49 research outputs found

    Arterial pulse wave modeling and analysis for vascular-age studies: a review from VascAgeNet

    Get PDF
    Aging; Arteriosclerosis; HemodynamicsEnvelliment; Arteriosclerosi; HemodinàmicaEnvejecimiento; Arteriosclerosis; HemodinámicaArterial pulse waves (PWs) such as blood pressure and photoplethysmogram (PPG) signals contain a wealth of information on the cardiovascular (CV) system that can be exploited to assess vascular age and identify individuals at elevated CV risk. We review the possibilities, limitations, complementarity, and differences of reduced-order, biophysical models of arterial PW propagation, as well as theoretical and empirical methods for analyzing PW signals and extracting clinically relevant information for vascular age assessment. We provide detailed mathematical derivations of these models and theoretical methods, showing how they are related to each other. Finally, we outline directions for future research to realize the potential of modeling and analysis of PW signals for accurate assessment of vascular age in both the clinic and in daily life.This article is based upon work from COST Action “Network for Research in Vascular Ageing” (VascAgeNet, CA18216), supported by COST (European Cooperation in Science and Technology, www.cost.eu). This work was supported by British Heart Foundation Grants PG/15/104/31913 (to J.A. and P.H.C.), FS/20/20/34626 (to P.H.C.), and AA/18/6/34223, PG/17/90/33415, SPG 2822621, and SP/F/21/150020 (to A.D.H.); Kaunas University of Technology Grant INP2022/16 (to B.P.); European Research Executive Agency, Marie-Sklodowska Curie Actions Individual Fellowship Grant 101038096 (to S.P.); Istinye University, BAP Project Grant 2019B1 (to S.P.); “la Caixa” Foundation Grant LCF/BQ/PR22/11920008 (to A.G.); and National Institute for Health and Care Research Grant AI AWARD02499 and EU Horizon 2020 Grant H2020 848109 (to A.D.H.)

    Arterial pulse wave modelling and analysis for vascular age studies: a review from VascAgeNet

    Get PDF
    Arterial pulse waves (PWs) such as blood pressure and photoplethysmogram (PPG) signals contain a wealth of information on the cardiovascular (CV) system that can be exploited to assess vascular age and identify individuals at elevated CV risk. We review the possibilities, limitations, complementarity, and differences of reduced-order, biophysical models of arterial PW propagation, as well as theoretical and empirical methods for analyzing PW signals and extracting clinically relevant information for vascular age assessment. We provide detailed mathematical derivations of these models and theoretical methods, showing how they are related to each other. Finally, we outline directions for future research to realize the potential of modeling and analysis of PW signals for accurate assessment of vascular age in both the clinic and in daily life

    Novel Polydimethylsiloxane (PDMS) Pulsatile Vascular Tissue Phantoms for the In-Vitro Investigation of Light Tissue Interaction in Photoplethysmography

    Get PDF
    Currently there exists little knowledge or work in phantoms for the in-vitro evaluation of photoplethysmography (PPG), and its’ relationship with vascular mechanics. Such phantoms are needed to provide robust, basic scientific knowledge, which will underpin the current efforts in developing new PPG technologies for measuring or estimating blood pressure, blood flow and arterial stiffness, to name but a few. This work describes the design, fabrication and evaluation of finger tissue-simulating pulsatile phantoms with integrated custom vessels. A novel technique has been developed to produce custom polydimethylsiloxane (PDMS) vessels by a continuous dip-coating process. This process can accommodate the production of different sized vessel diameters (1400–2500 ”m) and wall thicknesses (56–80 ”m). These vessels were embedded into a mould with a solution of PDMS and India ink surrounding them. A pulsatile pump experimental rig was set up to test the phantoms, where flow rate (1–12 L·min−1), heart rate (40–120 bpm), and total resistance (0–100% resistance clamps) could be controlled on demand. The resulting flow profiles approximates human blood flow, and the detected contact PPG signal (red and infrared) from the phantom closely resembles the morphology of in-vivo PPG waveforms with signal-to-noise ratios of 38.16 and 40.59 dB, for the red and infrared wavelengths, respectively. The progress made by this phantom development will help in obtaining new knowledge in the behaviour of PPG’s under differing flow conditions, optical tissue properties and differing vessel stiffness

    Cuffless Single-Site Photoplethysmography for Blood Pressure Monitoring

    Get PDF
    One in three adults worldwide has hypertension, which is associated with significant morbidity and mortality. Consequently, there is a global demand for continuous and non-invasive blood pressure (BP) measurements that are convenient, easy to use, and more accurate than the currently available methods for detecting hypertension. This could easily be achieved through the integration of single-site photoplethysmography (PPG) readings into wearable devices, although improved reliability and an understanding of BP estimation accuracy are essential. This review paper focuses on understanding the features of PPG associated with BP and examines the development of this technology over the 2010-2019 period in terms of validation, sample size, diversity of subjects, and datasets used. Challenges and opportunities to move single-site PPG forward are also discussed

    A Vector Fitting Approach for the Automated Estimation of Lumped Boundary Conditions of 1D Circulation Models

    Get PDF
    Purpose: The choice of appropriate boundary conditions is a crucial step in the development of cardiovascular models for blood flow simulations. The three-element Windkessel model is usually employed as a lumped boundary condition, providing a reduced order representation of the peripheral circulation. However, the systematic estimation of the Windkessel parameters remains an open problem. Moreover, the Windkessel model is not always adequate to model blood flow dynamics, which often require more elaborate boundary conditions. In this study, we propose a method for the estimation of the parameters of high order boundary conditions, including the Windkessel model, from pressure and flow rate waveforms at the truncation point. Moreover, we investigate the effect of adopting higher order boundary conditions, corresponding to equivalent circuits with more than one storage element, on the accuracy of the model. Method: The proposed technique is based on Time-Domain Vector Fitting, a modeling algorithm that, given samples of the input and output of a system, such as pressure and flow waveforms, can derive a differential equation approximating their relation. Results: The capabilities of the proposed method are tested on a 1D circulation model consisting of the 55 largest human systemic arteries, to demonstrate its accuracy and its usefulness to estimate boundary conditions with order higher than the traditional Windkessel models. The proposed method is compared to other common estimation techniques, and its robustness in parameter estimation is verified in presence of noisy data and of physiological changes of aortic flow rate induced by mental stress. Conclusion: Results suggest that the proposed method is able to accurately estimate boundary conditions of arbitrary order. Higher order boundary conditions can improve the accuracy of cardiovascular simulations, and Time-Domain Vector Fitting can automatically estimate them
    corecore