, followed by results

of the algorithm.

Pooling

Given this loss function, we implement a simple pooling strategy designed to

improve the learning rate of the Rankhedge algorithm. With s referencing the
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Method: poolDocuments(D,S,w, value())

Parameters:
document space D.
predictors S.

weight vector w ∈ [0, 1]|S|.
abs value of loss at rank r: v = value(r).

1. return argmax
d∈D

` P
s∈S ws · val(rank(d,s)

´

Figure 3.4: RankHedge Subroutine: poolDocuments().

systems and d the document space, the next document to be pooled is given by:

dtpool = argmax
d

( N∑
s=1

wt−1
s · val(r(d,s)

)
.

This corresponds to the unlabelled document with the maximum expectation of

relevance as voted by a weighted linear combination of the systems. Thus, the

strategy is appropriate for selecting documents to be output in a metasearch

list.

We may also view the greedily selected sample as the choice which, if found

to be non-relevant, will maximize the weighted average (mixture) loss. In this

case, the sample yields the maximum expected change in system weights. In the

TREC context, where relevant documents are relatively sparse— that is, where

the likelihood of relevance of a particular sample selected from a ranked list is

on average substantially less than 0.5— this also results in rapid diminution of

the relative weights of unsuccessful predictors. Thus, in the sparse context, the

generally orthogonal goals of maximizing immediate precision of the selected

sample and of maximizing the convergence rate of the distribution over predic-

tors are satisfactorily accommodated by the pooling technique.
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Method: generateMetasearchList (D,S,w,P, T, value())

Parameters:
document space D.
retrieval systems S.

weight vector w ∈ [0, 1]|S|.
pool list for output P.
size of output list T .
absolute value of loss at rank r: v = value(r).

1. ∀ d ∈ D : vd =
` P

s∈S ws · val(rank(d,s)
´
.

3. D′ = D−P (the set D less pooled documents P).

2. M = D′ sorted by vd.

4. return M′ = P append M.

Figure 3.5: RankHedge Subroutine: generateMetasearchList().

Metasearch Lists and System Evaluation

In these experiments, metasearch lists are assembled by placing all pooled

documents— in the order they were selected— at the top of the list. The

function getMetasearchList() of Figure 3.2 then completes the list by ranking

all remaining judged documents according to their current mixture loss and ap-

pending this list to the ordered list of pooled documents. Finally, the pool of

judged documents is used as input to the standard TREC evaluation program

to determine how well the pool performs as a discriminator of the quality of the

underlying systems.

3.2 Results

In the TREC experiments, the Rankhedge algorithm is applied on a per query

basis for an entire course of 1000 iterations. Thus, the trials do not take advan-

tage of possible mechanisms of feedback between queries. At each iteration, pre-

cision results are averaged across systems. At each pooling level, the metasearch

results are averaged across systems and the sample pools are used to define a
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Method evaluateSystems (S, w,P, rel())

Parameters:

weight vector w ∈ [0, 1]|S|.
retrieval systems S.
pool list for output P.
relevance judgement for d : b = rel(d).

1. ∀ s ∈ S calculate Mean Average Precision given pool P.

Note: relevance(d) = rel(d) ∀ d ∈ P : otherwise 0.

2. return S′ = S sorted by MAP.

Figure 3.6: RankHedge Subroutine: evaluateSystems().

set of relevance judgements for the system evaluation task, with all samples not

included in the sample pool considered to be non-relevant.

The Rankhedge algorithm demonstrated excellent performance across all

TRECs tested (TRECs 3, 5, 6, 7, 8 and 9) in all three measures of performance—

as an on-line metasearch engine, as a pooling strategy for finding large fractions

of relevant documents, and as a mechanism for rapidly evaluating the relative

performance of retrieval systems. Figures 3.7, 3.8, and 3.9 included at the con-

clusion of this Chapter compare results of Rankhedge, to those of the Cormack

priority queue method and the Depth-n pooling method.

The constants necessary to compute the loss function in Equation 3.2 are

TREC NSystems MinLoss cH
3 40 0.55 0.0124
5 82 0.5 0.0351
6 79 0.5 0.0467
7 103 0.5 0.0438
8 129 0.5 0.0366
9 105 0.4 0.0444

Table 3.2: Constants used to establish β and val(r) for rankHedge trials (number
of systems, minimum loss of best system, and expansion constant for harmonic
series).
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fairly similar across TREC conferences, and a coarse selection of cH is suffi-

cient to achieve good results. The actual constants employed throughout our

experiments are given in Table 3.2.

In the following analysis, we compare the performance of standard TREC-

style pools to Rankhedge pools of an equivalent total size. That is, if a TREC-

style depth k pool contains m total judgments, it is compared to a Rankhedge

pool with m total judgments. These pools are denoted Depth-k and Rankhedge-

m, respectively.1

The topmost plost of Figures 3.7, 3.8, and 3.9 demonstrate the algorithm’s

success in finding relevant documents. The vertical axis corresponds to recall

percentage and the lower dashed line indicates the performance of Depth-k pools

for depths 1–10, 15, 20 and above as a function of the total number of documents

judged. Rankhedge performance far surpasses the recall rates of the Depth-n

pooling method when compared at equivalent numbers of total judged docu-

ments. The most enlightening measure of the success of the Rankhedge (and

Cormack) methods over Depth-n pooling is to examine the number of judgments

required to achieve equivalent recall percentages. For example, examining the

TREC 8 curves along the horizontal axis, we see that the Depth-k method re-

quires approximately 104 judgments to match the Rankhedge-40 return rate,

and the Rankhedge-68 rate (36 percent) is unmatched until Depth-8 (199 judg-

ments). After almost 500 judgments, Depth-20 has found only approximately

55% of relevant documents— a rate achieved by Rankhedge in less than 150

judgments.

Our initial algorithm also proved superior to the method of Cormack, et al.

in the critical early stages of the retrieval process, though the priority queue

method succeeds in finding relevant documents at a greater rate in the later,
1Note that the size of a depth k pool may vary on a query-by-query (and TREC-by-TREC)

basis. In any given TREC, the total size of a depth k pool over all 50 queries is calculated,
and for simplicity this pool is compared to a Rankhedge pool containing an equal number of
total judgments, spread uniformly over all 50 queries.
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sparser stages of the search. This indicates that our initial algorithm tends

to overfocus on the lists of the more successful predictors— a problem which

we correct in a subsequent algorithm. This tendency to overfocus is especially

problematic in TREC 9, where conference results exhibited exceptionally low

retrieval rates. In this instance the Rankhedge(Log) algorithm focused on the

better predictors, but failed to adapt as their shallow pools of relevant docu-

ments were depleted.

The middle plots in our figures compare the quality of the system rankings

produced by Rankhedge and Cormack pools against those of Depth-k pools at

equivalent numbers of total judged documents using the Kendall’s τ measure.

Here, ground truth is the system ordering established by TREC. Again, the

dashed line indicates the results of system evaluations performed using standard

TREC routines, given Depth-k pools of size 1–10, 15, 20 and above. Exami-

nation of TREC 8 demonstrates typical performance. At 40 documents, the

τ for Hedge is 0.87. This compares with 0.73 for the Depth-1 equivalent— a

substantial improvement. Likewise, Rankhedge-68 achieves an accuracy of 0.91

vs. a Depth-2 equivalent accuracy of 0.73.

Next, comparing the pool depths required to achieve equivalent rates of

ordering accuracy, we scan along the horizontal axis and see that to achieve an

accuracy of 0.87 (Hedge-40), the equivalent Depth-3 pool requires 95 judgments.

An accuracy of 0.91 (Hedge-69) is not achieved in the depth-pooling method

until approximately 198 judgments (Depth-8). Performance of Rankhedge and

the priority queue method in the system ranking task was roughly equivalent.

It is a significant advantage of the Rankhedge over the priority queue and

the Depth-n pooling methods that the latter do not yield a mechanism for

generation of metasearch lists, whereas the metasearch function is a natural

product of the Rankhedge method for combination of evidence.

In the the lower plots, we compare the performance of the evolving metasearch
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list to the benchmark techniques CombMNZ and Condorcet as well as to the

performance of the best underlying system in any given TREC. The Mean Av-

erage Precision (MAP) taken by selecting the best system for each query is also

shown, providing a maximum bound on the possible MAP of a meta-classifier

defined in terms of weighted linear combination of the underlying classifiers.

As shown in Table 3.1, the Rankhedge algorithm begins (in the absence of

feedback) with a baseline MAP score— the mean of Average Precision scores

taken across all queries— which is equivalent or slightly better in almost all in-

stances to the performance of the CombMNZ and Condorcet metasearch meth-

ods. Condorcet and CombMNZ scores are included as dashed lines in the Fig-

ures. As relevance judgements are provided to the algorithm, the Rankhedge

metasearch results quickly surpass those of the best underlying retrieval system

(the upper dashed lines). In TRECs 3, 5, and 7, the performance of the best

system is equalled in 10 or fewer judgments. TRECs 6 and 8 require slightly

more judgments to achieve the performance of the best underlying system. This

reflects the fact that in both cases the best systems are outliers, both in their

total performance and in the documents they retrieve. Hence, Rankhedge must

evaluate more documents to “discover” them.

Finally, behavior of the algorithm is substantially different in TREC 9 than

in the other TRECs. This is due to the relative difficulty of the TREC 9 data set.

A slight tendency of the original algorithm to overfocus on the best predictors

leads it to concentrate on the few good predictors in the space only to find that

their lists yield few relevant documents in the medium to lower depths. The

original algorithm’s tendency to overfocus is discussed at greater length, when

we introduce our modified algorithm in Chapter Five.

A look at the scatter plots in Figures 3.10 and 3.11 demonstrates another

aspect of the algorithm’s performance in ranking systems— one which is some-

what obscured by the traditional Kendall’s τ measure. Each pair of plots shows
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Depth-1 and equivalent Rankhedge-m predicted ranks vs. actual TREC rank-

ings. Note in these plots that the rankings proceed from best systems in the

lower left corner to worst in the upper right. TREC 3 plots are somewhat

anomalous due to the relatively low number of systems in the conference, but

later TRECs demonstrate the difficulty of establishing proper rankings for the

best systems given a Depth-n method restricted to smaller pool sizes.

While poor systems tend to be easily identified due to their lack of com-

monality with any other systems, the better systems tend to exhibit a similar

divergence from the fold. Thus, while the rankings of poorer systems may be

established using standard techniques with depth pools as small as Depth-1,

the better systems (for many purposes, the systems of most interest) tend to

be the more difficult to rank correctly. As the Kendall’s τ measure of accu-

racy in object ordering treats objects at all rank levels equally, much of the

qualitative superiority of algorithms which perform well in classifying the best

systems is obscured by a common tendency of most techniques to perform well

on the poorer systems. Examination of tightened patterns of the Rankhedge

plots in the region of the best systems suggests that performance of the algo-

rithm in evaluating system orderings is somewhat better than the performance

demonstrated in Figures 3.7 to3.9 (c).

3.3 Conclusions

In conclusion, our inital attempt at a unified method for on-line metasearch,

pooling, and system evaluation exhibits very good performance in all three areas

for which it was designed. However, results tend to suffer in later stages of the

retrieval process due to a tendency to overfocus on better predictors in the early

stages. In the next two chapters, we shall examine the Rankhedge algorithm in

more detail and demonstrate several interesting theoretical results concerning
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the algorithm’s behavior on ranked lists— including an in-depth look at the loss

bounds on the quality of the output list, a definition of the expected accuracy of

the system evaluations and both empirical and theoretical examinations of the

optimality of the loss function. This examination will lead, in Chapter Five, to

the development of a new loss function for Rankhedge, resulting in an algorithm

with results superior to all methods considered in this chapter.
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Figure 3.7: Trecs 3 and 5: Results of Rankhedge— with log prior under three
performance measures: (A) percent of total relevant documents discovered (B)
system ordering via k-τ (C) metasearch performance via Mean Average Preci-
sion.
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Figure 3.8: Trecs 6 and 7: Results of Rankhedge— with log prior under three
performance measures: (A) percent of total relevant documents discovered (B)
system ordering via k-τ (C) metasearch performance via Mean Average Preci-
sion.
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Figure 3.9: Trecs 8 and 9: Results of Rankhedge— with log prior under three
performance measures: (A) percent of total relevant documents discovered (B)
system ordering via k-τ (C) metasearch performance via Mean Average Preci-
sion.
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Figure 3.10: Trecs 3, 5, and 6: Depth-1 and equivalent Rankhedge-n rankings
vs. actual ranks.
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Figure 3.11: Trecs 7, 8, and 9: Depth-1 and equivalent Rankhedge-n rankings
vs. actual ranks.
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Chapter 4

Hedge for Ranked Lists

In this chapter, we consider in detail the extension of the Hedge algorithm to the

problem of merging ranked lists. We begin by introducing two close relatives of

our Rankhedge implementation. The first by Cohen, et al. [21] is a method for

applying the Hedge algorithm in the context of pairwise preference functions to

develop a rank ordering. A second method called Rankboost [36] based on the

Adaboost algorithm [37] is a batch method for learning a combination of pref-

erence functions. Both algorithms share certain aspects with our own version

of Rankhedge— the first, obviously, employing the Hedge method for on-line

learning but with a substantially different formulation of loss function. The

second method, Rankboost, generates linear combinations of ranking functions

which are defined similarly to our own; however, the algorithm’s focus is on

batch learning via Adaboost. Our algorithm differs also in that it incorporates

active selection of samples for labelling, while the earlier algorithms assume that

samples are drawn uniformly from the unlabelled sample space.

In this and successive chapters, we introduce a Bayesian interpretation of

the Hedge algorithm and exploit a prior knowledge of probability of relevance

at rank to produce a “pseudo-Bayesian” metasearch algorithm generalized to
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the on-line setting. Our prior assumption of relevance at rank, based on the

harmonic series, is shown to be supported by both empirical and theoretical

evidence.

We examine the accuracy bounds for Hedge and demonstrate via counterex-

ample that worst case bounds on accuracy of the output list and estimates of

predictor accuracy are too large to be useful. However, bounds on the cumula-

tive loss experienced by the user as well as average case estimates of predictor

accuracy given a restricted class of predictors are available. Sensitivity to choice

of β as well as to prior assumptions of relevance at rank are addressed in the

final section.

4.1 Background

In establishing an historical context for our algorithm, we are primarily inter-

ested in two earlier methods for learning ranked orderings of lists. Both the

Hedge based algorithm of [21] and Rankboost [36] possess certain aspects of our

algorithm and in the following discussion we examine the properties of these

methods as they relate to our Rankhedge implementation.

4.1.1 Learning to Order Things

Cohen, et al. [21] present a method for developing a rank ordering of instances

given feedback in the form of pairwise preference judgements. The algorithm

employs Hedge in the usual manner to learn a combined binary preference func-

tion providing a relative ranking between instances. Given the preference func-

tion, a strategy is developed to globally order all instances in a manner which

maximizes the agreement with the learned preference function.

The Cohen method adopts a two stage approach. In the first stage, it learns

a preference function, a two-argument function PREF(u, v) returning a measure

53



Algorithm: HedgeOrder(β)

Parameters:

number of ranking experts N.

initial weight vector w1 ∈ [0, 1]N with
PN

i=1 w
1
i = 1

number of rounds T .
β ∈ [0, 1].

Do for t = 1, 2, . . . , T .

1. Receive a set of elements Xt and ordering functions ft
1, . . . , f

t
N . Let Rt

i

be the preference function induced by ft
i .

2. Compute a total order p̂t approximating

PREF t(u, v) =
PN

i=1 w
t
iR

t
i(u, v)

3. Order Xt using p̂t.
4. Receive feedback F t from the user.
5. Evaluate losses Loss(Rt

i, F
t).

6. Set the new weight vector:

wt+1
i =

wt
i ·β

Loss(Rt
i,F t)

Zt=
PN

i=1 w
t+1
i

Figure 4.1: Algorithm for Ranking using Preference Functions.

of the probability that u is ranked before v. In stage two, the algorithm uses

the learned preference function to order a set of new instances X by evaluating

the function PREF(u, v) on all pairs of instances u, v ∈ X and then choosing

an ordering of X that agrees as much as possible with the pairwise preference

judgements.

Formally, let X be a set of instances. Assume X is finite. A preference

function PREF is a binary function PREF : X ×X → [0, 1], with 1 indicating

a strong recommendation that u > v. Value 0.5 constitutes an abstention.

Ranking information from a set of N experts is provided by preference functions

R1, . . . , RN . The algorithm assumes that the Ri’s are well formed— i.e. they

reflect an underlying ordered set S. An ordering function f : X → S induces
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the preference function Rf defined as:

Rf (u, v) =


1 if f(u) > f(v)

0 if f(u) < f(v)

1
2 otherwise.

(4.1)

At each round t, the user is queried for feedback on preference of instance

ut or vt, so that at the t-th round, we have the set of ordered pairs F t =

{(u1, v1)±, . . . , (ut, vt)±}. To implement the Hedge algorithm, we need to define

a loss function in terms of the preference function R and feedback F , so that

Loss(R,F ) =

∑
(u,v)∈F (1−R(u, v))

|F |
= 1− 1

|F |
∑

(u,v)∈F

R(u, v) (4.2)

The loss has a natural probabilistic interpretation. With R viewed as a random-

ized prediction algorithm which predicts that u is ranked higher (in ascending

order) than v with probability R(u, v), the Loss(R,F ) reflects the probability

that R disagrees with the feedback on pair (u, v) chosen uniformly at random

from F .

The preference function at round t may be derived from a linear combination

of preference functions PREFt(u, v) =
∑N
i=1 w

t
iR

t
i(u, v). Losses at round t are

defined relative to this preference function, and we may establish Hedge bounds

of the usual form:

T∑
t=1

Loss(PREFt, F t) ≤ aβ min
i

T∑
t=1

Loss(Rti, F
t) + cβ lnN (4.3)

with aβ = ln(1/β)/(1 − β) and cβ = 1/(1 − β). The cumulative loss of the

combined preference function
∑
t Loss(PREFt, F t) will not be much worse than

the cumulative loss of the best ranking expert (mini
∑T
t=1 Loss(R

t
i, F

t)).

A total ordering must be developed from the weighted preference functions.
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Algorithm: RankBoost(β)

Given: initial distribution D over X ×X.
Initialize: D1 = D.
For t = 1, 2, . . . , T :

1. Train weak learner using distribution Dt.
2. Get weak hypothesis ht : X → R.
3. Choose αt ∈ R.

4. Update: Dt+1(x0, x1) =
Dt(x0,x1) exp(αt(ht(x0)−ht(x1)))

Zt
where Zt is a normalization factor chosen so that Dt+1 is a distribution.

Output the final hypothesis: H(x) =
PT

t=1 αtht(x).

Figure 4.2: The RankBoost Algorithm

A simple measure of agreement between a total ordering p (with p(u) > p(v) if

and only if u is above v in the ordering) and a preference function PREF(u, v)

may be defined by summing PREF(u, v) over all pairs u, v such that p(u) > p(v):

AGREE(p,PREF) =
∑

u,v:p(u)>p(v)

PREF(u, v)

As Cohen, et al. [21] demonstrate, the task of finding an ordering which is

optimal in terms of the weighted agreement measure is NP-complete; however,

a simple greedy algorithm described in the paper produces an ordering which is

within a factor of two of the optimal.

