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Abstract

Arterial pulse waves (PWs) such as blood pressure and photoplethysmogram (PPG) signals contain a wealth of information on
the cardiovascular (CV) system that can be exploited to assess vascular age and identify individuals at elevated CV risk. We
review the possibilities, limitations, complementarity, and differences of reduced-order, biophysical models of arterial PW propa-
gation, as well as theoretical and empirical methods for analyzing PW signals and extracting clinically relevant information for
vascular age assessment. We provide detailed mathematical derivations of these models and theoretical methods, showing how
they are related to each other. Finally, we outline directions for future research to realize the potential of modeling and analysis
of PW signals for accurate assessment of vascular age in both the clinic and in daily life.
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1. INTRODUCTION

Pulse wave (PW) signals are produced by the pumping
heart and its interaction with the blood and the distensible
arterial walls. Cardiac ejection increases blood pressure and
distends the wall of the aorta, generating a compression/dis-
tension wave that propagates along the aorta and other

conduit arteries. Toward the end of systole, a decline in car-
diac ejection rate creates a decompression/relaxation wave
that manifests as a decline in pressure and a reduction in
aortic diameter. Together, these and other (transmitted and
reflected) waves create a waveform that is called the pulse
wave. The pulse wave leads to a rhythmical expansion and
relaxation of all arteries that follows the heartbeat; e.g.,
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producing the pulse that can be felt in the radial artery of the
wrist, despite the wrist being about a meter away from the
heart. The pulsatile movement of the arterial wall is accom-
panied by changes, over time and space, in blood pressure,
blood flow velocity, and blood volume flow rate throughout
the arterial system, called, respectively, pressure, flow veloc-
ity, and flow rate PWs.

PW signals can be measured in vivo using a variety of
(invasive and noninvasive) devices and are influenced by the
heart and the vasculature, making them a rich source of in-
formation on cardiovascular (CV) health. In particular, the
morphology of PW signals is affected by changes in the me-
chanical and structural properties of the vascular wall pro-
duced by vascular aging or disease, and their impact on
cardiac mechanics and structure. Vascular aging is a com-
plex biological process that involves the deterioration in
structure and function of blood vessels over time and may
occur at a different rate than chronological aging (1). It is a
critical component of overall aging that entails an increase
in arterial wall stiffness (arteriosclerosis) and the accumula-
tion of atheroma that results in progressive narrowing of the
arterial lumen (atherosclerosis) (2, 3). Initially, vascular dete-
rioration is usually an asymptomatic process that eventually
can cause damage to the heart, brain, kidneys, and other
organs. Measures of vascular age encompass the cumulative
effect of all CV risk factors on the arterial wall throughout
life (3). Therefore, assessment of vascular age by PW analysis
may help identify individuals with early vascular aging (4),
and, hence, at elevated CV risk, at an early stage of disease
progression.

Arterial PW modeling and analysis aims to unravel the
functioning of the CV system through the measurement,
mathematical analysis, and computational and experimen-
tal simulation of pulsatile hemodynamics (i.e., the dynamics
of pulsatile blood flow). In addition to the widely used values
of systolic, diastolic, and mean arterial pressure, other clini-
cally relevant information for vascular age assessment can
be derived from the morphology of PW signals. As shown in
this review, several PW analysis techniques can providemul-
tiple hemodynamic measures and indices that vary with
aging and disease, suggesting that they may constitute rele-
vant indicators of age-related CV risk. Models for simulating
PWs can be used to investigate the accuracy of these techni-
ques, provide mechanistical insights, and understand the
physiological basis underlying measured hemodynamics
phenomena. However, PW models should be developed fur-
ther to better capture the diversity of PW measurements
observed in vivo and combined with artificial intelligence
(AI) for an improved assessment of vascular aging in daily
life.

This article reviews the possibilities, limitations, com-
plementarity, and differences of reduced-order, arterial
PW models (Section 2) and analysis methods (Section 3) for
CV assessment, with a focus on vascular age assessment. It
aims to provide a comprehensive overview of models and
analytical techniques to help someone new in the field get
started, including engineers, mathematicians, and physi-
cians, as well as to be a convenient compendium for estab-
lished researchers. Directions for future research in the
field are also provided (Section 4). This article is free
of mathematical derivations and equations to make it

accessible to readers with a limited mathematical back-
ground. It is accompanied by a Technical Supplement
(https://doi.org/10.6084/m9.figshare.21758012.v3) con-
taining technical details and mathematical derivations of
all the biophysical models and hemodynamics-based anal-
ysis techniques covered in the article. All derivations start
from the well-known Navier–Stokes equations, to show
how different types of models and analysis techniques are
related to each other.

2. PULSE WAVE MODELS

Arterial hemodynamics obeys physical laws and princi-
ples (i.e., conservation of mass, momentum, and energy)
that can be used to mathematically describe (i.e., model) ar-
terial PW signals. There are threemain physics-basedmodel-
ing approaches—zero-dimensional (0-D), one-dimensional
(1-D), and three-dimensional (3-D) models—that are illus-
trated in Fig. 1 and compared in Table 1 in terms of their
spatial accuracy, computation time, and advantages and
limitations to study vascular aging. Large-scale network
simulations of PW signals often require simplification of
the 3-D formulation to reduce the computation time while
maintaining reasonable accuracy. This can be achieved
using the reduced-order 1-D (Section 2.1) and 0-D (Section
2.2) models. There are only a few commercial software
programs for PW modeling. One such program is called
the “Aplysia CardioVascular Lab” (Aplysia Medical AB,
Stockholm, Sweden), which features a basic 0-D model ar-
terial network that enables users to simulate both central
and peripheral PWs (5).