4.1.2 RankBoost

Freund, et al. [36] present a method for combining preferences based on the well-

known Adaboost algorithm. The definition of the ranking problem presented

in the paper is similar to that of our Hedge algorithm with ranking features

assigning an absolute value to the instances. However, to avoid possible in-

consistencies in scaling of the features, the algorithm converts the features to

relative ordering relationships prior to boosting.

One might view the Rankboost algorithm as a batch method for learning
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relationships, as opposed to the on-line methods based on Hedge. In this discus-

sion, we will focus on the formulation of the preference and feedback functions

employed by the algorithm, since the mechanics of the boosting algorithm itself

(delineated in Figure 4.2) are little changed by their adaptation to the specific

case of ranked lists.

As formulated in [36], the Rankboost algorithm produces a function H :

X → R whose induced ordering of X will approximate the relative orderings

encoded by the feedback function Φ. We may view this feedback function as

equivalent to the ordering relationship function which is implicit in the relevance

feedback supplied to our Hedge algorithm. That is:

Φ(x0, x1) =


1 if rel(x1) = 1 ∧ rel(x0) = 0

−1 if rel(x1) = 0 ∧ rel(x0) = 1

0 otherwise

(4.4)

The formulation of Rankboost presented in the paper operates on a dis-

tribution restricted to the positive relations, setting all negative entries of the

feedback function to zero, so that D(x0, x1) = c ·max(0,Φ(x0, x1)). By institut-

ing this convention, the Rankboost implementation restricts the loss function

to the range [0, 1], and thus guarantees monotonicity in the evolution of the

individual feature weights.

The algorithm accepts as inputs a set of ranking features f1, · · · , fn, which

are functions of the form fi : X → R̂. The set R̂ consists of the real numbers

plus an additional element ⊥ that indicates no ranking has been given. From

these features, the weak hypotheses may be derived. Each weak hypothesis

assigns an estimate of relevance of item x ∈ X, given the ranking function fi.

Undefined instances (⊥) may be assigned an arbitrary constant value qdef in the

range [0, 1] as determined on a per-feature basis by the algorithm.
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Many definitions for weak hypotheses are possible. The formulation based

directly on the estimated values of fi(x) corresponds most closely to our own

Bayesian formulation:

hi(x) =


fi(x) if fi(x) ∈ R

qdef if fi(x) = ⊥
(4.5)

The paper, however, focuses on an alternate formulation which is independent of

the actual value assignments of the functions. A weak hypothesis is generated

by selecting the feature fi, partition point θ and qdef ∈ {0, 1} which results

in a hypothesis of maximum accuracy given the current distribution over the

instances. In terms of the triple [fi, θ, qdef ] produced by the search process, the

weak hypothesis is defined to be:

hi(x) =


1 if fi(x) > θ

0 if fi(x) ≤ θ

qdef if fi(x) = ⊥

(4.6)

As noted earlier, learning proceeds in the relationship space, with the dis-

tribution over instances D(x0, x1) defined on the space of relationships s.t.

x0 > x1. The final hypothesis has the form H(x) =
∑T
t=1 αtht(x).

4.2 Prior Probability of Relevance and Inverse

Rank

Our implementation of the Rankhedge algorithm combines some aspects of both

Rankboost and the Hedge method of Cohen, et al. The earlier Hedge method

bases its loss function on a binary preference relationship between documents

and accepts feedback in the form of assertions of pairs (u, v) ordered according
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to preference. Aggregate results of a preference function defined in this man-

ner are closely related to the familiar Kendall’s τ measure of distance between

ranked lists defined as the minimum number of transpositions needed to bring

the two lists to agreement. The problem with the accuracy measure of [21], as

with Kendall’s τ , is that the use of a binary preference function in the context

of ranked lists obscures the natural expectation of monotonically decreasing

relevance at rank and thus has a tendency to attribute too much significance

to the relationship of instances with lower rank (order ascending). General-

ization of the algorithm of [21] to allow for a continuum of preference scores

based on expected relevance at rank would lead to results similar to that of our

Rankhedge algorithm. A major contribution of our algorithm is the definition

of an empirically and theoretically grounded prior for relevance at rank.

Since Rankboost defines expected losses directly on the individual instances

rather than indirectly via a preference function, the structure of Rankboost’s

predictions is closest to that of our algorithm. However, just as in [21], the

Rankboost algorithm employs a thresholded relevance assessment, or, at best,

an integer weighting based on the rank indices, both of which tend to attribute

excessive significance to instances of lesser rank (order ascending).

In this section we shall examine our analytic prior for relevance at rank and

present evidence for the choice of an inverse rank function. We establish not

only an empirical basis for our prior but also a theoretical foundation for the

phenomenological law governing our prior relevance at rank— demonstrating

that the function is closely related to a universal or scale invariant function

which accurately captures the expansion with rank of the underlying support of

the space of samples.
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Figure 4.3: Pr(relevance|rank) vs. Actual: TRECs, 3,5,6,7,8 and 9.

4.2.1 Empirical Evidence

Figure 4.3 plots probability of relevance at document rank for each of the TRECs

3,5,6,7,8 and 9. Pr(d ∈ rel|rank(d)) for each TREC is obtained by averaging

the probability of document relevance at rank across systems in all fifty queries

of a retrieval track. From these curves, we determine a characteristic function

defining prior probability of relevance at rank to be:

Pr(d ∈ rel|trec t, rank r, system s) = ps ∗
1

1 + ct(r − 1)
, r = 1, . . . , n. (4.7)

As demonstrated in Figure 4.3, curves corresponding to this prior probability

of relevance show a strong qualitative resemblance to the actual probabilities.

Figure 4.4 plots these same relevance at rank on a log-log scale. The linearity

displayed by these plots throughout a substantial portion of their development

indicates that the rule governing the evolution of relevance at rank is a power
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Figure 4.4: Pr(relevance|rank) (log-log scale): TRECs, 3,5,6,7,8 and 9.

law. Constants ct used in our experiments are given by:

TREC3 = 0.0124

TREC5 = 0.0351

TREC6 = 0.0467

TREC7 = 0.0438

TREC8 = 0.0366

TREC9 = 0.0444

Figures 4.5 and 4.6 demonstrate the extent to which the bundle of systems

follows this characteristic curve. Rather than plotting the relevance at rank

directly, the figures plot the precision of the system lists at each rank to min-
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Figure 4.5: Trecs 3, 5 and 6: Precision at rank for Top 10 and Top 80% system
bundles sorted by Mean Average Precision. Precision at rank is shown, rather
than prior relevance at rank, for noise reduction. Maximum precision of all
systems is scaled to one for clarity.
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Figure 4.6: Trecs 7, 8, and 9 : Precision at rank for Top 10 and Top 80% system
bundles sorted by Mean Average Precision. Precision at rank is shown, rather
than prior relevance at rank, for noise reduction. Maximum precision of all
systems is scaled to one for clarity.
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imize the noise in the individual system statistics. Still, the degree to which

the smoothed behavior of the systems adheres to the prior is remarkable. Fig-

ures 4.5a and 4.6a show a bundle consisting of the top ten systems versus the

prediction, and Figures 4.5b and 4.6b plot the top eighty percent of systems.

As we shall demonstrate in a later section, the relevance at rank curves derive

from a generalization of a scale invariant distribution over the finite sample set.

Equation 4.7 defines expected relevance at rank for a predictor and requires two

parameters to define relevance at rank for a particular system. The expected

accuracy of a system ps is defined by measuring the area under the averaged

(across queries) relevance curves for the system. All systems in a bundle are

scaled by 1/ps to allow qualitative comparison of the curves. The decay rate

ct is the same for all systems and set on a TREC-wide basis by averaging the

solving for the decay rate at each rank given the measured average relevance of

the top 80% bundle.

An intuitive explanation for the prior is that the value of each incremental

judgement in the ranked list is inversely proportional to the size of the pool

already judged, thus reflecting the relative ”uniqueness” of each rank level.

That is, with Sr corresponding to the pool of documents returned by a system

to rank r, Pr(d ∈ Sr) ∝ 1
c|Sr| . We shall examine this assertion in detail in the

next section.

4.2.2 Theoretical Justification for the Prior

One expects that, given the strength of the empirical evidence for a scalable prior

which is proportional to inverse rank, the observed probability of relevance at

rank curves reflects an essential attribute of the supporting set of instances.

We shall demonstrate that the inverse rank property does, in fact, reflect the

relationship of each instance to an expanding instance space implicit in the rank

ordering. We further demonstrate that the distribution based on the inverse
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rank function is a generalization of a scale invariant or universal distribution.

Scale invariance refers to the fact that all curves in the class devolve via

inverse scalar transformation to a single curve f(r), so that f(c, r) = f(cr) =

cf(r). In our context, c would be proportional to the inverse of the normaliza-

tion factor associated with the expected total relevant documents. Universality

corresponds to the fact that the curves defined by f(cr) = 1/cr may be demon-

strated to be the only curves of univariate paramaterization possessing this

property of scale-invariance.

We shall first justify our statement that the inverse rank property results in a

scale-invariant distribution by considering the limiting case in which the discrete

elements of the support— the ranks— are assumed to be independent. The

relevance at rank curves employed in Rankhedge correspond to a straightforward

generalization of the scale-invariant inverse rank function, defined as before

(f(r) = 1/(1 + c(r − 1)), with the loosening of the independence restriction

encoded in the constant of expansion c.

The Inverse Rank Property

The essence of the inverse rank property may be expressed in minimal terms

as follows. Let Sr be the set of items in the range 1...R and sr ∈ SR the rth

sample in the range. When drawing r items at random from a bin of size |Sr|,

the probability of drawing an arbitrary item sr in the rth trial is equivalent

to one minus the probability that the item was drawn in any of the previous

rounds, and we may write (with Sr = {s1...sr}):

Pr(s = sr|s ∈ Sr) = Pr(s ∈ Sr ∩ s /∈ Sr−1) = 1− |Sr−1|
|Sr|

=
1
|Sr|

(4.8)

Since the inverse rank property encodes the inverse of the dimensionality of
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the sample set, the relative weight of an element in the support of the distribu-

tion should reflect the incremental change in dimensionality of the sample set

due to addition of the element.

Relevance at Rank Curves

For the inverse rank weighting property to be considered an a priori property of

the rank ordered lists, it must submit to application to ranked lists with varying

accuracies. Thus, we would like the rank weighting curves to be (approximately)

scale-invariant. For the case in which discrete support elements are assumed to

be independent, we demonstrate that the function of interest is strictly scale

invariant.

For a distribution P (r) defined on r = 1, . . . , R, we may approximate an

arbitrary generalization of the distribution in terms of a continuous transforma-

tion r 7→ f(r). That is, we may define p(r) =
∫ ri+∆

ri
P (r)dr on r ∈ [1, R] with

∆ = 1 corresponding to the usual discrete interval.

Now, we wish to define a constant scaling of the aggregate weight of the

sample space in terms of a functional manipulation of the r axis. That is, we

wish to define a transformation f(r) such that:

∫ r+∆

r

P (f(r))dr = k

∫ f(r+∆)

f(r)

P (r)dr

This transformation corresponds to a scalar transformation of the domain and

has the familiar form: f(r) = cr with k = 1/c. The resultant relevance at rank

curve has a description prior to normalization of P (cr) = c−1P (r). Normaliza-

tion results in the original p.d.f. P (cr)/
∑R
r=1 P (cr) = P (r)

Further, by taking the derivative of this scaling property in terms of c and
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solving for c = 1:

∂P (cr)
∂c

=
∂c−1P (r)

∂c

∣∣ c = 1 ⇒

rP ′(cr) = −c−2P (r)
∣∣ c = 1 ⇒

rP ′(r) = −P (r) ⇒

P (r) = 1/r,

we establish that the inverse rank weighting is, in fact, unique in possessing the

scale invariance property.

Scale invariance produces a set of curves which have minimal log separation

for arbitrary variations in the scaling parameter. In terms of the Kullback

Liebler distance between unnormalized distributions, we may write:

R∑
r=1

P (r) ln
P (r)
P (cr)

=
R∑
r=1

P (r) ln
cP (r)
P (r)

= ln c

Unfortunately, by definition, normalization of the scale-invariant inverse rank

function always results in the original function f(r) = 1/r. Therefore, to allow

for variation in the the decay rate of elements of the p.d.f. describing relevance

at rank, we relax the independence requirement and define a generalized prior

relevance at rank curve which is equivalent to the scale-invariant function for

value of c = 1. That is:

Pr(rel|r) = 1/(1 + c(r − 1))

Note that curves of this form still possess the desired property that for span R

of sufficient size, the function is approximately scale-invariant with
∑R
r=1 1/(1+

c(r − 1)) ≈
∑R
r=1 1/(cr).

Scale invariance has several nice properties, not the least of which is the
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preservation of a consistent Bayesian interpretation of the rank weightings on

individual instances under scalar modification of the amplitude of the relevance

at rank curve. In Chapter Five, we shall demonstrate that an accurate estimate

of prior probability of relevance may lead to an optimal loss function, result-

ing in a Rankhedge algorithm which approximates an optimal Bayesian on-line

algorithm. For the moment, however, we shall address the question of bounds

on the Rankhedge algorithm in a context independent of the notion of prior

relevance at rank.

4.3 Bounds on Accuracy

In this section, we examine the possibility of establishing useful bounds on the

accuracy of the algorithm— both for the quality of the output list and for the

estimation of accuracy of the individual predictors. We shall present counterex-

amples demonstrating that worst case bounds for the algorithm are poor for

either of these measures. However, in both cases, we are able to demonstrate

useful bounds via a reasonable modification of the definition of the quantity to

be bounded.

In the first portion of our discussion, we examine output list accuracy and

demonstrate that the monotonically decreasing nature of relevance at rank lim-

its the ability to arrive at a useful bound for list accuracy in the on-line setting.

We also show, however, that the accuracy of the sample stream may be de-

fined practically in the usual Hedge manner, yielding useful bounds which are

consistent with the actual experience of the user.

In the second section, we examine the possibility of bounding the accuracy

of estimates of list quality. Again, we demonstrate via counterexample that no

useful bounds exist in the general case in which ranked lists may have arbitrary

accuracy. We circumvent this failure by placing a restriction on the maximum
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quality of the predictors and demonstrate that, given a restriction on the ex-

pected accuracy of the best predictor (Lbest = ε > 1/2), the algorithm does, in

fact, sample the full set of predictors in a manner which allows useful bounds

on quality estimates.

4.3.1 Output List Accuracy

In the traditional Hedge setting, the loss associated with the algorithm’s predic-

tion on a sample is independent of the iteration at which the sample is drawn.

However, in the rank-sensitive application, the magnitude of a sample’s loss (or

gain) as defined by its depth in the output list decreases monotonically with

rank. This makes it difficult to establish a worthwhile bound on the loss of the

output sequence, as revealed by the following counterexample.

Counterexample 1 (Worst Case Output List Accuracy) The worst case

loss of the ranked list generated by the rank-Hedge algorithm is O(N), where N

is the number of underlying systems.

Proof: Define an initial set of predictors p = {p0, . . . ,pN} such that the first

item in each list p1
i is returned by only one list. That is: ∀i 6= j : p1

i /∈

{p1
j , · · · ,pmax

j }. Assume p0 is the best predictor with loss Lbest while the first

items of lists p1..N are non-relevant, i.e. rel(p1
1..N ) = 0.

Since all lists are orthogonal (no document returned by a system is returned

by any other), labeling of sample p1
j results in a relative loss to list j only, and

the expected round at which the first sample is drawn from list zero is t = N/2.

Thus, we may trivially establish a bound on the loss of the output list Lout to be

(with `t corresponding to loss at rank t): Lout ≥ Lbest+
∑N/2
t=1 `t = Lbest+O(N).

�

The worst case bounds on the loss of the output list are exponentially worse

than the O(log(n)) bounds we commonly expect from Hedge. This is due to the
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fact that this assessment of loss is based on an arbitrary measure imposed by

output list rank, rather than on the expected losses associated with the actual

weighted average predictions (i.e. the usual Hedge loss measure).

As an alternative to defining loss strictly in terms of the output list accuracy,

we would like to assess loss to the algorithm in a manner which reflects the

experience of the user. Intuitively, a sample drawn early in the learning process

will likely have less certainty of relevance than a later sample. A definition of loss

in terms of the expected loss of the weighted basis of predictors on the samples

captures this quality of evolving certainty in the predictions. At early stages,

the uncertainty of the prediction is manifested in the broader unfocused nature

of the distribution over predictors and the resultant diminution of expected

relevance of samples. At later stages in the learning process, the weights of the

algorithm reflect the performance of the predictors on a larger sample as the

expected loss of the algorithm converges to near that of the best predictor.

Since the expected loss measure is actually the basis for the original Hedge

bounds, these bounds still apply. And, since they reflect the actual weighted

average assessment of the sample quality at each iteration, they correspond more

closely to the losses experienced by the user. In the case of our counterexample,

we see that in the usual Hedge loss measure the loss associated with the first

sample will be O(1/N) rather than O(1), reflecting the lack of agreement among

predictors as well as the lack of certainty of the user in selecting this sample.

Thus, though the worst case bound on the quality of the output list is poor, we

may still bound the perceived loss in terms of the user’s expectations of sample

relevance via a Hedge bound of the usual form:

LHedge(β) ≤
mini{Li} · ln(1/β) + lnN

1− β
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4.3.2 Estimation of Predictor Accuracy

We would also like to be able to make a statement concerning the Rankhedge al-

gorithm’s ability to discern the quality of the underlying predictors. Experimen-

tal evidence demonstrates that accurate system evaluation is a useful side-effect

of the Hedge process. This section begins with a counterexample demonstrat-

ing that the algorithm fails in the system evaluation task in the most general

case of unrestricted accuracy of the predictor lists. However, for restricted cases

consistent with our current application (i.e. lossy predictors), we demonstrate

that the algorithm samples the lists associated with the individual predictors at

a rate proportional to their expected accuracy.

In this restricted context, we may define a bound on the expected over-

sampling of a portion of the predictor space due to non-uniformity of the initial

weight distribution resulting from correlations among predictors. This oversam-

pling of correlated predictors serves to exaggerate the predictors’ contribution

to the sample pool and thus to enhance the quality estimates of the correlated

systems. However, the effect diminishes progressively with growth of the sample

pool.

To further alleviate these bias effects, an alternate technique for estimat-

ing system quality is presented, which takes advantage of Chernoff/Hoeffding

bounds to define expected convergence of the observed system quality to the

actual value. This technique provides a more rigorous estimate of the quality

of system predictions as well as an explicit method for determining sampling

quantities required for accurate estimation.

Counterexample 2 (Worst Case System Accuracy) Given two sets of fi-

nite retrieval lists of equal length T , pu = {p0} and pv = {p1, . . . ,pN}, let

the accuracy of all lists be ≥ 1/2. All items in set pv are equivalent, so that

∀r ∈ {1 · · ·T} and i, j ∈ {1 · · ·N} : pi(r) = pj(r). Define pu to be orthogonal to
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pv, so that no items returned by pu are returned by pv and vice-versa. Using

the greedy active sampling strategy maximizing instantaneous relevance, an ar-

bitrary number of items will be sampled from lists pv before any item returned

by pu appears in the pool.

Proof: The loss associated with a document returned by a list i at rank r

is given by ±`ri , with the loss associated with non-returned documents `r 7→∞

corresponding to a relative zero. Sampling from the list of a predictor from set

v with an expected net gain
∑
r sgn(rel(r))`ru ≥ 0, results in an expected weight

for the predictor of wrv ≥ w0 · β0 = w0. Likewise, for predictor u, we expect

the weight to be unchanged (i.e. wu = w0β
0 = w0), due to the orthogonality

of the lists. For an arbitrary N , the lists of the correlated predictors will be

sampled until the aggregate weight of pv becomes less than that of pu, that is,

until
∑r
t=1 sgn(rel(r))`tu ≤ lnN

ln β . Thus, lists pv may be sampled to an arbitrary

depth, determined by N , prior to observing a sample from pu. �

4.3.3 Restriction to Lossy Predictors

The counterexample demonstrates that the natural focus of the Hedge algo-

rithm is the accurate labeling of samples rather than determination of predictor

accuracy. When coupled with a greedy pooling method which seeks to maxi-

mize the instantaneous accuracy of the selected sample, the effect is to focus on

regions of the sample space which reinforce the current predictor distribution.

When the goal is minimization of prediction error, this is not a problem, since

intuitively we may say that as long as our current distribution is successful on

the sample set, there is no incentive to explore other regions of the predictor

space. However, if the goal is to establish the quality of predictors across the

entire predictor set, this tendency to focus on successful predictors guarantees

that other regions of the predictor space remain unexplored.

To avoid the difficulties described in Counterexample 2, we shall from this
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point restrict our discussion to the case in which the best predictor expects a

net loss on the sample set. This guarantees that all predictors will be sampled

by the greedy algorithm and allows us to develop a simple description for the

expected sampling rates of predictors. Fortunately (in this context), the restric-

tion to lossy predictors is consistent with our assumptions regarding the prior

probability of relevance at rank encountered in practice.

4.3.4 Expected Contribution to Sampling Pool

We shall demonstrate that, in the case in which all predictors are expected to

suffer a net loss on an arbitrary sample set drawn from their ranked lists, the

contribution of a predictor’s selections to the sample pool is inversely propor-

tional to the loss rate of the predictor.

Neglecting, for the moment, oversampling due to correlations among predic-

tors, we consider a set of independent predictors with initially uniform weights.

In the restricted case in which the best predictor suffers a net loss on an arbi-

trary sample set, the active sampling algorithm will tend to focus on a particular

predictor until the weighted value of the highest ranked sample has dropped be-

low that of a sample offered by another predictor— at which point the sample

selection process shifts its focus to a new predictor’s list. With `r corresponding

to the weight associated with a sample at rank r and Lri signifying the net loss

of predictor i on samples sti : {t = 1, . . . , r}; that is, Lri =
∑r
t=1 sgn(rel(sti)) · `t,

we may define the point at which a sample is equally likely to be drawn from

list i and j as:

β−L
ri−1
i `ri = β−L

rj−1
j `rj

with rx corresponding to the rank of the highest scoring unlabeled sample from

the respective lists. Thus, the Hedge algorithm enforces sampling rates inversely

proportional to the losses of the predictors via an exponential restoring force.
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That is, at a particular instant in the sampling process, we expect the greedy

sampling strategy to attempt to force equality of the sample weights of predic-

tors i and j, with the ratio of these quantities defined by:

`ri

`rj

=
βL

ri−1
i

βL
rj−1
j

Relevance at rank curves for our application are assumed to be monotonically

decreasing, resulting in a weight disadvantage to items drawn later in the list.

Therefore a uniform relevance at rank s.t. rs = rt for all values of s and t

provides a useful bounding case for defining the maximal difference in sampling

depths of predictors.

In this case, in the absence of rank effects, the algorithm simply attempts

to maintain uniformity of predictor weights:

w0 · β−Li ≈ w0 · β−Lj .

If we define the expected accuracy of the predictor in terms of the average

relevance over an entire list (of arbitrary length R):

p̂i =
∑R
t=1 sgn(rel(sti))`t∑R

t=1 `t
,

the expected loss on samples Sri = {s1i , . . . , sri } is given by:

L̂ri =
r∑
t=1

(1− p̂i)`t − p̂i`t =
r∑
t=1

(1− 2 · p̂i)`t,

For uniform relevance at rank, `t = 1, this is simply L̂ri ≈ |Sr|(1− 2p̂i). Substi-

tuting into the approximate relative loss of predictors,

L̂
rj

j

L̂ri
i

=
∑rj

t=1(1− 2 · p̂j)`t∑ri

t=1(1− 2 · p̂i)`t
,
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yields:

|Sj | ≈ |Si|(1 + 2(p̂j − p̂i))

and
|Sj |
|Si|

∝ p̂j
p̂i

+ c.

For relevance at rank curves which are monotonically decreasing (`t > `t+1),

the algorithm maintains a shallower band of sampling depths, and thus an even

broader (more uniform) sampling rate across the predictors than in the uniform

case.

Oversampling due to Predictor Bias

Having established that in the case of independent predictors sampling of an

arbitrary predictor’s list occurs at a rate proportional to the accuracy of the

predictor, we may now address the question of the effect of oversampling of a

portion of the predictor space due to correlation or bias among the predictors.

The oversampling rate in the worst case is easily defined. For a set of N

predictors, with an initial uniform weighting we may have a worst case bias due

to perfect correlation of N − 1 predictors. Extending our previous discussion,

we define the point at which the expected contribution of the highest ranked

sample of predictor i is approximately equal to that of a set of N − 1 ≈ N

correlated predictors j to be:

β−L̂
ri
i `ri

≥ N · β−L̂
rj
j `rj

Again examining the uniform relevance curves (`ri
= `rj

) to determine worst

case behavior of the greedy sampling strategy, we may define the maximum loss
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sustained by a correlated predictor j relative to independent predictor i as:

L̂
rj

j − L̂ri
i ≤ lnβ N

Substituting the approximate loss for the uniform relevance curve (L̂ri ≈ |Sr|(1−

2p̂i)), a simple expression for the rate of oversampling of the correlated predic-

tors can be obtained for the case of equivalent accuracies p̂j = p̂i:

|Sj | − |Si| ≤
lnβ N

1− 2 · p̂i,j

Since the quantity of oversampling of the correlated predictors is constant, the

effect diminishes linearly with depth of sampling.

Chernoff/Hoeffding Bounds on Estimated Predictor Accuracy

We may diminish the effect of oversampling due to correlations in the predictor

space by adopting an alternate technique for establishing the quality of pre-

dictors which applies Chernoff/Hoeffding bounds to the estimation of predictor

accuracy. Rather than calculating the accuracy of the predictors via some com-

mon measure such as average precision on the sample pool, we may calculate

the predictor accuracy directly, given a weighting of the relevance scores con-

sistent with our relevance at rank curves. This technique has the advantage of

providing confidence rated bounds for arbitrary sampling depths.

In the usual context, Chernoff/Hoeffding Bounds [51] are defined for a se-

quence of independent Bernoulli trials X1, . . . , Xm with probability of success

E[Xi] = p, and S = X1 + . . . + Xm corresponding to a random variable in-

dicating the total number of successes, so that E[S] = pm. However, in the

current context, we shall be interested in the convergence of the variable p̂i to
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its expected value with p̂i defined as follows:

p̂i =
∑
t=1..N sgn(rel(sti))`t∑

t=1..N `t

Thus, the variable of interest Si shall be defined in terms of the aggregate of

expected outcome over trials so that mt =
∑
t=1..N `t. Given this specification

of S and mt, the bounds may be applied directly.

In their usual form, multiplicative bounds for λ± s.t. 0 ≤ λ− ≤ 1 and

0 ≤ λ+, are given by:

Pr[S > (1 + λ+)pm] ≤ e−mpλ
2
+/3

Pr[S < (1− λ−)pm] ≤ e−mpλ
2
−/2

Note that we may equivalently consider the observed success probability p̂ =

S/m rather than the actual number of successes S, by eliminating m from the

l.h.s.

First, we shall develop a joint bound defining closeness of the estimated

quantity p̂ to the actual value p in terms of λ, so that p/c ≤ p̂ ≤ cp, with

confidence at least 1− δ. The joint bound may be stated, either in terms of λ−

or λ+, noting that an arbitrary value of c = 1 + λ+ and c−1 = 1− λ− leads to

the following relationships:

λ− =
λ+

1 + λ+
, λ+ =

λ−
1− λ−
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The joint bound is given by:

Pr[p̂ > (1 + λ+)p ∨ p̂ < (1 + λ−)p] = Pr[(p̂ > (1 + λ+)p] + Pr[p̂ < (1 + λ−)p]

≤ e−mpλ+/3 + e−mpλ−/2

≤ 2e−mpλ−/η

with η = 3 for {λ− ≤ 1 −
√

2/3 and λ+ ≤
√

3/2 − 1}, i.e. for c =
√

3/2, and

η = 2 otherwise. Solving for e−mpλ
2
−/η ≤ δ gives an expression for the minimum

number of samples required:

m(p, λ−, δ) ≥ (η/(pλ2
−)) ln(2/δ).

To apply this bound in our present context, we may define sampling bounds

in terms of the accuracy of our best predictor, requiring sampling at a minimum

rate m(pbest, λ−, δ) for each predictor. Since the bound has a dependence on p

of O(1/p), by fixing the sampling rate across predictors in terms of the expected

accuracy of the best predictor, we expect the relative quality of predictor eval-

uations to vary in direct proportion to the predictor accuracy. Note also that,

to maintain constant values of m and δ, the parameter λ− must vary inversely

with the square root of the predictors’ success ratios, so that λ2
λ1
∝

√
p̂1
p̂2

.

4.4 Optimization of Beta

The Hedge algorithm of [37] establishes a single optimal value of β for the entire

learning sequence based on the expected loss of the best underlying predictor

Lbest and the total number of predictors N . In the traditional Hedge setting,

the sample pool is assumed to be drawn uniformly from the sample space with

stationary assumptions of predictor accuracy. Although the evolution of the

loss values with rank in Rankhedge suggest the possibility that our selection
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of β might likewise evolve as the ranked lists are descended, we shall limit our

discussion to stationary selection of β and allow the decreasing probability of

relevance of the samples to manifest directly in the loss function. Given this

strategy, the proper definition of the loss of the best predictor Lbest corresponds

to the expected loss of the best predictor at the first sample point or rank.

The optimal value for β under these assumptions is equivalent to that of the

original Hedge algorithm [37]. In the following Lemma, we provide a deriva-

tion of the expression for β which minimizes the worst case loss of the Hedge

algorithm

Lemma 1 The value of β which minimizes the worst case loss bound of the

Hedge algorithm is given by:

β =
1

1 +
√

2 lnN
Lbest

(4.9)

Proof: Briefly substituting L̃ = Lbest and R̃ = lnN and applying the approxi-

mation − lnβ ≤ (1− β2)/(2β) for β ∈ (0, 1], we define the following worst case

bound on Hedge behavior:

−L̃ lnβ + R̃

1− β
≤ L̃

2β
+
L̃

2
+

R̃

(1− β)
(4.10)

Differentiation yields:

dLHedge(β)

dβ
≤ − L̃

2β2
+

R̃

(1− β)2
(4.11)

To minimize, we set the r.h.s. to zero, resulting in:

β ≥ 1

1 +
√

2R̃
L̃

=
1

1 +
√

2 lnN
Lbest

(4.12)

The minimum choice of β which satisfies the equation results in the maximum
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learning rate. �

4.4.1 Sensitivity to Selection of Beta

Given this technique for selecting an optimal β, it is straightforward to establish

bounds on sensitivity of the Hedge loss due to deviations in the parameter. We

shall examine bounds on the effect of overestimation or underestimation of β

by establishing the effect of errors in estimating the volume of the predictor set

N or the accuracy of the best predictor Lbest.

A value of β greater than optimal results in a slower than optimal conver-

gence rate. This may be due to either underestimation of the accuracy (overes-

timation of the loss) of the best predictor or underestimation of the volume of

the predictor set. A straightforward bound on this effect may be obtained by

focusing on the denominator of the Hedge bound:

LHedgeβ
≤ −Lbest lnβ + lnN

1− β

We shall introduce the result of an inaccurate estimate of Lbest or N as

a function of u = lnN
Lbest

, by defining the value γ to be the ratio of actual and

estimated values of u, so that û = γ · lnN
Lbest

. From Equation 4.9, we see that in the

case of overestimation of β we are interested in values 0 ≤ γ < 1. Substituting

the expression for optimal β from Equation 4.9 into the denominator, the Hedge

bound may be rewritten:

LHedgeβ
≤ −Lbest lnβ + lnN

1− β

≤ −Lbest lnβ + lnN

1−
(
1 +

√
γ · 2 lnN

Lbest

)−1

=
(
− Lbest lnβ + lnN

)(
1 +

(
γ · 2 lnN

Lbest

)
−1

2

)
(4.13)
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Thus, the change in the Hedge worst case bound induced by suboptimality

of the β parameter may be written, in this case, as:

LHedgeβ
−LHedgeβopt

≤
(√

2·(γ1/2−1)
)
·
(
−Lbest lnβ+lnN

)( lnN
Lbest

)
−1

2 (4.14)

making the substitution λ = 1 for LHedgeβopt
.

A similar expression is available in the case in which β is underestimated.

In this situation, a convergence rate faster than optimal results either from an

overestimation of accuracy of the best predictor (underestimation of the loss)

or an overestimation of the volume of the predictor set. Here, convergence of

the algorithm is slowed due to the excessive importance placed on each sample,

which causes the Hedge algorithm to wander as it overcompensates for noise

in the sample set. In the most extreme case, if the best predictor is assumed,

erroneously, to be lossless (Lbest = 0 ⇒ β = 0), the algorithm may settle rapidly

on an incorrect prediction, with an indeterminate effect on the bound.

For the case in which β is underestimated, we restrict γ so that γ > 1 and

focus on the numerator of the worst case bound. We may further simplify by

employing the approximation: − lnβ ≤ (1− β2)/2β for β ∈ (0, 1].

LHedgeβ
≤ −Lbest lnβ

1− β
+

lnN
1− β

≤ Lbest ·
(1 + β)

2β
+

lnN
1− β

= Lbest ·
1
2

(
1 +

√
γ · 2 lnN

Lbest

)
+

lnN
1− β

(4.15)

Since the term related to the number of predictors is decreasing with dimin-

ished β, we may replace it with a constant, yielding a bound on the error due
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to underestimation of β:

LHedgeβ
− LHedgeβopt

≤
( 1√

2
· (γ1/2 − 1)

)
· Lbest ·

( lnN
Lbest

) 1
2

(4.16)

≤
( 1√

2
· (γ1/2 − 1)

)
·
(
− Lbest lnβ + lnN

)
·
( lnN
Lbest

) 1
2

(4.17)

The relaxed bound in Equation 4.17 is included here for comparison with the

earlier bound of Equation 4.14.

At this point, we may also make a statement about sensitivity of the worst

case bounds to errors in estimation of the constant associated with the rate

of decrease of the rank relevance curve described in Equation 4.7. As demon-

strated in Section 4.2, variations in the parameter controlling rate of decay

result in a proportional increase or decrease in the number of relevant docu-

ments discovered due to the properties of the inverse rank weighting (roughly

Pr(d ∈ Sr) ∝ 1
c|Sr| for document d drawn from document space Sr with rank

scaling parameter c). Thus, errors in the estimation of c may be incorporated

directly into the estimate of γ via Lbest, with the resulting sensitivity, again,

described by Equations 4.14 and 4.16.
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Chapter 5

Hedge and Bayesian

On-line Prediction

This chapter examines the Hedge algorithm in both Bayesian and information-

theoretic contexts and demonstrates the intimate connection of the two perspec-

tives. First, we consider the Hedge prediction rule as a Bayesian rule with the

distribution over predictors corresponding to the best instantaneous prediction

of posterior probability of relevance of documents. Analysis of the Bayesian rule

as an optimal resource allocation (or gambling) strategy demonstrates an ex-

plicit connection between the Bayesian and information theoretic frameworks.

In the Bayesian framework, the exponential update rule provides a continu-

ous approximation to the discrete process defining the evolution of posterior

probabilities associated with predictors. We demonstrate that, in the infor-

mation theoretic context, the exponential update rule results in a maximum

entropy (minimally constrained) distribution over the predictors, given a par-

ticular choice of β and constraints introduced by the labelled data. In addition,

information theoretic analysis of the Hedge algorithm provides an exact loss
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bound in terms of the Kullback Liebler distance of the evolving weight distri-

bution from that of the original prior. Finally, upper and lower bounds for

the Hedge loss, derived in the context of the exact analysis, are proven to be

consistent with the worst case Hedge loss bound of [37].

To adapt the original Rankhedge algorithm to the Bayesian framework, we

modify the loss function to reflect the prior probability of relevance at rank,

rather than the log prior (derived from the Average Precision measure) of our

earlier experiments. Given the Bayesian interpretation of both the Hedge update

rule and classification rule established in the following sections, we shall refer

to the Hedge or Rankhedge algorithm with a loss function scaled to reflect the

expected prior probability of relevance of the samples as a “pseudo-Bayesian”

algorithm. Experimental results at the conclusion of the chapter clearly demon-

strate the superiority of the “pseudo-Bayesian” Rankhedge to all other systems

tested.

5.1 Bayesian On-line Prediction

Cesa-Bianchi, et al. [19] present a Bayesian method for sequentially predicting

Boolean sequences via the linear combination of expert advice which is a close

relative of the Hedge algorithm. In this Bayesian on-line setting, we are given

an input sequence xT drawn from the instance space x ∈ X and a collection

of noisy experts E = {E1, . . . , EN}. The goal is to predict the target binary

sequence yT . The value of target instance yT may be determined in Bayesian

fashion by selecting an expert Ei, at round t, with probability defined by the

prior distribution Q over the set E and then corrupting that prediction Ei(xt)

according to the noise model associated with Ei. Distribution Q reflects the

prior probability of accuracy of the individual predictors in set E , and thus, the

technique guarantees that the expectation of instances in the space of possible
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target sequences is equivalent to the actual posterior distribution over target

sequences defined by Q and the accuracy of the noisy experts.

The Bayesian on-line prediction algorithm iteratively assigns labels in ac-

cordance with a Bayesian optimal classification strategy based on the posterior

probabilities of the experts, given the observed sequence yt−1. The evolving

posterior distribution over the expert set is defined by the posterior probability

of relevance of Ei conditioned by an initial prior P0(Ei) and sequence of evidence

yt−1. The initial prior P0(Ei), as an initial estimate of the maximum accuracy

of Ei, may differ significantly from the actual prior Q, and, in the absence of

evidence, the initial prior P0 is often defined to be uniform over the predictors.

The posterior probability P (Ei|yt−1) is computed in accordance with Bayes’

rule (with likelihood Pi(yt−1) = P (yt−1|Ei)):

P (Ei|yt−1) =
Pi(yt−1)P0(Ei)∑N
j=1 Pj(yt−1)P0(Ej)

(5.1)

with Pi(y0) = 1.

5.1.1 Classification Rules

Figure 5.1 presents the Bayesian On-line Prediction algorithm in its simplest

form, with posterior probabilities associated with experts Pi(yt−1) defined im-

plicitly. While the method of [19] deals primarily with the Bayes or ”thresholded

majority” classifier, it is worthwhile, in the current context, to discuss both the

Bayes and Gibbs methods for classification. Under the naive assumption of in-

dependence of experts, we may express the probability P (yt|yt−1) as a weighted

sum of the expert predictions Pi(yt|yt−1). Thus,

P (yt|yt−1) =
N∑
i=1

Pi(yt|yt−1)P (Ei|yt−1) (5.2)
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General Bayesian On-line Predictor (Bayes Classifier):

Parameters:

set of N experts E1, . . . , EN .
noise model defining distributions P1, . . . , PN over {0, 1}∞.

Do for t = 1, 2, . . .

1. If
PN

i=1 Pi(1|yt−1)Pi(y
t−1) >

PN
i=1 Pi(0|yt−1)Pi(y

t−1) predict 1,

else if
PN

i=1 Pi(1|yt−1)Pi(y
t−1) <

PN
i=1 Pi(0|yt−1)Pi(y

t−1) predict 0,

else flip an unbiased coin.

2. Observe bit yt.

Figure 5.1: General Bayesian On-line Prediction.

There are two obvious candidates for a classifier based on the posterior proba-

bility measure. The first method, employed in [19], is the Bayes optimal classi-

fication rule. This prediction method (shown in the algorithm of Figure 5.1) is a

weighted majority voting method in which the label output by the algorithm is

the thresholded majority label as voted by the experts. That is, in each round

t, the Bayes rule simply outputs the label with the highest posterior probability,

given yt−1:

ŷt = arg max
y∈{0,1}

P (y|yt−1) (5.3)

with the case P (y = 0|yt−1) = P (y = 1|yt−1) decided by an unbiased coin flip.

The Bayes classifier is appropriate to the current context. However, in many

settings the Bayesian method suffers from the practical and philosophical draw-

back that the hypothesis used to predict ŷt at some time t may not reside in

the target class. This is of particular concern in the case of finite function

classes. To alleviate these concerns, an alternate classification rule, the Gibbs

classification rule, may be defined as follows:

• Given experts {E1, . . . , EN}, randomly select an expert Ê according to
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the distribution over posterior probabilities P (Ei|yt−1).

• Predict ŷt = Ê(xt).

If we consider the expectation of label values output by the Gibbs classifier,

we see that the algorithm actually produces a distribution over the label set

with expectation:

ȳt = Ey∈{0,1}[yt = y|yt−1] (5.4)

5.2 Hedge vs. Bayesian On-line Prediction

Given the appropriate choice of loss function, the Hedge algorithm may be

viewed as the bounding approximation of a Bayesian on-line algorithm, and

in this section, we shall make an explicit connection to the Bayesian On-line

method of Cesa Bianchi, et al. As we shall see in this and later sections, both

the Bayesian and Hedge methods are grounded in the common framework of pro-

portional (optimal) resource allocation, and thus connections of the algorithms

and similar bounds on their behaviour proceed naturally.

If the Hedge loss is defined directly in terms of expected relevance of the

instances, i.e. in terms of relevance at rank, the algorithm may be inter-

preted as the bounding (continuous) approximation of the discrete Bayesian

algorithm. Consider a new loss function based on the expected relevance of

instances. With the posterior distribution over N experts denoted Pt and ele-

ments Pti = P (Ei|yt−1)/(Zt =
∑N
i=1 P (Ei|yt−1)), the distribution Pt converges

toward the actual posterior distribution given the evidence, with the exponen-

tial update rule establishing the maximal growth rate for a particular choice of

β = e−α. Examining the evolution of the weight of a single predictor, we may

define the instantaneous growth rate of the posterior probability incrementally
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in terms of discrete loss L, resulting in the following relationships:

Pt(Ei) ≈ Pt−1(Ei) · (1− αL)

≥ Pt−1(Ei) · lim
n→∞

(1− αL

n
)n (5.5)

= Pt−1(Ei) · e−αL (5.6)

The exponential rule represents the infinitesimal limit of continuous growth

over the interval spanned by total loss L, and thus, it is the bounding growth

rate for all possible discretizations of the quantity L, given a particular choice

of β. In terms of the partials associated with the posteriors, the exponential

growth rate is proportional to the current estimate of the posterior probability

associated with the expert: ∂(P (Ei))
∂L ≈ P (Ei) · α.

Hedge makes no assumption about the noise model associated with the ex-

perts, but instead defines the constant β in terms of the accuracy of the best

expert. Given an appropriate choice of β, the Hedge approximation corresponds

to a lower bound on the actual posterior probabilities assumed by the Bayes on-

line algorithm:

Pi(yT ) =
Pi(y0) ·

∏T−1
t=1 Pi(yt)
Zt

≥
Pi(y0) ·

∏T−1
t=1 e−αL

t
i

Zt

Here Lti ∈ [0, 1] represents the loss assessed to expert Ei due to instance yt.

Cesa Bianchi, et al. [19] provide worst case bounds for the Bayes on-line

algorithm (with N corresponding to the number of predictors):

LBayes(yt) ≤ lnN + min
1≤i≤N

ln
1

Pi(yt)
. (5.7)

Substituting β−Lbest(y
t) for max1≤i≤N Pi(yT ) and assuming an initial uniform
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distribution over the predictors, we see that, unsurprisingly, the worst case

analysis of Hedge (Equation 3.1):

LHedgeβ
(yt) ≤ lnN + lnβ · Lbest(yt)

1− β
(5.8)

is within a constant factor of the Bayes on-line bound.

In a later section we shall present experimental results which demonstrate

superiority of a ”pseudo-Bayesian” Rankhedge algorithm, that is, Rankhedge

with a loss function based on prior relevance at rank. But for the moment,

we shall examine the maximum entropy properties [49, 50] of the successive

distributions produced by Hedge. The maximum entropy result likewise arises

from the analysis of the exponential update method as a continuous proportional

allocation method.

5.3 Information Theoretic Analysis

An information theoretic analysis of the prediction and exponential update rules

of the Hedge algorithm reinforces the validity of the Bayesian interpretation of

Hedge. In this section, we demonstrate, first, that prediction methods based

on proportional allocation of resources (such as Hedge) are in fact optimal.

Next, we show that the exponential update rule of Hedge is optimal, in the

sense that it minimizes the change in distribution Pt over the predictors due

to the additional constraint associated with the labelling of a new instance,

given a particular choice of β. We extend the information-theoretic argument

to generate an exact bound for the Hedge loss defined in terms of the evolution

of the distribution Pt. And finally, we provide an alternate proof, derived in this

information-theoretic context, for both upper and lower bounds on the Hedge

loss.
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5.3.1 Proportional Resource Allocation

The prediction rules of both the Bayesian on-line algorithm and Hedge may

be viewed as proportional allocation schemes which assign resources in direct

proportion to the algorithms’ best estimates of each predictor’s posterior prob-

ability of success. Following the argument of Cover and Thomas [24], allocation

of resources in quantities disproportionate to the expected reward, either due to

mismanagement of the resources [40] or misunderstanding of the actual proba-

bility of reward [39], may diminish the reward accrued by the allocation scheme.

The resource allocation problem is naturally expressed in the gambling con-

text. Given a set of predictors E = {E1, . . . , EN}, we define a wealth function St

describing a gambler’s wealth at round t. At each round, the gambling scheme

allocates all resources to the predictors according to distribution (or portfolio)

bt with probability of success pt and payoff ot. The wealth function, thus, is

defined as:

St =
T∏
t=1

bt · ot (5.9)

The wealth relative is the factor Ŝt = btot which reflects the factor of increase

of the gambler’s wealth at round t. The doubling rate W (bt,pt)is defined as the

expectation of the log of the wealth relative, i. e.

W (bt,pt) = E(ln(Ŝt)) =
N∑
k=1

ptk ln btko
t
k (5.10)

Focusing on a single round t, we may simplify the notation, so that we define

the optimum doubling rateW ∗(p) as the maximum doubling rate over all choices

of portfolio b. That is,

W ∗(p) = max
b
W (b,p) = max

b:bi≥0,
P

i bi=1

N∑
i=1

pi ln bioi (5.11)

We wish to show that a proportional allocation of resources is an optimal
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prediction strategy, and we do so by demonstrating that a choice of portfolio

b = p maximizes the doubling rate. W (b,p) may be maximized as a function

of b subject to the constraint
∑
i=1..N bi = 1. As a functional with a Lagrange

multiplier, this may be written:

J(b) =
N∑
i=1

pi ln bioi + λ
N∑
i=1

bi. (5.12)

Differentiating w.r.t. bi we have:

∂J

∂bi
=
pi
bi

+ λ, i = 1, 2, . . . , N (5.13)

Notice that the odds associated with the payoff of a predictor have no impact

on the choice of optimal portfolio.

Setting the partial derivative to 0 we have:

bi = −pi
λ

(5.14)

and substitution into the constraint
∑
i bi = 1 yields λ = −1 and bi = pi. Thus,

we conclude that b = p is a stationary point of the function J(b).

Next, we employ the guess and verify method to demonstrate that the pro-

portional allocation does, in fact, result in a maximal doubling rate.

Theorem 1 (Proportional Resource allocation is log-optimal) The op-

timum doubling rate is given by:

W ∗(p) =
∑
i

pi ln oi −H(p) (5.15)

and is achieved by the proportional gambling scheme b∗ = p.

Proof: Rewrite W (b,p) so that the maximum is obvious.
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W (b,p) =
∑
i

pi ln bioi

=
∑
i

pi ln(
bi
pi
pioi)

=
∑
i

pi ln oi −H(p)−D(p||b) (5.16)

≤
∑
i

pi ln oi −H(p) (5.17)

with equality iff p = b. �

We may specifically address the case of optimal sampling rates by defining

the odds to be oi = one-for-one odds. That is, if we allocate a unit of sampling

potential according to the distribution, a loss on predictor i results in a loss of

pi, while a success results in the return of the original pi units of potential. With

one-for-one odds, the doubling rate is given by W (b,p) = −H(p)−D(p||b).

5.3.2 The Exponential Update Rule

The preceding discussion established the optimality of proportional resource

allocation as a basis for a prediction method, given the assumption of an accu-

rate posterior distribution over predictors (the implicit assumption of the Bayes

on-line prediction algorithm). We shall now demonstrate that the exponential

update rule of Hedge is an optimal method for estimating the posterior distri-

bution over predictors. This is accomplished via a technique due to Warmuth

[97], by which we demonstrate that the exponential update rule minimizes the

relative entropy between successive distributions consistent with the labelled

constraints.

Given a distribution over a set of strategies pt = {pt1, . . . , ptN}, and loss

vector `t = {`t1, . . . , `tN}, we wish to show that application of the exponential

update rule at time t produces an optimal distribution at time t+1. Although we
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measure optimality, in this instance, in terms of relative entropy, the technique

works in the more general situation in which any Bregman divergence measure

is available.

4F (w̃,w)

F (w̃)

w w̃

F (w) − (w̃ − w) · ∇wF (w)

Figure 5.2: Bregman Divergences

1. 4F (w̃, w) is convex in w̃.

2. 4F (w̃, w) ≥ 0 with equality iff w̃ = w.

3. ∇w̃4F (w̃, w) = ∇w̃F (w̃)−∇wF (w).

4. Usually not symmetric: 4F (w̃, w) 6= 4F (w, w̃).

5. Linearity (for a ≥ 0): 4F+aH(w̃, w) = 4F (w̃, w) +4aH(w̃, w).

6. Unaffected by linear terms (a ∈ R, b ∈ Rn):
4H+aw̃+b(w̃, w) = 4H(w̃, w):

7. 4F (w1, w2) +4F (w2, w3) =
4F (w1, w3) + (w1 − w2) · (∇w3F (w3)−∇w2F (w2)).

Figure 5.3: Simple Properties of Bregman divergences.

For a differentiable convex function F , we may define the Bregman diver-
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gence 4F (w̃, w) as follows (Figure 5.2):

4F (w̃, w) = F (w̃)− F (w)− (w̃ − w) · 5wF (w)

= F (w̃)− the supporting hyperplane through (w,F (w))

Some simple properties of Bregman divergences are given in Figure 5.3.

To prove optimality of the exponential update rule from first principles,

we define the distance between distributions at consecutive iterations of the

algorithm pt+1 and pt in terms of a familiar Bregman divergence measure—

the relative entropy or Kullback Liebler distance— measuring the informational

loss due to sampling a distribution at the incorrect resolution. The KL distance

between successive posterior distributions is defined as:

D(pt+1||pt) =
N∑
i=1

pt+1
i ln

pt+1
i

pti
(5.18)

Once again using the technique of Langrangian minimization, we may establish

that, for this choice of distance measure, the distribution pt+1 closest to current

distribution pt subject to a particular loss constraint `t is the one produced by

the exponential update rule. We wish to minimize the following functional for

choices of λ1 and λ2:

J(pt+1) = D(pt+1||pt) + λ1

N∑
i=1

pt+1
i + λ2

N∑
i=1

pti`
t
i (5.19)

Partials of the Jacobian are given by:

dJ(pt+1)
dpt+1
i

= 1 + ln
pt+1
i

pti
+ λ1 + λ2`

t
i (5.20)

We set Equation (5.20) equal to zero and after a bit of algebra arrive at a
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minimum:

pt+1
i = ptie

−λ2`
t
i−1−λ1 (5.21)

=
ptie

−λ2`
t
i∑N

i=1 p
t
ie
−λ2`ti

(5.22)

Note that constant λ1 is scaled so that the resulting vector pt+1 is a distribu-

tion. It is straightforward to verify that this is actually a minimum. In the

next section, we shall verify that minimization of the relative entropy between

successive distributions does, in fact, minimize the loss of the Hedge algorithm.

5.4 Information Theoretic Hedge

In this section, we continue the information-theoretic analysis of the Hedge up-

date rule, deriving an exact form for the loss incurred by the algorithm through

examination of the evolution of the weight distribution via the KL divergence.

Given β ∈ [0, 1], vector wt describing the weight allocation at time t, and loss

vector `t, the update rule is given by:

wt+1
i = wtiβ

`ti (5.23)

The distribution pt in round t is defined in terms of weight vector wt and

normalization factor Zt so that

pti =
wti∑t
j=1 w

t
j

=
wti
Zt

(5.24)

We shall interpret the posterior distribution pt+1 as reflecting the instantaneous

best estimate of the actual prior probability of accuracy of the predictors. In

this context, we may define the instantaneous loss incurred by the Hedge algo-

rithm at round t in a manner consistent with our earlier information-theoretic
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discussions by examining the KL divergence D(pt+1||pt) relating the accurate

prior pt+1 and the current estimate pt.

Theorem 2 The instantaneous Hedge loss due to round t is exactly:

LtHedge =
D(pt+1||pt)− ln (Zt/Zt+1)

lnβ
(5.25)

Proof:

D(pt+1||pt) =
N∑
i=1

pt+1
i ln

pt+1
i

pti

=
N∑
i=1

pt+1
i ln

wt+1
i /Zt+1

wti/Z
t

=
N∑
i=1

pt+1
i ln

wtiβ
`ti/Zt+1

wti/Z
t

=
N∑
i=1

pt+1
i ln

(
β`

t
i · (Zt/Zt+1)

)
=

N∑
i=1

pt+1
i `ti lnβ +

N∑
i=1

pti ln (Zt+1/Zt)

= lnβ
N∑
i=1

pt+1
i `ti + ln (Zt/Zt+1)

N∑
i=1

pt+1
i

= lnβ · LtHedge − ln (Zt+1/Zt) (5.26)

The result follows immediately. �

The advantage of this formulation of the Hedge bound is that it is defined for

the entire range of β ∈ [0, 1] including the lossless situation β = 0. However, it

suffers from the fact that it reflects an oversampling of elements of the predictor

set spanned by pt which may not exist in the target distribution pt+1. Therefore,

we shall derive another more practical form for the instantaneous loss of Hedge

by reversing the order of terms D(pt||pt+1). The following instantiation of the

theorem proves to be more intuitive than Theorem (2) and is applicable to all
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situations save the lossless case β = 0.

Theorem 3 For β ∈ (0, 1], the instantaneous Hedge loss due to round t is

exactly:

LtHedge =
D(pt||pt+1)− ln (Zt+1/Zt)

ln (1/β)
(5.27)

Proof:

D(pt||pt+1) =
N∑
i=1

pti ln
pti
pt+1
i

=
N∑
i=1

pti ln
wti/Z

t

wt+1
i /Zt+1

=
N∑
i=1

pti ln
wti/Z

t

wtiβ
`ti/Zt+1

=
N∑
i=1

pti ln
(
(1/β)`

t
i · (Zt+1/Zt)

)
=

N∑
i=1

pti`
t
i ln (1/β) +

N∑
i=1

pti ln (Zt+1/Zt)

= ln (1/β)
N∑
i=1

pti`
t
i + ln (Zt+1/Zt)

N∑
i=1

pti

= ln (1/β) · LtHedge + lnZt+1 − lnZt (5.28)

The result follows immediately. �

A closed form expression for the cumulative loss of the Hedge algorithm may

now be derived.

Corollary 1 For β ∈ (0, 1], the cumulative Hedge loss at round T+1 is exactly:

LT+1
Hedge =

∑T
t=1D(pt||pt+1)− lnZT+1

ln (1/β)
(5.29)

Proof: Given our expression for the instantaneous KL distance (5.28), consider
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the sum of KL distances over all rounds:

T∑
t=1

D(pt||pt+1) =
T∑
t=1

(
ln (1/β) · LtHedge + lnZt+1 − lnZt

)
= ln (1/β)

T∑
t=1

LtHedge + lnZT+1 − lnZ1

= ln (1/β)
T∑
t=1

LtHedge + lnZT+1 (5.30)

The result follows immediately. �

Next we develop upper and lower bounds on the sum of KL distances—∑T
t=1D(pt||pt+1). The following proof relies, again, on convergence of the

discrete approximation to the exponential:

e±αL = lim
n→∞

(1± αL

n
)n. (5.31)

Corollary 2 For β ∈ (0, 1], the cumulative KL distance at round T + 1 is

bounded by:

0 ≤
T∑
t=1

D(pt||pt+1) ≤
(
1− ln (1/β)

1− β

)
lnZT+1 (5.32)

Proof: The lower bound reflects the fact that the relative entropy is always

positive. To demonstrate the upper bound, we define the quantities ZT+1
max and

ZT+1
min corresponding to the values of ZT+1 for the bounding cases of maximum

and minimum Hedge loss, respectively. From Equation (5.29), the minimum

loss occurs with
∑T
t=1D(pt||pt+1) = 0, yielding:

lnZT+1
min = − ln

1
β
· LT+1

Hedge (5.33)

Substituting into equation (5.29), an upper bound on the aggregate relative en-
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tropy in terms of ZT+1
max is:

T∑
t=1

D(pt||pt+1) ≤ lnZT+1
max − lnZT+1

min (5.34)

It can by shown, by a convexity argument that αr ≤ 1 − (1 − α)r; therefore,

the rate of change in weights for a particular choice of β is bounded above by

∂wti/∂`
t
i ≤ −(1−β)wti . Applying the maximum loss to the predictor distribution

yields ∂Zt/∂Lt ≤ −(1−β)Zt. This suggests an exponential growth rate and the

associated inequality:

(
1− αL

n

)n ≥ eαL ∀n ≥ 0, α ≥ 0 (5.35)

Choice of α = −(1− β) yields:

ZT+1
max ≥ (

N∑
i=1

w0
i )

(
1−

(1− β)LT+1
Hedge

n

)n ≥ e−(1−β)LT+1
Hedge . (5.36)

This provides a restatement of the Hedge worst case bound from [37]:

lnZT+1
max ≥ −(1− β)LT+1

Hedge (5.37)

The relationship of the minimum and maximum partition entropies is, therefore:

lnZT+1
min

lnZT+1
max

=
− ln(1/β) · LT+1

Hedge

−(1− β) · LT+1
Hedge

=
ln (1/β)
1− β

(5.38)

Substitution of (5.38) into equation (5.34) completes the proof. �

Finally, we note bounds on Hedge loss which are implicit in the previous

discussion.

Corollary 3 The cumulative Hedge loss at round T + 1 is bounded above and
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below by:
− ln (

∑N
i=1 w

T+1
i )

ln (1/β)
≤ LT+1

Hedge ≤
− ln (

∑N
i=1 w

T+1
i )

1− β
(5.39)

Proof: The bounds proceed trivially from equations (5.33) and (5.37). �

5.5 Results

Plots 5.4 to 5.9 present the results of experiments with the ”pseudo-Bayesian”

Rankhedge algorithm which has a loss function based on prior probability of

relevance. Examining the topmost curves plotting rate of relevant documents

retrieved, one notices immediately a qualitative improvement in performance

over the previous Rankhedge incarnation. In these plots, the new Rankhedge

closely tracks Rankhedge(Log Prior) in the early stages of the retrieval process

where both demonstrate a significant advantage over the priority queue method.

In the later stages of the process, when the previous algorithm tends to falter

a bit due to excessive concentration on the more successful predictors, the new

Rankhedge continues to retrieve relevant samples at a rate significantly superior

to the algorithm of Cormack, et al. — the previous best in these regions. The

advantage of a properly constructed loss function is most clearly seen in the

results for the difficult TREC 9 data, where retrieval rates of the previous

algorithm tailed off rapidly after the first 150 documents.

The system evaluation plots present no significant divergences in the behav-

ior of the two Rankhedge algorithms or the priority queue method, although

all three methods outstrip the evaluations of Depth-n pooling. The metasearch

plots, however, prove more interesting. Note that in conferences 3, 6, 7 and 8

the Rankhedge(Log Prior) method yielded marginally better results than the

newer Rankhedge. Taking the scale of the plots into consideration, the advan-

tage of the early algorithm in the metasearch task is relatively small, with the

biggest advantage appearing in TREC 8 where the MAP of metasearch lists of
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Rankhedge(Log Prior) exceeds that of Rankhedge by approximately three per-

centage points after judgement of 200 documents. Close examination of the data

for these tracks shows that the superior metasearch precision is due to a slight

edge in the retrieval rates of Rankhedge(Log Prior) in the shoulder region of the

curves, where the increased focus of the early algorithm on the most accurate

systems provides a small advantage in total retrieved documents. The differ-

ence in performance in these regions is too subtle to be readily distinguished

at the scale of the recall plots and does not alter the overall estimation of the

qualitative superiority of the “pseudo-Bayesian” Rankhedge algorithm.

As one might expect, the newer Rankhedge surpasses the Rankhedge(Log

Prior) results on the TREC 9 data, but, interestingly, neither achieves the pre-

cision of the best system in that track. Examination of the results for the actual

TREC rankings for this track demonstrates that the best system is an outlier,

with a mean average precision of 0.4425 versus the next best system score of

0.3499— a gap of more than 20%. The poor precision of the systems and spar-

sity of relevant documents in this track make it difficult for either system to

recover the losses associated with the early stages of retrieval. Nevertheless,

the metasearch lists of the newer Rankhedge method approach the quality of

the best system and substantially exceed both combMNZ and Condorcet MAP

scores as well as that of the second best system.

Finally, we include three dimensional plots taken from TREC 8 of the evolv-

ing weight histories of the Rankhedge distribution. The first Figure (5.10) shows

the predictor weights averaged across all queries, while the second (5.11) demon-

strates the range of behavior manifested on a per query basis. The sample axis

of the plots is ”pseudo-logarithmic,” with sample intervals defined by discretiza-

tion of the aggregate of the prior. The system axis is sorted according to net

weight over the entire sample range, and the weights are scaled at each inter-

val to fix the maximum at 1.0. Note that the plots of Figure 5.10 manifest

101



relatively orderly behavior as the aggregate of the distributions across queries

focuses fairly rapidly on the best predictors and maintains that focus throughout

the course of the trial. A look at plots of Figure 5.11, however, reveals a range

of behavior which is masked in the averaged results. In these plots, Query 407 is

representative of the mean behavioral range of Rankhedge. Query 436 provides

an example of a difficult query, with sparse relevant documents and lists of low

precision returned by most predictors. Query 450 is an example of an easier

query, with many relevant documents discovered and relatively good precision

across a broad range of systems. Most notable in these plots (and readily seen

in Queries 407 and 450) is the tendency of the algorithm to focus on the best

predictors in the early stages, with a maximum contraction of the distribution

in a transitional region roughly corresponding to the shoulder seen in the earlier

plots (Figures 5.4 to 5.9). Beyond this shoulder, the histories demonstrate a

broadening of the search for relevant documents as the early entries of the bet-

ter lists are exhausted, and the algorithm shifts its attention to higher ranked

documents in lists of lower precision. Clearly, the relative difficulty of individ-

ual queries results in significant qualitative differences in evolution of the on-line

process, and the possibility of defining the loss function and β on a per query

basis is an area for future research.
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Figure 5.4: Trec 3. Comparison of Rankhedge— prior relevance at rank,
rankHedge— log prior, Cormack pooling method, and Depth-n pooling under
three performance measures: (A) percent of total relevant documents discov-
ered. (B) system ordering via k-τ . (C) metasearch performance via Mean
Average Precision.
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Figure 5.5: Trec 5. Comparison of Rankhedge— prior relevance at rank,
rankHedge— log prior, Cormack pooling method, and Depth-n pooling under
three performance measures: (A) percent of total relevant documents discov-
ered. (B) system ordering via k-τ . (C) metasearch performance via Mean
Average Precision.
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Figure 5.6: Trec 6. Comparison of Rankhedge— prior relevance at rank,
rankHedge— log prior, Cormack pooling method, and Depth-n pooling under
three performance measures: (A) percent of total relevant documents discov-
ered. (B) system ordering via k-τ . (C) metasearch performance via Mean
Average Precision.
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Figure 5.7: Trec 7. Comparison of Rankhedge— prior relevance at rank,
rankHedge— log prior, Cormack pooling method, and Depth-n pooling under
three performance measures: (A) percent of total relevant documents discov-
ered. (B) system ordering via k-τ . (C) metasearch performance via Mean
Average Precision.
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Figure 5.8: Trec 8. Comparison of Rankhedge— prior relevance at rank,
rankHedge— log prior, Cormack pooling method, and Depth-n pooling under
three performance measures: (A) percent of total relevant documents discov-
ered. (B) system ordering via k-τ .(C) metasearch performance via Mean Aver-
age Precision.
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Figure 5.9: Trec 9. Comparison of Rankhedge— prior relevance at rank,
rankHedge— log prior, Cormack pooling method, and Depth-n pooling under
three performance measures: (A) percent of total relevant documents discov-
ered. (B) system ordering via k-τ . (C) metasearch performance via Mean
Average Precision.
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Figure 5.10: Trec 8: Evolution of predictor weights to depths 100 and 1000—
averaged across 50 queries. Pseudo-logarithmic sample dimension.
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Figure 5.11: Trec 8: Evolution of predictor weights to depth 1000— Queries
407, 436, and 450. Pseudo-logarithmic sample dimension.
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Chapter 6

Similarity Measures

Performance of the Hedge algorithm is dependent on both the number and

quality of the predictors in the predictor set. In this chapter, we examine the

independence assumption which is implicit in the usual choice of uniform initial

distribution over predictors and present a theoretically grounded technique for

improving Hedge performance by minimizing the volume of the predictor space

via debiasing or decorrelation of the predictor set.

Bias error is a common term in IR for the effects of predictor correlation

in a situation where independence among predictors is assumed. To accurately

determine the amount of correlation among predictors, we must first define a

similarity measure on the space of predictors. In the case of ranked lists, several

options are available, some of which were presented in our discussion in Chapter

Two of the Cranking method [55].

In the Rankhedge context, the availability of a prior estimation of relevance

at rank allows us to define a similarity measure in local terms on the space of in-

stances and to aggregate these local similarity measurements to define the global

similarity score for a pair of predictors. This ability to localize the similarity

measure to individual instances is a manifestation of a useful duality— of the
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local potentials (accuracy) of the predictions defined on the sample neighbor-

hoods and the global accuracy of the predictors as approximated by the Hedge

weight vector. We explore the implications of this duality and demonstrate the

close relationship of Hedge’s distribution over predictors to a well known entity

in statistical physics— the Gibbs Distribution— the dual of which is the Markov

Random Field (MRF).

We shall make extensive use of the dual properties of the sample/ predictor

axes in the next chapter to develop a method for probabilistic directed sam-

pling, but for the moment we shall restrict our attention to the implications

for definition of a similarity measure in the predictor space. In the remainder

of the chapter, we demonstrate that a concise information theoretic similarity

measure arises naturally from the Hedge’s implicit mapping of the predictor

space. And we employ this measure to properly decorrelate the predictor set

via reweighting of the initial distribution over predictors. In addition, we shall

briefly revisit the experiments of Soboroff, et al. [84] and show that the success

of attempts at blind evaluation of predictor quality discussed in the paper are,

in fact, attributable to clustering of predictors in the similarity space.

6.1 Background

The Cranking algorithm [55] introduced in Chapter Two provided an interesting

example of a learning algorithm defined explicitly in terms of a distance measure

on the space of permutations (the symmetric group Sn of order n). Cranking is

closely akin to Rankhedge in that the conditional probability model employed,

the Mallows model, assumes an exponentially decaying influence function be-

tween predictors based on an arbitrary distance metric d : Sn×Sn 7→ R+, where

Sn is a location parameter from the symmetric group of order n.

Given the evidence of a training set consisting of pairs (λ(i), σ(i)) where λ(i)
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is a target ranking of instances i and σ(i) is the set of rankings returned by the

underlying retrieval systems, the Mallows conditional ranking model is denoted

Md(λ, θ, σ), where θ ∈ R is a dispersion parameter and σ ∈ Sn is a location

parameter which in the current context corresponds to a specific instance from

the space of ranked lists. The model has the exponential form:

p(λ|θ, σ) = eθd(λ,σ)−ψ(θ,σ) (6.1)

In the Mallows model, the distance measure d(λ, θ) occupies the role of

the aggregate loss term of Hedge and is defined relative to label sequence or

permutation λ. The measure may be any one of a number of distance metrics

d : Sn × Sn 7→ R+ such as Kendall’s τ (the minimum number of adjacent

transpositions needed to bring λ to σ), rank correlation (R(λ, σ) =
∑n
i=1(λ(i)−

σ(i))2), or Spearman’s foot rule (F (λ, σ) =
∑n
i=1 |λ(i)−σ(i)|). The denominator

of the model corresponds to the partition energy with Z(θ, σ) = eψ(θ,σ), where

ψ is the cumulant function ψ(θ, σ) = log
∑
λ∈Sn

exp (θ · d(λ, σ)).

6.1.1 Hedge and the Predictor Space

We refer to the Cranking algorithm and the Mallows model to introduce the

notion of an exponentially decaying influence function on the predictor space.

Connections to the Rankhedge algorithm are obvious— with a distance measure

on a predictor pair θd(λ, σ) defined as the projected aggregate loss function

obtained by fixing either λ or σ as target and θ = lnβ as the rate of decay.

In this section, we shall examine the dual relationship of the Hedge weighted

predictor set and the field of predictions on instances which is implicit in the use

of an exponential influence function. In the following section, an interpretation

of the distance measure in the Rankhedge predictor space will be fully developed

in the context of information-theoretic similarity measures.
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The duality of the local representation of the state of the Rankhedge pre-

diction on the space of instances and the global representation defined in terms

of the distribution over the Hedge predictors is closely related to a well known

result of statistical physics— the Hammersfield-Clifford equivalence property—

which defines the relationship between the Gibbs Distribution and Markov Ran-

dom Field representations of random fields on graphs.

6.1.2 Markov Random Fields

Connections between certain results in computational learning theory and sta-

tistical mechanics are examined in [72, 90, 98, 46]. We shall be concerned with

a dual informational structure relating a distribution over a continuous basis

of predictors and a random field defined on the instance space. In statisti-

cal mechanics, the distribution over configurations or predictors is called the

Gibbs Distribution and its dual field on the instance space is the Markov Ran-

dom Field. As noted in [16, 85] almost any multivariate distribution may be

interpreted as a Markov Random Field, with the duality of the informational

structures established by the Hammersfield-Clifford equivalence property [15].

The theory of Markov Random Fields on graphs is presented concisely in Ge-

man and Geman [41]. An MRF is defined on a set of sites S = {s1, s2, . . . , sN},

with G = {Gs : s ∈ S} being a neighborhood system for S. A neighbor-

hood system is defined as any collection of subsets of S for which s /∈ Gs and

s ∈ Gr ⇔ r ∈ Gs. Thus Gs is the set of neighbors of s and the pair {S,G} is a

graph. A subset C ⊆ S is a clique if all pairs of distinct sites in C are neighbors.

The set of cliques will be denoted C. Now, if we define X = {Xs

∣∣s ∈ S} to be

any family of random variables indexed by S with a common state space Λ (in

this context Λ = [0, 1]), we may define the set of all possible configurations:

Ω = {ω = (xs1 , · · · , xsN
) : xsi ∈ Λ, 1 ≤ i ≤ N} (6.2)
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We may abbreviate the event {Xs1 = xs1 , · · · , XsN
= xsN

} as {X = ω}. Now,

X is a Markov Random Field with respect to G iff

P (X = ω) > 0 ∀ ω ∈ Ω; (6.3)

P (Xs = xs|Xr = xr, r 6= s) = P (Xs = xs|Xr = xr, r ∈ Gs) (6.4)

for every s ∈ S and (xs1 , · · · , xsN
) ∈ Ω.

In other words, the pair {X , P}must satisfy equations (6.3) and (6.4) relative

to some probability measure Ω. The collection of functions on the left hand side

of (6.4) is referred to as the local characteristics of the MRF.

6.1.3 Gibbs Distributions

The dual of the Markov Random Field is the Gibbs distribution, which is de-

fined, relative to {S,G}, as a probability measure ψ on Ω with the following

representation:

ψ(ω) =
1
Z
e−U(ω)/T (6.5)

where Z and T are constants and U is an energy function of the form

U(ω) =
∑
c∈C

Vc(ω) (6.6)

Each Vc is a function on Ω with the property that Vc(ω) depends only on the

coordinates xs of ω for which xs ∈ C. The family {Vc | c ∈ C} is called a

potential and Z is the normalizing constant, also called the partition function:

Z =
∑
ω

e−U(ω)/T (6.7)

The weights associated with the set of predictors which are maintained by the

Hedge update scheme may be interpreted as a finite sampling of the probability
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measure ψ(ω) of Equation 6.5. With ψ(ω) reflecting the posterior probability of

observing configuration ω in the space of configurations Ω, this is consistent with

our results of the previous chapter which established the connection of Hedge

and Bayesian online prediction. The weighted linear combination of predictions

defined by Hedge on a particular instance c may be viewed as measuring the

local potential Vc(ω) established by the MRF at instance c. Interpreted in this

manner, Hedge’s weighted linear combination of predictions defines a mean field

estimate of the MRF potential on the space of instances, or in familiar Bayesian

terms, the maximum a posteriori hypothesis given the evidence of the labelled

samples and a uniform prior.

The values of ψ(ω) associated with the Gibbs Distribution define the dis-

tribution over the space Ω which has, of all distributions consistent with the

constraints {Vc(ω) | c ∈ C}, a minimum KL distance (relative entropy) from

uniform. Thus, the Gibbs Distribution may be viewed as a maximum entropy

distribution on Ω, given the constraints. Equivalence of Gibbs distributions and

MRF’s are due to the Hammersfield-Clifford expansion (as developed in [15]

which is stated explicitly in the following theorem [41]):

Theorem 4 (MRF Gibbs Equivalence) Let G be a neighborhood system.

Then X is an MRF with respect to G iff ψ(ω) = P (X = ω) is a Gibbs dis-

tribution with respect to G.

6.2 Information Theoretic Similarity Measures

We would now like to define a similarity measure on the space of predictors

which is consistent with the probability measure associated with the Gibbs Dis-

tribution. We may examine the question of the similarity of two objects A and B

or in this case two configurations ωA and ωB in information-theoretic terms uti-

lizing the concept of an information-theoretic similarity measure IT-Sim(A,B),
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introduced by Lin in [59] and further developed by Aslam and Frost in [6]. The

measure has a particularly simple interpretation in the Hedge/Gibbs context,

with each site s of the sample space constituting an independent dimension or

feature whose local potential Vc(ω) associated with configuration ω fixes the

energy function U(ω) at site s. This local potential in turn fixes a portion of

the probability measure ψ(ω). Given the exponential decay of the probability

measure ψ(ωA) with increasing deviations of configuration ωA to a target con-

figuration ωB , it is straightforward to show that the appropriate information

theoretic similarity measure on Ω devolves to a familiar measure of distance on

the configuration space.

6.2.1 Background

Proceeding from the six basic assumptions listed in Figure 6.1, Lin [59] defines a

general model of similarity which is applicable to any domain which has a prob-

abilistic model. Aslam and Frost further develop the concept of information-

theoretic object similarity in [6], focusing specifically on applications to pairwise

document similarity.

The concept of information-theoretic similarity between two items A and

B is defined in terms of the information content of the common features of

A and B— I(common(A,B))— and the information content of the statement

describing the set of both items— I(description(A,B))— as follows:

IT-Sim(A,B) =
I(common(A,B))
I(description(A,B))

=
logP (common(A,B))

logP (description(A,B))
(6.8)

With the information content of a statement x defined by its self information

log(1/π(x)) where π(x) is the probability of the statement within the world of

objects, the set of objects which can be described by a set S of independent
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1. I(common(A,B)) measures information common to A and B.

2. I(description(A,B)) = I(common(A,B)) + I(difference(A,B)).

3. sim(A,B) = f(I(common(A,B)), I(description(A,B))).

4. ∀x > 0, f(x, x) = 1.

5. ∀y > 0, f(0, y) = 0.

6. ∀x1 ≤ y1, x2 ≤ y2 : f(x1 + x2, y1 + y2) =
y1

y1+y2
f(x1, y1) +

y2
y1+y2

f(x2, y2)

Figure 6.1: Six Assumptions of IT-Similarity.

features s possesses the following similiarity measure [6]:

IT-Sim(A,B) =
2 ·

∑
s∈A∩B log π(s)∑

s∈A log π(s) +
∑
s∈B log π(s)

(6.9)

6.2.2 Similarity Measures on the Space of Predictors

In the Hedge/Gibbs context, two information-theoretic similarity measures arise

intuitively from the exponential approximation of the posterior accuracy of the

predictors. Since the assessment of predictor accuracy is dependent, not only

on the value assigned to the instance or feature by the predictor, but also on the

actual relevance score of the instance, we may define both an extremal similarity

measure in which all samples are judged relevant and an expected measure with

instances weighted by expected relevance of samples.

To define a similarity measure for a predictor space consistent with the dis-

tance measure on the space of predictors implicitly defined by the Gibbs Distri-

bution, we associate neighborhood potentials Vc(ω) with features π(s), possibly

weighted by a constant factor (lnβ in the Hedge context). Since the conditional

probability of predictor ωA given target configuration ωB is defined by the ex-
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ponential influence function ψ(ωA|ωB), taking the log of the relationship simply

results in a function of the original feature distance, as we shall demonstrate.

Noting that for πω(s) ∈ [0, 1] with πω(s) defined as the expected label at s

as fixed by predictor ω, the magnitude of overlap of the joint probability space

πω(A,B)(s) = πωA
(s) ∩ πωB

(s) may be defined as follows:

πω(A,B)(s) = min(πωA
(s), πωA

(s) · πωB
(s))

= min(πωB
(s), πωB

(s) · πωA
(s))

= πωA
(s) · πωB

(s).

The information-theoretic similarity measure for the Gibbs distribution is given

by:

IT-SimGibbs(A,B) =
2 ·

∑
s∈A∩B log π(s)∑

s∈A log π(s) +
∑
s∈B log π(s)

(6.10)

=
2 · log(e

P
s∈S πωA

(s)·πωB
(s))

log(e
P

s∈S πωA
(s)2) + log(e

P
s∈S πωB

(s)2)
(6.11)

=
2 ·

∑
s∈S πωA

(s) · πωB
(s)∑

s∈S πωA
(s)2 +

∑
s∈S πωB

(s)2
(6.12)

Note that the expression (6.12) corresponds to the familiar correlation coefficient

for discrete events known as the dice coefficient [35].

The extremal measure is equivalent to IT-SimGibbs, but with π̄φ(s) defined

to reflect the set inclusion property:

π̄φ(s) =

 0 : s /∈ φ

1 : s ∈ φ
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Substituting into Equation 6.9, this yields a familiar form of set similarity:

IT-Simext(A,B) =
2 ·

∑
s∈S π̄A(s) · π̄B(s)∑

s∈S π̄A(s)2 +
∑
s∈S π̄B(s)2

=
2 |A ∩B|
|A|+ |B|

6.3 Decorrelation of Predictors

Similarity measures in high dimensional feature spaces have been exploited in

many practical settings to enable clustering and segmentation. Eigenvector

methods on the N×N distance matrix spanning the instances have proven par-

ticularly successful at extracting useful correlations in image processing and web

search [47, 71, 82, 99]. In the current context, we adopt an opposite viewpoint

and consider inter-predictor similarity to be a potential source of bias error in

the classification and system evaluation tasks. In this section, we apply the

information-theoretic similarity measure to the simpler task of debiasing the

initial distribution over predictors.

We may use the similarity measure IT-SimGibbs to decorrelate the initial dis-

tribution over predictors in a straightforward manner. A net similarity score for

a predictor proceeds in an intuitive manner from consideration of the Laplacian

[20, 74, 30] of the N × N similarity matrix (with N the number of systems)

implicitly established by the imposition of the distance measure on the space of

predictors. For a uniform initial distribution the net- similiarity is simply the

sum of similarity scores on the neighborhoods, less the identity:

n×n sim(A) =
∑
B∈S

IT-Sim(A,B)− IT-Sim(A,A) (6.13)

To debias a finite set of predictors, each predictor’s initial weight is multiplied
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by the inverse of its potential in the similarity space, so that:

wA = w0
A ·

1
1 + n×n sim(A)

(6.14)

6.3.1 Results

In experiments with the Rankhedge algorithm on TREC 8 data, the effect of

decorrelation with net-similarity scores averaged across queries proved to be

negligible for retrieval, system evaluation and metasearch, though it is possible

that decorrelation on a per query basis would yield greater effect. A primary

reason for the negligible difference in results is the fact that the Rankhedge

algorithm naturally addresses the biased regions by actively sampling biased

lists at rates approximately proportional to the amount of bias. The parallel

weight histories of Figure 6.2 demonstrate the rapid convergence of the biased

and unbiased weight distributions in response to relevance feedback. Figure

6.2 c) charts the average ratio of system weights (unbiased/biased) revealing

convergence within the first twenty samples. This rapid convergence results from

the combination of the exponential decay of Hedge update rule and the active

concentration of sampling resources on the biased regions of the distribution due

to the directed sampling method. Experiments with decorrelation of predictors

on a per-query basis is an item for future research.

We also examine the use of the net system similarity measure in the context

of the technique of “pseudoevaluation” [84] (system evaluation in the absence of

relevance judgements). As demonstrated in [11], “pseudoevaluation” techniques

rely on the assumption that agreement of systems on the quality of an instance

is indicative of the actual probability of relevance. While this assumption holds

true to a certain extent in the TREC context, it actually constitutes assign-

ment of predictive import to a potentially malicious property of the predictor

set. Correlation among poor predictors is, in fact, the worst case scenario which
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the Hedge algorithm was designed to address. The concluding Figures 6.3 and

6.4 clearly demonstrate the susceptibility of the “pseudoevalution” technique to

flaws in its underlying assumptions. The plots in the left hand column compare

the system rankings produced by “pseudoevaluation” with systems ranked in as-

cending order according to their net similarity scores. This method is effectively

a system ranking based on probabilistic relevance scores defined by Rankhedge-

0. It is comparable to the probabilistic sampling of [84] and produces similar

results. As in our earlier discussion (Section 2.1.1) we note the characteristic

tail associated with the highest ranked systems. This tail is particularly evident

in TRECs 7, 8, and 9 and results from the fact that the best systems produce

ranked lists which are significantly different than those of the generic predictors.

The plots in the right hand column of Figures 6.3 and 6.4 correspond to the

system evaluations produced by Rankhedge pools of size equivalent to Depth-1

pools for each TREC. Results for all TRECs demonstrate the effectiveness of

Rankhedge’s use of on-line feedback not only to tighten the overall distribution

of system rankings but also to rapidly correct the misclassification of the best

systems.
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Figure 6.2: Trec 8: Rapid converge of Rankhedge weight history (uniform initial
distribution) to corresponding history for initial debiased distribution. Figures
a) and b) demonstrate qualitative similarity of evolving histories. Figure c)
gives average ratio of system weights at sample depth.
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Figure 6.3: TRECs 3, 5, and 6: Column a) System ranking based on net system
similarity vs. actual TREC ranks. Column b) Rankhedge-m ranking (pool size
m equivalent to Depth-1) vs. actual TREC ranks.
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Figure 6.4: TRECs 7, 8, and 9: Column a) System ranking based on net system
similarity vs. actual TREC ranks. Column b) Rankhedge-m ranking (pool size
m equivalent to Depth-1) vs. actual TREC ranks.
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Chapter 7

Active Sampling

In previous chapters, we have focused primarily on manipulations of the weight

distribution over predictors via the Hedge algorithm, but to properly address the

subject of active learning— the technique of directed (non-uniform) selection of

samples to enhance learning rates— we must now fully define the concept of

the informational complexity of a sample or an equivalent notion of the log of

expected risk on the sample localities.

In Bayesian terms, the evolution of the distribution over predictors in Hedge

reflects the iterative introduction of constraints associated with the labelled sam-

ple set, and we may view the evolution of Hedge weights as providing an estimate

of the posterior accuracy of the individual predictors, given the constraints. The

goal of active learning, then, becomes to select samples for labelling in a man-

ner which optimizes convergence of the posterior distribution over predictors

to a target distribution reflecting the actual accuracy of the predictors, given

complete evidence.

In the following sections, we develop a probabilistic algorithm for selecting

samples to enhance learning rates as well as a complementary strategy for maxi-

mization of the expected accuracy of the label prediction on the selected sample.
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These strategies are based on a measure of the risk (expected loss) associated

with the field of predictions. Since we may choose to minimize instantaneous

error as well as maximize learning rates, we shall refer to the max/min strategy

as active sampling rather than active learning.

As suggested by our earlier discussion of the connections of the Hedge algo-

rithm to the dual Markov Random Field and Gibbs Distributions, we begin by

demonstrating that a measure of the expected risk of the field restricted to the

discrete sample set provides an estimate of the change of volume of the poste-

rior distribution over predictors in response to the sample constraint. We then

exploit this duality of expected risk and volume of constraints to define a pair

of complementary strategies which effectively split the entropy of the unlabelled

field into orthogonal components. By demonstrating that the entropy of the

functional partition defined by the strategies is equivalent to the entropy of the

uniformly sampled field, we establish the optimality of the probabilistic scheme.

7.1 Background

The question of optimal sample selection for learning has been pursued in diverse

practical and theoretical explorations by the computational learning field since

the early 90’s. Cohn, et al. examine statistically optimal methods for mixture

of gaussian models in [22], and Lewis and Gale present an interesting ad-hoc

method for training text classifiers based on uncertainty sampling in [58]. Sev-

eral implementations of committee based algorithms (described in detail below)

may be found in [4, 28, 62]. Active learning implementations in the context of

SVM’s are given in [78, 88].

In an early examination of the prospects of active learning, Eisenberg and

Rivest demonstrate a negative result in the PAC learning context. Counterex-

amples provided in [31] show that, for a natural set of concept classes which
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they refer to as “dense in themselves” directed queries of the sample set are

essentially useless. That is, the learner cannot significantly reduce the total

number of labelled samples required to learn a “dense in itself” concept class;

because, if the learner observes only a small number of examples, either actively

or passively, it cannot be sensitive to slight changes in both the target concept

and the underlying distribution. Thus, an adversary can alter the distribution

and the target in a way that will not alter the learner’s predicted hypothesis,

but which will increase the error of the hypothesis in a significant way.

7.1.1 The Query by Committee Algorithm

Fortunately, the active learning technique proves to be viable given some relax-

ation of the problem context. Freund and Seung, et al. [80, 38] demonstrate

that an active learning technique may improve learning performance, even of

the “dense in themselves” concept classes, if it is allowed access to unlabelled as

well as labelled examples. These papers introduce an ancestor of our probabilis-

tic active learning technique known as “Query by Committee” or QBC which

filters a stream of unlabelled samples, selecting samples for labelling which have

maximum disagreement as judged by a “committee” of hypotheses randomly

selected at each iteration from the surviving members of the concept-class. Ex-

amples of practical applications of the Query by Committee method, primarily

to the problem of text classification, may be found in [4, 28, 62].

A simple version of the QBC sample selection algorithm may be described

as follows:

1. Draw an unlabelled sample from the probability distribution of the sample

space.

2. Select two hypotheses at random according to the prior probability distri-

bution of the concept class— restricted to the set of currently consistent
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concepts.

3. Select the example for training if the two hypotheses disagree. Else reject

the sample and repeat.

The advantage which the QBC algorithm enjoys over the selection method

examined by Eisenberg and Rivest may be ascribed to the extra information

associated with the availability of predictions on the unlabelled examples. The

quantity of disagreement between randomly selected hypotheses provides a crude

estimate of the complexity of the field of predictions on sample localities, thus

providing an indirect measure of the constraint volume to be expected from an

unlabelled sample. Analysis of the QBC algorithm demonstrates that active

learning provides improved learning rates even when limited to two-member

committees.

Connections to our Hedge based sample selection algorithm are readily iden-

tifiable. With our predictors serving as the committee, we should attempt to

select a sample at each round which maximizes (or perhaps minimizes) the

amount of disagreement among the weighted predictions of the committee mem-

bers. Rather than filtering the input sample stream one sample at a time,

however, the probabilistic active sampling technique proposed in this Chapter

takes advantage of the availability of predictions on multiple instances and es-

tablishes a more general sampling solution, generating an optimal distribution

for probabilistic sampling of the space of unlabelled instances.

7.1.2 Semi-supervised Learning

Our probabilistic technique bases its sampling distribution on an estimate of

the risk at each sample locality in the unlabelled sample space. A particularly

elegant discussion of the utility of expected risk for active learning in a semi-

supervised learning context is given in [101], in which Zhu and Lafferty, et al.
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develop a method for active learning in the context of Gaussian kernels [53, 54].

While the method of determining the field on the sample set differs significantly

from the straightforward labelling of the field via the predictor bundle in the

Hedge case, the method for estimating risk, given the vector of field predic-

tions on the samples is equivalent to that in our current context. As in most

active learning methodologies, the sample selection process of the algorithm is

restricted to the greedy selection of samples, requiring an exhaustive search of

the unlabelled sample space to determine the expected reduction in risk on the

remaining unlabelled field, given the constraints associated with a particular

sample. We shall demonstrate that in the case where estimates of the risk on

the unlabelled instance space are available a viable alternative strategy is to

sample according to a distribution defined in proportion to the expected risk on

these remaining instances.

In contrast to the semi-supervised learning method of [101], which must

generate a new set of predictors at each round, the Hedge learning context

maintains a fixed set of predictors and modifies the distribution which weights

their contribution to predictions. Thus, constraint of the posterior function vol-

ume due to labelling of the selected instance serves as the mechanism driving the

Hedge update process. In the following, we shall exploit the natural convergence

properties of the Hedge method as well as the duality of the expected risk mea-

surement and the convergence of the constrained distribution over predictors to

avoid the need for an exhaustive search of the sample space.

7.2 Version Space and Risk

We begin with an examination of the relationship of risk, sample complexity

and convergence of the volume of surviving functions in the Bayesian context

as defined in an early presentation by Haussler, et al. [45]. The fundamental
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relationships of these quantities are defined in the lossless or error ε = 0 context

in which a predictor with zero error is assumed to exist in the hypothesis space.

While active learning is not directly addressed, an algorithm for maximization

of learning rates based on maximization of risk or sample complexity arises

naturally from the framework established in the paper. We shall demonstrate

that the Hedge algorithm may be seen as a generalization of the lossless Bayesian

on-line algorithm developed in the paper, and we shall, in turn, incorporate the

concepts of sample complexity and the posterior volume of surviving functions

or Version Space into our development of the active sampling method.

7.2.1 Risk

Ideally an active learning technique seeks to minimize the risk to the unlabelled

instances due to a particular classification method. Risk may be defined as the

estimated generalization error of the classifer, and in the case of finite sample

spaces may be computed exactly. In their examination of active learning in

the semi-supervised framework, Zhu and Lafferty, et al. [101] provide a concise

description of the risk function on the random field, given a Bayesian prediction

scheme. This provides an intuitive place to begin our discussion.

Though the active learning method of Zhu, et al. is tailored to the context

of Gaussian random fields, the estimated risk measure R̂(f), as presented in the

paper, is equally applicable to the Hedge context. Let F be a family of functions

defined on an instance space X. We may define the actual risk RBayes(f) of

a Bayes classifier in terms of the mean prediction or “field” on the unlabelled

portion of the sample set x1 · · ·xn with associated labels yi ∈ {0, 1} as follows:

RBayes(f) =
∑
u∈U

∑
ŷ∈{0,1}

∑
fu∈F

[sgn(fu) 6= ŷ]p∗(yu = ŷ|L)] (7.1)

(7.2)
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Here, the set of labelled instances is represented by L = x1 · · ·x`. The unlabelled

instances likewise correspond to U = x`+1 · · ·xn. As described in Chapter Five,

the Bayesian decision rule is denoted sgn(fu) and is defined as sgn(fu) = 1 for

fu > 0.5 and sgn(fu) = 0 for fu < 0.5, with sgn(fu) ∈ {0, 1} selected randomly

with equal probability for sgn(fu) = 0.5. The posterior distribution on the

labels— p∗(yu|L)— corresponds to the unknown true label distribution at node

u, given the labelled data. To compute the estimated risk we can approximate

the unknown distribution p∗(yu|L) using the mean of the predictions on xu:

p∗(yu = 1|L) ≈ f̄u (7.3)

so that the estimated risk R̂Bayes(f) may be written:

R̂Bayes(f) =
∑
u∈U

∑
ŷ∈{0,1}

[sgn(f̄u) 6= ŷ] · p∗(yu = ŷ|L)

=
∑
u∈U

(
[sgn(f̄u) 6= 0](1− f̄u) + [sgn(f̄u) 6= 1] · f̄u

)
=

∑
u∈U

min(f̄u, 1− f̄u) (7.4)

Likewise, we may develop an estimate for the risk of a Gibbs classifier, which

probabilistically assigns label ŷu ∈ {0, 1} in proportions defined by the mean

field f̄u on the sample. This results in an estimated risk:

R̂Gibbs(f) =
∑
u∈U

∑
ŷ∈{0,1}

(1− p∗(yu = ŷ|L)) · p∗(yu = ŷ|L)

=
∑
u∈U

f̄u(1− f̄u) + (1− f̄u)f̄u

=
∑
u∈U

2 · f̄u(1− f̄u) (7.5)

Exhaustive search of the unlabelled sample space for the instance whose in-

clusion in the labelled set results in minimum expected risk on the remaining
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unlabelled samples guarantees a maximum expected learning rate. However, in

the Hedge context, it is possible to exploit the natural convergence properties of

the algorithm to develop a more efficient probabilistic method for active selec-

tion. The Hedge learning process may be viewed as an exponential winnowing

of the volume of inconsistent functions from the space of possible labellings of

the instances, and the direct relationship of risk and constraint volumes associ-

ated with sample localities enables the development of an optimal probabilistic

sampling strategy in the Hedge context.

7.2.2 Sample Complexity

Sample complexity corresponds to the entropy of the field of predictions defined

on the individual samples, and it is naturally defined in terms of the expected

log volume of the posterior distribution on the predictor space conditioned by

the labelled sample constraints. The duality of sample complexity and the log

volume of the surviving function bundle, as developed by Haussler, et al. in

[45], may be exploited to develop an optimal on-line learning algorithm for the

lossless case in which a predictor with zero loss is guaranteed to exist.

In the following discussion, we first establish the definition of sample com-

plexity as described in [45] and its relationship to the expected error rates of

Bayesian and Gibbsian prediction algorithms. This leads to a definition of ex-

pected risk in terms of the volume of surviving functions or Version Space in

the lossless context of the Haussler paper, in which a function of error ε = 0

relative to the labelled sequence is always assumed to exist. By generalizing the

concept of the Version Space to allow for lossy situations in which the minimum

function error may be ε ≥ 0, a lossy definition of sample complexity and Version

Space may be applied in the context of the Hedge algorithm, and the appropri-

ate active sampling algorithms for maximization or minimization of risk proceed

naturally.
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7.3 Error Bounds for On-line Algorithms

The Bayesian on-line learning process may be viewed as a resource allocation

scheme which weights functions in a family of predictors in proportion to their

posterior probabilities, given the evidence of a sample vector x drawn from

sample space X. In this context, the Version Space corresponds to the poste-

rior volume of functions consistent with the evidence of x, and its associated

informational volume may be defined.

Let F be a family of functions defined on an instance space X. We shall

define P to be the prior probability distribution over F and Pm to be the mth

posterior distribution given the evidence vector x1, · · ·xm, which restricts P to

the mth Version Space Fm(f). Pm can be interpreted as the subjective prob-

ability distribution over various target concepts, given labels f(x1), . . . , f(xm)

on the first m instances. Given a possibly infinite sequence of instances x =

x1, . . . , xm, xm+1, . . ., the mth volume is defined as VPm(x, f), which is the prob-

ability volume of functions of F consistent with the first m samples. That is,

VPm(x, f) = P[Fm(x, f)], with

Fm(x, f) = {f̂ ∈ F : f̂(x1) = f(x1), . . . , f̂(xm) = f(xm)}.

Thus, the concept of a version space is defined in [45] in a lossless or exact

context as the proportion of the distribution P over the function space which is

exactly (ε = 0) consistent with the evidence vector f̂(x1, . . . , xm) = ŷ1, . . . , ŷm.

To illustrate the utility of the concept of function volume, the instantaneous
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information gain of the m+ 1st label may be derived as follows:

IPm+1(x, f) = Im+1(f) (7.6)

= − log Ef̂∈Pm
[f̂(xm+1 = f(xm+1)|f̂(xi) = f(xi), 1 ≤ i ≤ m]

(7.7)

= − log
Vm+1(f)
Vm(f)

(7.8)

= − logXm+1(f) (7.9)

where the m+ 1st volume ratio is given by:

XP
m+1(x, f) = Xm+1(f) = Vm+1(f)/Vm(f)

In addition, we may derive instantaneous expected losses for Bayes and Gibbs

algorithms.

As discussed in Chapter Five, the Bayes classifier is a thresholded majority

classifier. Therefore, since the volume Vm+1(f) of surviving functions corre-

sponds to those elements in the function space whose predictions were consis-

tent with the target function on instance xm, the accuracy of the Bayes classi-

fier may be defined in terms of the relationship of consecutive volumes Vm(f)

and Vm+1(f). A mistake in predicting f(xm+1) is made with probability 1 if

Vm+1(f) < 1
2Vm(f), with probability 1

2 if Vm+1(f) = 1
2Vm(f) and with proba-

bility 0 otherwise. Thus, the Bayes mistake probability on f(xm+1) for fixed x,

f and P is given by:

BayesPm+1(x, f) = Bayesm+1(f) = Θ
(
Xm+1(f)

)

where Θ
(
x
)

= 1 if x > 1
2 , Θ

(
0
)

= 1
2 , and Θ

(
x
)

= 0 otherwise.

For the Gibbs algorithm, the prediction f(xm+1) is accurate iff the randomly
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chosen hypothesis f̂ is in Fm+1(f). Since F is chosen randomly according to

Pm, and the probability of Fm+1(f) under Pm is exactly Vm+1(f)/Vm(f) =

Xm+1(f), the probability that f(xm+1) is predicted incorrectly is:

GibbsPm+1(x, f) = Gibbsm+1(f) = 1−Xm+1(f).

for fixed x, f and P.

7.3.1 Expected Risk and Uncertainty

The risks of the Bayes and Gibbs algorithms on an arbitrary unlabelled sample

correspond to the expected error of the predictive scheme when the true label

is drawn in accordance with the posterior probability over predictors. Equiva-

lence of the expected prediction and the volume of functions consistent with a

prediction allows us to develop an alternate definition of the instantaneous risk

of the Bayes and Gibbs algorithms in terms of the volume ratio.

As demonstrated in [45], the quantities of Bayes and Gibbs risk as well as

the entropy of the field on a sample may be generalized by defining the expec-

tations in terms of an arbitrary real-valued function of one argument. Haus-

sler, et al. demonstrate that for any real valued function G(p), the expectation

Ef∈P [G(Xm+1(f))] is equivalent to:

Ef∈P
[
G(Xm+1(f))

]
= Ef∈P

[
Xm+1(f)G(Xm+1(f))

+ (1−Xm+1(f))G(1−Xm+1(f))
]
(7.10)

We are interested in the three forms of G we have been considering, G(p) =

Θ
(

1
2 − p

)
for the Bayes predictor, G(p) = 1 − p for the Gibbs predictor, and

G(p) = − log p for the information gain. Substituting into Equation 7.10 we

derive representations for expected risk and uncertainty.
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The risk of the Bayesian predictor on sample xm+1 may be written:

R̂Bayes(xm+1) = Ef∈P
[
Θ

(1
2
−Xm+1(f)

)]
(7.11)

= Ef∈P
[
Xm+1(f)Θ

(1
2
−Xm+1(f)

)
(7.12)

+ (1−Xm+1(f))Θ
(1
2
−Xm+1(f)

)
] (7.13)

= Ef∈P [min(Xm+1(f), 1−Xm+1(f))]. (7.14)

The risk associated with the Gibbs predictor on xm+1 is:

R̂Gibbs(xm+1) = Ef∈P
[
1−Xm+1(f)

]
(7.15)

= Ef∈P
[
Xm+1(f) · (1−Xm+1(f)) (7.16)

+ (1−Xm+1(f)) · Xm+1(f)] (7.17)

= Ef∈P [2 · Xm+1(f) · (1−Xm+1(f))] (7.18)

And the expected information gain due to xm+1 is given by:

Ef∈P [Im+1(f)] = Ef∈P [− logXm+1(f)] (7.19)

= Ef∈P
[
Xm+1(f) log(Xm+1(f)) (7.20)

+ (1−Xm+1(f)) log(1−Xm+1(f))
]
(7.21)

= Ef∈P
[
Hbin(Xm+1(f))

]
. (7.22)

where Hbin is the familiar binary entropy function.

Symmetry of the terms inside the expectation relative to the set of binary

predictions allows us to move the expectation inside the brackets, replacing

Xm+1(f) with its expected value, f̄m+1 = Ef∈P [Xm+1(f)]. This yields an esti-

mated risk for Bayes and Gibbs algorithms consistent with the earlier derivations

137



of Equations 7.4 and 7.5:

R̂Bayes(xm+1) = min(f̄m+1, 1− f̄m+1), (7.23)

and

R̂Gibbs(xm+1) = 2 · f̄m+1 · (1− f̄m+1). (7.24)

Likewise, we may define our expected uncertainty in terms of f̄ :

Ef∈P [Im+1(f)] = −f̄m+1 log(f̄m+1)− (1− f̄m+1) log(1− f̄m+1)(7.25)

= Hbin(f̄m+1) (7.26)

Finally, it is easy to verify that, for any p ∈ [0, 1], the following inequality holds:

min(p, 1− p) ≤ 2p(1− p) ≤ 1
2
Hbin(p),

so that:

R̂Bayes(xm+1) ≤ R̂Gibbs(xm+1) ≤
1
2
Ef∈P

[
Hbin(Xm+1(f))

]
=

1
2
Ef∈P

[
Im+1(f)

]
Thus, the expected information gain (or entropy reduction) associated with

selection of the new instance bounds both Bayes and Gibbs risks.

7.3.2 Cumulative Upper Bounds

We may also establish cumulative bounds on the number of mistakes incurred

by the on-line strategies. While the expressions for the cumulative mistakes by

the Bayes and Gibbs algorithms are difficult to analyze due to lack of a closed

form expression, we may develop a bound based on the cumulative information
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gain in m trials. Invoking additivity of information and recalling that V0(f) = 1:

Ef∈P
[ m∑
i=1

Ii(f)
]

= Ef∈P
[ m∑
i=1

− logXi(f)
]

= Ef∈P [
m∑
i=1

(
logVi−1(f)− (logVi(f)

)
]

= Ef∈P
[
− logVm(f)

]
(7.27)

Again, following the Haussler argument, if we consider the weighting scheme

Pm(x, f) over the function space F at trial m to represent a probabilistic la-

belling scheme with function values fm assigned to each of two labels {0, 1} in

proportion to the weight pmf , then the first m instances x1, . . . , xm define a par-

tition of the function space into equivalence classes on the space of functional

configurations on xm:
∏F
m(x) =

∏F
m = {Fm(x, f) : f ∈ F}, with the entropy

of the partition naturally defined in terms of prior P as:

HP
bin(xm) = Ef∈P

[
− logVm(f)

]
= −

∑
π∈

QF
m

P[π] logP[π] (7.28)

Thus, the expected cumulative information gain from the labels xm = x1, . . . , xm

is simply the entropy of partition
∏F
m under P.

This analysis leads to straightforward bounds on the expected cumulative

loss of the Gibbs and Bayes algorithms:

Ef∈P [
m∑
i=1

Bayesi(f)] ≤ Ef∈P [
m∑
i=1

Gibbsi(f)] (7.29)

≤ 1
2
Ef∈P [− log Vm(f)] (7.30)

=
1
2
HP

bin(xm) (7.31)
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7.3.3 Hedge and the Version Space

Next, we would like to examine the more general context in which the maximum

error rate of the best predictor may be greater than zero. We shall refer to this

as the lossy context. A cursory examination of the Hedge update rule wm+1
i =

wmi · β`
m
i demonstrates that it may be viewed as a generalization of the Bayes

or Gibbs on-line learning algorithms (depending on our choice of thresholded

or probabilistic classification method) to the lossy context. Conversely, the

lossless on-line algorithms of the previous section may be viewed as instances of

the Hedge algorithm with β restricted to 0 to maximally punish functions for

incorrect predictions.

The Hedge algorithm may be readily incorporated into the sample complex-

ity framework of [45] by establishing a bound on the instantaneous loss of Hedge

in terms of the volume of the distribution over predictors:

Xm+1 =
Vm+1(f)
Vm(f)

=
∑N
i=1 w

m+1
i∑N

i=1 w
m
i

.

Recalling the following inequality from our Hedge discussion:

αr ≤ 1− (1− α)r (7.32)

with α ≥ 0 and r ∈ [0, 1], we may interpret the distribution of weights over

the predictor space as an estimate of the posterior accuracy of the individual

predictors and derive an upper bound for the instantaneous loss due to evidence

of item xm in a manner consistent with the lossless analysis of the previous

sections. For an arbitrary β and with total predictors N and distribution over

predictors at round m, pm, we may establish the following relationship between

the Hedge loss `mi assessed to predictor i at round m and the function volume
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at m and m+ 1:

N∑
i=1

wm+1
i =

N∑
i=1

wmi β
`mi ≤

N∑
i=1

wmi (1−(1−β)`mi ) =
( N∑
i=1

wmi
)
(1−(1−β)pm ·`m)

(7.33)

with pm = wm/
∑N
i=1 w

m
i .

This leads to a description of the worst case Hedge loss or risk for arbitrary

β in terms of the volume ratio:

LmHedgeβ
(f) =

N∑
i=1

pm · `m (7.34)

≤
∑N
i=1 w

m
i −

∑N
i=1 w

m+1
i

(1− β) ·
∑N
i=1 w

m
i

(7.35)

=
Vm(f)− Vm+1(f)
(1− β) · Vm(f)

(7.36)

=
1−Xm+1(f)

1− β
(7.37)

=
GibbsPm+1(x, f)

1− β
(7.38)

We may also establish bounds on expected risk of the Hedge algorithm for

arbitrary β as in the earlier lossless examples, but now with expectations taken

over the non-uniform distribution defined by the Hedge weights on the predictor

set, rather than, as in the lossless case, from the uniformly weighted volume of

surviving functions:

R̂Hedgeβ
(xm) ≤ Ef∼Pm

[
1−Xm+1(f)

1− β
] ≤ Ef∼Pm

[− logXm+1(f)
1− β

] (7.39)

or in terms of the expected field f̄m on sample xm:

R̂Hedgeβ
(xm) ≤ R̂Gibbs(xm)

1− β
=

2f̄m(1− f̄m)
1− β

≤ 1
2
Hbin(f̄m)(

1− β
) (7.40)
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Finally, for cumulative expected loss, we have:

LmHedgeβ
(f) ≤ 1

2
Ef∼P0 [−

log Vm+1(f)
1− β

] =
1
2
HP0

bin(xm+1)(
1− β

) (7.41)

corresponding to the expectation taken over the prior distribution over predic-

tors of our usual worst case loss bound for Hedge, with Vm+1(f) =
∑
i=1..N w

m+1
i .

7.4 Active Sampling

The duality of the expected risk on an unlabelled sample and the expected

diminution of the posterior distribution due to labelling of the sample may be

exploited to define a probabilistic method for active sample selection. When

the goal is to enhance learning, the technique seeks to minimize the estimated

risk on the unlabelled sample set by employing a probabilistic technique to

maximize expected risk of the selected sample. Equivalently, the technique

attempts to maximize the rate of convergence of the posterior volume to the

optimal distribution based on labelling of all constraints.

In most cases the goal of an active sampling method is to select a sample

sequence which has an enhanced learning rate relative to a uniform sampling

of the unlabelled instances. However, we shall demonstrate that a sampling

strategy seeking to maximize the probability of accurately labelling the selected

sample (i.e. selecting the sample with minimum risk) is equally viable, and

that the two strategies naturally split the entropy of the unlabelled sample field

into orthogonal components. These orthogonal components correspond to a

max/min strategy for sampling the space and are properly addressed within a

single unified information-theoretic framework.

We shall develop the technique of active sampling in the lossless context

using the terms for expected risk and entropy defined in the previous sections.

The sampling techniques apply without modification to the lossy situation, since
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the upper bounds of the Gibbs and Hedge techniques differ only by a constant

factor.

7.4.1 A Probabilistic Method

In order to maximize the expected convergence rate of the posterior volume per

sample or alternatively to minimize the immediate expected risk on the selected

sample, we shall define a probabilistic sampling method based on the propor-

tional resource allocation methods examined in Chapter Five. Our method

may be contrasted with typical greedy methods of sample selection such as in

[75, 101]. In these methods, a set of samples is drawn from the sample space

and an exhaustive examination of the expected effect of labelling of each sam-

ple on the posterior risk over remaining samples is conducted. The algorithm

then greedily selects the sample whose label is expected to result in the greatest

dimunition in risk over the remaining samples. This method tends to avoid some

of the worst case behavior of other active learning techniques (such as the sus-

ceptibility to risky but irrelevant samples), by directly measuring the expected

risk on the remaining sample field. Our probabilistic algorithm is designed to

limit exposure to worst case behavior without an exhaustive examination of the

risk of the sample field, by applying hedge principles on the sample axis.

As in our earlier discussion, we denote the labelled and unlabelled sample sets

as L = {x1, . . . , x`} and U = {x`+1, . . . , xN}, respectively. The probabilistic

method for active learning draws samples from a distribution over the unlabelled

sample set based on the expected risk under a Gibbsian prediction strategy, so

that:

Pr(xm+1 = xu ∈ U) = R̂Gibbs(xu)/Z− (7.42)

with Z− =
∑
xu∈U R̂Gibbs(xu) =

∑
xu∈U 2f̄u(1− f̄u)

Alternatively, we might sample at a rate intended to maximize the instan-
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taneous expected return or probability of success of the labelled sample:

Pr(xm+1 = xu ∈ U) = (1− R̂Gibbs(xu))/Z+ (7.43)

with Z+ =
∑
xu∈U(1− R̂Gibbs(xu)) =

∑
xu∈U f̄2

u + (1− f̄u)2.

As noted in Equation 7.15, these sampling distributions have an equiva-

lent interpretation in terms of the expected volume of the respective posterior

function bundles. With X±
u corresponding to the volume ratios of the function

bundles through u ∈ U which are respectively consistent or inconsistent with the

predictions of the bundle, and P` the distribution over predictors after labelling

the set of instances x1..`, the expected volume ratios associated with predicted

risk and gain on sample u are, by definition: Ef∼P`
[X−
u (f)] = R̂Gibbs(xu) and

Ef∼P`
[X+
u (f)] = (1− R̂Gibbs(xu)) .

The Joint Predictor/Label Distribution

The probabilistic sampling strategy allows us to allocate sampling resources op-

timally on both the predictor and the sample axis. Introduction of the extra

degree of freedom (associated with resource allocation on the sample axis) al-

lows us to optimally partition the posterior function bundle on the unlabelled

sample set into orthogonal components— with one of these components corre-

sponding to the portion of the predictor space consistent with the mean field

assignment on the samples and the complementary component corresponding

to the expected error bundle given the mean field assignment.

We shall examine the sampling scheme on the unlabelled samples in terms

of the joint distribution of the expected labels (the expected field) and the

probabilistic predictions of the individual hypotheses. In the Hedge context,

functions are restricted to a finite function bundle F ∈ F . We introduce the

random variables h̄x = h(x), corresponding to the weights attributed to labels
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{0, 1} by unweighted hypothesis h ∈ F, and f̄x = Ef∼P`

[
f(x)

]
, corresponding

to the respective weights of labels {0, 1} in the field defined by f ∈ F at x. As in

previous sections, P` refers to the posterior distribution over predictors f ∈ F

after labelling of the `th (last in the sequence) sample in the labelled set L.

Let K be a matrix of dimension |F| × |U| × 2× 2 7→ [0, 1], such that K(h,u)

references the joint distribution of the unweighted prediction h̄u and expected

field f̄u on xu ∈ U:

K(h,u) = Ef∼P`

[
h(xu) = {0, 1}, f(xu) = {0, 1}

]
(7.44)

= h̄u × f̄u (7.45)

An example distribution, shown in Table 7.1, reflects a hypothetical positive

prediction h̄u = 1 with probability 1/4 and a mean field prediction f̄u = 1 with

probability 5/8.

Table 7.1: Joint distribution of hypotheses h̄x = 1/4 and field f̄x = 5/8

h̄, f̄ 0 1
0 9/32 15/32
1 3/32 5/32

A second matrix M will serve as the actual resource allocation matrix and

corresponds to the joint probability matrix K weighted by the posterior distribu-

tion over hypotheses. With w` the posterior distribution over hypotheses after

constraint by instance `, the entries of M are given by M(u,h) = w`
hK(u,h).

We shall refer to the sum of entries of the subspaces of the matrix M or K

corresponding to the case in which the expected label is consistent with the hy-

pothesis h (the sum of diagonals of a cell M(u,h)) as M+ and K+, respectively.

Likewise the case in which the expected label is inconsistent with h (the sum of

skew terms) is denoted M− and K−.
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In matrix form, the expected volume ratio for an arbitrary sample column

u after labelling of the `th instance is given by:

M+
u = Ef∼P` [X+

u (f)] = Eh∼P`,f∼P`

[
h(xu) = f(xu)

]
And an equivalent formulation for the volume ratio associated with the incon-

sistent samples is:

M−
u = Ef∼P` [X−

u (f)] = Eh∼P`,f∼P`

[
h(xu) 6= f(xu)

]
.

We wish to define a pair of weighting strategies on the unlabelled sample set

to maximize either the expected gain or risk of the selected sample. Consistent

with the discussions of Chapter Five concerning optimality of proportional gam-

bling strategies, we specify a probabilistic scheme which samples the unlabelled

instances at a rate proportional to the expected gain or risk of the samples. The

respective sampling vectors m±
u are given by:

m±
u =

∑
h∈F M±

(h,u)

Z± =
∑
u∈U,h∈F M±

(h,u)

Optimal Sampling on the Predictor Axis

The probabilistic sampling scheme defined in two dimensions apportions the

sampling space to individual predictions h(xu) at a rate proportional to the

joint posterior probability of gain or risk associated with the prediction on the

sample, and arguments for optimality of proportional resource allocation pre-

sented in Chapter Five apply without modification to either dimension of the

matrix M. That is, if we choose to aggregate the sampling resources along

the hypothesis dimension rather than the sample dimension, we find that the

sampling method allocates resources to an arbitrary h in proportion to the ex-

pectation that the hypothesis is consistent with either the target (f̂) or error
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(ferr = 1− f̂), depending on our choice of sampling strategy. The probabilistic

strategy is, therefore, an optimal sampling scheme in terms of both the sample

and predictor axes.

For either the strategy maximizing risk or reward, we make the assumption

that the distribution over hypotheses w` is a current best approximation of

the true posterior distribution: P̃ (h|L) ≈ w`h. This leads to an expression,

consistent with Bayes rule, for the expected posterior probability of hypothesis

ĥ given labelled set L and an arbitrary unlabelled sample u:

P̃ (ĥ|L + u) ≈
P̃ (ĥ|L) ·K±

(ĥ,u)∑
h∈F P̃ (h|L) ·K±

(h,u)

(7.46)

Summing over the unlabelled samples, the quantity of the resource allocation

vector associated with hypothesis h corresponds to:

m±
h ∝ Eu∈U[P̃ (h|L + u)] (7.47)

Entropy of the Field on Unlabelled Samples

As in the earlier sections on proportional gambling, the growth of resources (here

the volume of positive or negative constraints) exhibits an expected log growth

rate which is best defined in terms of the entropy of the vector of probabilities

on the unlabelled samples. Assuming, for the moment, the prior distribution

over predictors is correct, so that the sampling vector on U (m±) is directly

proportional to the actual probabilities, p+ or 1− p+ = p−, we may concisely

describe the expected log success rate W of the sampling scheme for maximizing

gain. Since the active sampling routine will be drawing the probability mass

equivalent of one sample from the total probability mass over the unlabeled

samples (Z± =
∑
u∈U p±u ) with expected payoff p±u = Z±m±

u , the expected log
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success rate is given by:

WU(m+,p+) = (Z+)−1
∑
u∈U

p+
u log

(
Z+m+

u

)
(7.48)

= (Z+)−1
∑
u∈U

p+
u log p+

u (7.49)

Likewise, the success of the sampling scheme to maximize risk corresponds to:

WU(m−,p−) = (Z−)−1
∑
u∈U

p−u log
(
Z−m−

u

)
(7.50)

= (Z−)−1
∑
u∈U

(1− p+
u ) log(1− p+

u ) (7.51)

Examining the collective sampling rates of a combined max/min strategy,

we see that a mixture of strategies preserving the proportion of expected return

for each strategy(SZ± ∝ sZ±) exactly reproduces the binary entropy of the

unlabelled sample set:

∑
u∈U

∑
{m,p}±

WU(mu,pu) ≈ SZ+Z +−1
∑
u∈U

(
p+
u log p+

u

)
+

SZ−(Z−)−1
∑
u∈U

(1− p+
u ) log(1− p+

u )(7.52)

= s
∑
u∈U

((
p+
u log p+

u + (1− p+
u ) log(1− p+

u )
)

(7.53)

= s
∑
u∈U

∑
p∈{p±}

H(pu) (7.54)

= s
∑
u∈U

1
2

∑
pu∈{p±u }

H(pu) (7.55)

This gives a maximum expected log growth rate on the individual samples of

W(m±
u ,p

±
u ) = −Hbin(p±u ). Thus, the combination of risk maximization and

minimization strategies may be seen as an optimal partitioning of the probability

space with maximal expected growth properties.
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The loss to our strategies due to incorrect prior distributions over predictors

may also be calculated in the usual way, with log gain of the sampling scheme

defined in the general case:

W(m±,p±) = −H(p±)−D(p±||Z±m±)

with m± being the sample vectors defined according to the strategies’ expecta-

tions of gain or error volumes and p± the correct vector.

Note that the algorithm fails to make gains only in the extreme case of

m±⊥p±, a situation we refer to as the “Bush corollary” in which minimal un-

derstanding of the priors leads to maximal confidence in the quality of the pre-

dictions, resulting in all sampling resources being concentrated in null locations.

Fortunately, in the theoretical setting, learning occurs in this case.

7.4.2 Controlling Sampling

By effectively splitting the function volume on the unlabelled sample set into or-

thogonal components corresponding to the expected risk and gain, this max/min

strategy provides an intuitive informational framework for examining the active

sampling component of a semi-supervised strategy. Orthogonality of the risk

and gain strategies guarantees that maximization of agreement of predictor and

label on the selected sample results in maximization of expected risk on the

remaining field. Likewise, minimization of agreement of the label with the pre-

diction leads to minimization of expected risk on the remaining field. Methods

for more refined control of the active sampling method such as informed alterna-

tion of strategies through measurement of informational quantities is a matter

for further study.

Due to the penalties associated with delay of discovery of relevant docu-

ments in the Rankhedge setting and the monotonically decreasing probability
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of relevance at rank, the probabilistic method is not naturally applicable in the

current context. However, the informational approach presented here should

prove insightful in other contexts, and we note that the complementary sam-

pling strategies bear strong resemblance to other familiar max/min strategies

such as the “exploration” and “exploitation” paradigm of reinforcement learn-

ing.

In the final section, we present a simple application of the probabilistic

sampling method in a familiar “exploration” and “exploitation” context as a

demonstration of the method’s effectiveness in hedging against the pitfalls as-

sociated with a naive greedy selection strategy. The data set in this example is

quite simple and designed to illustrate a single mode of behavior, nevertheless

an interesting transition naturally occurs between the early “exploration” phase

in which probabilistic sampling ranges over a broad sampling distribution and a

later “exploitation” phase where the distribution has focused on the selections

of the single best predictor.

7.5 A Search Problem

Our Rankhedge algorithm relies on the assumption that relevance is a mono-

tonically decreasing function of rank. This severely restricts the potential for

adversarial placement of samples to thwart the naive greedy selection algorithm

employed in our methodology. However, in many other contexts, the greedy

sampling method is easily led astray by fairly straight forward strategies de-

signed to divert attention of the sampling method from relevant regions. In the

absence of exhaustive search to find the sample whose labelling will maximally

diminish the expected risk or maximally increase the expected reward as mea-

sured over the remaining sample field, the probabilistic sampling method may

provide a hedge against malicous risk or reward distributions on the unlabelled
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instances. Correlations among samples which influence the potential payoff of

the sampling algorithm and which are ignored by a naive greedy strategy (se-

lecting a sample with maximum instantaneous risk or reward) are naturally

captured by the probabilistic method. Thus, the probabilistic method serves as

an intermediate strategy between the extremes of naive greedy selection (max-

imizing instantaneous reward/risk) and optimal greedy selection (maximizing

reward or minimizing risk via exhaustive search).

In Figure 7.1, we provide the results of an application of the probabilistic

technique to a fairly common situation in which an adversary has placed a

number of decoys in the sample field to obscure a correlated region of samples

with high potential relevance. The test was defined in a straightforward manner,

with F = 100 predictors providing binary classifications for T = 1000 instances.

Relevance is likewise binary, resulting in a test space of size: |F = 100| × |T =

1000| × {0, 1} 7→ {0, 1}.

The predictors’ classifications of the sample space are produced as follows.

For 90% of the instance space, each predictor produces an expected rate of

positive classifications (Fi = 1) of 40%. These positive predictions are uniformly

distributed throughout this portion of the space. A sole predictor Fbest is defined

to have an accuracy of 80% on its positive classifications as well as a 13% false

negative rate.

The remaining 10% of instances serve as a decoy set. Decoys induce an

expected 70% rate of positive classification uniformly across predictors including

Fbest. The relevance of decoy samples is zero. The value of all constants used

in the test were arbitrarily selected and may vary over a very wide range with

qualitatively similar results.

We employ the Hedge algorithm with two different active sampling strategies

to attempt to identify relevant samples in the instance space. Since our goal

is simply to compare sampling strategies, an optimal value for β is established
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via examination of the exact loss of the best predictor. Both sampling strate-

gies select samples according to expected relevance as defined by the w.l.c. of

classifications by the predictors.

The results of our test (Fig. 7.1) clearly demonstrate the potential pitfalls

associated with a naive greedy strategy. In plots 7.1a), we see that, in the

probabilistic strategy, the precision or average number of relevant samples in

the selected pool rapidly approaches the limiting 80% defined by the accuracy

of the positive classifications of the best predictor. The naive greedy algorithm,

on the other hand, clearly shows the risk associated with pursuit of the decoy

samples— 70% of which must be exhausted before relevant samples begin to be

discovered in significant numbers.

Plots 7.1b) likewise demonstrate the probabilistic sampling method’s supe-

rior ability to focus on the best predictor. As expected, the weight history of the

best predictor exhibits a fairly continuous and rapid convergence of the Hedge

distribution to the eventual target distribution in which all weight is focused

on the best predictor. As expected, the weight history for the greedy method

exhibits sporadic jumps toward the target distribution only after the supply of

decoys dwindles.

Plots 7.1c) are provided for reference. They display the w.l.c. of Hedge pre-

dictions for a sample at the moment of selection. In plots for both methods, we

see that, as the Hedge distribution focuses on the best predictor, the sampling

distribution naturally focuses on that predictors’ positive classifications. This

will remain the steady state until the supply of positive classifications is ex-

hausted. In the case of the probabilistic algorithm, the transition from broad to

focused sampling distributions proceeds in a particularly natural manner, fur-

ther supporting our intuition that the probabilistic sampling method offers the

possibility of naturally integrating the ”exploration” and “exploitation” phases

of learning methods in diverse contexts in a consistent Bayesian framework.
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Figure 7.1: Probabilistic vs. Greedy Sampling Strategy: a) precision of selected
sample pool, b) weight history of best predictor, and c) w.l.c. of predictions on
samples.
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Chapter 8

Conclusion

This thesis has presented a new algorithm, Rankhedge for the simultaneous so-

lution of metasearch, pooling, and system evaluation in the IR context. The

algorithm is the first to integrate these three tasks, previously addressed individ-

ually in the IR literature, into a singe unified model. In addition, by recasting

the three problems in the context of the Hedge algorithm for on-line learning,

the solution achieves results in all three fundamental tasks with proveable worst

case bounds under certain measures of performance.

An early incarnation of the Rankhedge algorithm, Rankhedge(Log Prior),

with a loss function designed to reflect an individual sample’s contribution to

the familiar Average Precision measure of system accuracy produced excel-

lent results relative to the standard Depth-n method for TREC pooling. The

Rankhedge(Log Prior) method also proved superior to the priority queue pool-

ing method of Cormack et al. in the critical early stages of the retrieval process,

but tended to falter in the latter stages, demonstrating a tendency to overfocus

on the most accurate predictors.

This tendency to overfocus proved to be a natural result of the logarithmic

nature of the loss function, with losses approximately proportional to the log
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prior of relevance at rank. The second incarnation of Rankhedge, employing a

loss function based on an accurate prior probability of relevance, was introduced

to corrected this inefficiency and performance of the second Rankhedge algo-

rithm in all three tasks proved to be equivalent and in most cases significantly

superior to that of previous algorithms including the priority queue method. In

addition, the exact form of the loss function based on inverse rank reflects the

expansion of the set of instances spanned by rank and is therefore a property

of the support of the rank function. Thus, rather than being an arbitrary rel-

evance curve fit specifically to the TREC data, the form of prior relevance at

rank employed by Rankhedge has potential applicability to the general context

of ranked lists.

Practical success of the Rankhedge algorithm proceeds from the sound the-

oretical underpinnings of the Hedge method. The thesis demonstrated, via

information-theoretic examination of the exponential update rule of the Rank-

hedge algorithm that the Hedge technique for maintaining the weight distribu-

tion over predictors is, in fact, a maximum entropy method (with minimum KL

distance between successive distributions given the constraints of the labelled

instances). Further, as a classification method, Rankhedge was shown to be

closely related to other methods for Bayesian on-line prediction, with the dis-

tribution over predictors reflecting the best estimate of the relative posterior

probabilities of predictor accuracy. In conjunction with the exponential up-

date rule, the Hedge classification method may be interpreted as an adaptation

of Bayes optimal on-line classification methods for the lossless situation (error

ε = 0) to the lossy context in which the best predictor has an error rate greater

than zero.

Continuing with the information-theoretic analysis of the Hedge environ-

ment, two different extensions of the Hedge related methods were also defined.

In the first, information-theoretic similarity measures on the space of predic-
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tors were developed to provide a method for decorrelating the initial Hedge

weight distribution. The information-theoretic similarity measure on a predic-

tor pair was demonstrated to correspond roughly to the sum of log accuracies of

each predictor with its counterpart defined to be the “target.” A probabilistic

measure incorporating the prior relevance was shown to correspond to the dice

coefficient on the sets of instances. An extremal measure, in which each ranked

instance was assigned an expected relevance of one, corresponded, likewise, to

a straightforward expression of set similarity.

The probabilistic similarity measure was applied to decorrelate the initial dis-

tribution on the predictor set with little effect on the evolution of the Rankhedge

learning process due to the rapidity with which the exponential update method

of Rankhedge corrects for the bias error. Comparison of the weight histories pro-

ceeding from uniform and decorrelated initial distributions demonstrated rapid

converge due to the joint effect of the exponential update rule and the active

learning mechanism of Rankhedge. The availability of a similarity measure on

the predictor space has implications beyond the immediate implementation of

Rankhedge, however, and these will be discussed in the next section.

Finally, a second extension of the method of Rankhedge was suggested by

the optimality of proportional resource allocation. An alternative to the greedy

active learning method proceeds naturally from the original gambling scenario

by allowing sampling resources to be allocated probabilistically on the sample

axis. By extending the proportional resource allocation scheme to a second

dimension, the active sampling method may allocate resources at rates which

reflect the expected posterior distribution over hypotheses as measured over the

remaining unlabelled samples. As a generic method for sample selection with

optimal expected retrieval rates, the probabilistic technique has the potential

for application to a broad variety of contexts.
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8.1 Future Work

Several questions remain regarding the application of Rankhedge to the TREC

conference data. As demonstrated in Figure 5.11, substantial variability in pre-

cision exists when the conference data is examined on a query by query basis,

and the possibility of manipulating the loss function to reflect this per-query

variability is an open question. The applicability of the prior relevance as-

sumptions to metasearch and system evaluation contexts beyond the controlled

environment of the TREC conference is also a matter for further exploration.

In addition, substantially more differentiation exists in quantities of predic-

tor bias on a per-query basis than in the average values used in our test of the

decorrelation technique. It is possible that a concentration on the bias char-

acteristics of individual queries may yield greater rewards for the decorrelation

method.

In the broader range of applications beyond the TREC conference, the def-

inition of a similarity measure on the predictor space opens the possibility of

adding a layer of contextual control to the retrieval process. Search engines may

vary greatly in accuracy, depending on the context of the queries. For example a

medical query will likely be handled in a significantly different manner by search

engines with domain specific algorithms or knowledge than by the more generic

engines examined in the TREC retrieval tracks. A similiarity measure on the

space of predictors provides an opportunity for clustering and segmentation of

the predictor space and suggests the possibility of contextualized confidence

weighting of predictors depending on their proximity in predictor space to a set

of reference queries.

The probabilistic active sampling method also holds the promise of applica-

bility to a range of applications beyond the limits of the TREC conference. The

probabilistic method was developed with a distributed context in mind, and it

has potential application to problems of functional surface reconstruction via
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manipulation of sampling rates by hierarchically coordinated agents. Problems

defined via a Markov or Gaussian random field [100, 101] on an n× n distance

matrix connecting the discrete elements of the sample space are particularly

suited to this method of sampling, as are the distributed problem definitions

in the spatial aggregation framework [67, 68]. As noted in Chapter Seven, the

paradigm of exploration and exploitation modes defined in the reinforcement

learning context also bears strong resemblance to the orthogonal partitioning of

risk and relevance sampling in our probabilistic method.

8.2 Beyond Traditional Metasearch

A central theme of this thesis has been the theoretical situation of the three

problems from IR— metasearch, system evaluation and pooling— within the

generic context of computational learning theory. By establishing connections

to various incarnations of information-theoretically grounded resource alloca-

tion and prediction methods— particularly the Hedge algorithm and on-line

Bayesian prediction— these three problems from IR serve to illuminate the

broader applicability of the information-theoretic methods to the development

and analysis of learning and search techniques in a broad range of contexts.

When viewed through the unifying lense of optimal resource allocation, the

techniques described in the thesis suggest a natural method for generalization

of the search and retrieval process along multiple dimensions. Duality of the

proportional allocation model defined on the predictor and sample axes suggests

a straightforward generalization of the methods to the distributed retrieval sit-

uation in which context specific behavior— such as access of independent data

sets by the retrieval systems— indicates the need for context sensitive segmenta-

tion and control in the predictor space. Generalization of the problem definition

along the temporal dimension leads to possible applications such as filtering—
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the sampling and prediction of and adaptation to a (possibly non-stationary)

stream of instances. Here again, application of the techniques to the filtering

context should proceed naturally from the resource allocation framework by in-

troducing a new (temporal) degree of freedom. Finally, the close relationship of

the Hedge algorithm to the MRF/Gibbs informational structures from statisti-

cal physics indicates that the information-theoretic techniques of the thesis have

applicability to myriad physical situations beyond the context of IR. Since it is,

at its foundation, a maximal entropy method, the optimal resource allocation

and sampling paradigm may potentially serve not only as a basis for develop-

ing efficient algorithms for these contexts but also as an internal organizational

principle of the physical systems themselves.
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