2.1. 1-D Models

One-dimensional models of the arterial tree are considered
a good compromise between accuracy and computational
cost for simulating arterial PW signals. The inviscid 1-D gov-
erning equations of conservation of mass and momentum
were derived by Leonhard Euler in 1755 (6). Other historical
figures that made important contributions to the field of 1-D
blood flow modeling include W. Weber, T. Young, J. L.
Poiseuille, B. Riemann, and J. R. Womersley. For a historical
overview see Parker (7), the PhD theses of Westerhof (8) and
Hughes (9), and the introductions of the articles by Hughes
and Lubliner (10), and van de Vosse and Stergiopulos (11). The
1-D model formulation is described in Section 2.1.1, followed
by an overview of how to calibrate model parameters (Section
2.1.2), verify the accuracy of simulated PW signals (Section
2.1.3), and use 1-D models to study clinically relevant prob-
lems for vascular aging (Section 2.1.4).

2.1.1. Formulation.
In 1-D modeling, the arterial network is described as a set of
arterial segments interconnected at nodes (Fig. 1B). Within
each segment, blood pressure, blood flow velocity, and lumi-
nal cross-sectional area vary with time and distance along
the axis of the vessel, governed by a system of partial differ-
ential equations. The governing equations ensure that the 1)
physical principles of conservation of mass and linear mo-
mentum for blood flow are satisfied in each arterial segment
and 2) interaction between blood flow and vessel wall defor-
mations is accounted for.
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Technical Supplemental Section 2.1.1 provides a detailed
derivation of the 1-D governing equations starting from
the 3-D Navier–Stokes equations in cylindrical coordi-
nates, based on the work of Barnard et al. (12), and involv-
ing the solid mechanics theory of thin-walled pressure
vessels. Radial and azimuthal variations in blood pressure
and flow velocity, which are considered in 3-D modeling,
are neglected in 1-D modeling to reduce complexity and
computational cost. This is achieved by 1) assuming cylin-
drical symmetry to eliminate azimuthal variations Eqs. 2,
11, and 121, 2) assuming that axial blood flow velocities are
much larger than radial velocities to eliminate secondary
terms in the equations (i.e., considering ɛ � 1 in Eqs. 15
and 16), and 3) integrating over the luminal cross section
to eliminate radial variations (Eqs. 3 and 22). The second point
follows from the long-wave approximation: arterial pulse
wavelengths aremuch longer (of the order ofmeters) than ves-
sel wall displacements in the radial direction (�1 cm) (Eq. 17).
Additional assumptions include fixed-length and longitudi-
nally tethered vessels, incompressible and Newtonian fluid2,
and fully developed laminar3 flow.

Arterial wall models in 1-D modeling describe the relation
between pressure and cross-sectional area. They are referred
to as tube laws. These range from purely elastic laws in
which the vessel wall elasticity (which decreases with vascu-
lar aging) is described by Young’s modulus, to more complex
laws that account for nonlinear elastic behavior (16), stress
relaxation (17–19), wall viscosity (20–22), and wall inertia (16,
23). Technical Supplemental 2.1.1.4 shows how to derive an
elastic tube law and extend this law to include wall viscosity.

At the arterial junctions of the arterial network, a junction
problem needs to be solved, usually by enforcing the conser-
vation of mass and energy (24), although more complex
approaches that account for pressure losses at junctions
are also available (25). In addition, appropriate boundary
conditions need to be prescribed at the inflow and outflow
arterial segments. At the inflow (usually the aortic root), the

flow waveform is often enforced (see, e.g., Refs. 26–28).
Alternatively, 0-D models of cardiac contraction can be
coupled to the aortic root if the 1-D model network starts
there (see Section 2.2.3). Any 1-D model network has to be
truncated after a few generations of bifurcations. Indeed,
care should be taken when simulating blood vessels with
diameters smaller than 1 mm since the assumptions of blood
being a continuum and Newtonian fluid start failing as the
relative size of red blood cells to vessel diameter increases.
Terminal 1-D model branches are often coupled to 0-D mod-
els relating the flow to pressure at the branch’s endpoint and
accounting for physical properties of the downstream vascu-
lature (see, e.g., Refs. 29–31). More sophisticated terminal
models include single tapering vessels (32), structured-tree
networks (27, 33–35), and open-loop or closed-loop 0-D com-
partmental models. Structured-tree models can be used to
investigate the effects of small-vessel vascular disease, such
as stiffening and rarefaction (36), and to predict flow and
pressure profiles in the microvasculature. Compartmental 0-
D models can describe the peripheral circulation, venous
return, pulmonary circulation, and heart chambers; there-
fore bridging the inflow and outflow boundaries of the 1-D
model arterial network and simulating the entire circulation
as a closed-loop computational domain (31, 37–41).

Table 2 compares the main characteristics of existing 1-D
models for simulating PW signals. These range from single-
vessel models (e.g., of the aorta) to closed-loop models of the
entire circulation, including the four heart chambers. The
aorta and other larger arteries of the head, thorax, abdomen,
and upper and lower limbs are often included, and a few
models also account for the larger arteries of the pulmo-
nary, coronary, and/or cerebral circulations. Earlier models
focused on simulating a few arteries of systemic circulation,
with special attention paid to the cerebral arteries. Existing
1-D formulations may differ on the tube law used and the
way velocity profiles, convective accelerations, and distal
vasculatures are simulated.
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Figure 1. The main arterial blood flow modeling
approaches illustrated for the upper aorta. A: three-
dimensional (3-D) models simulate blood pressure
(p), blood flow velocity (V), and wall displacement
(not shown) as a function of time (t) and three spatial
dimensions (e.g., x, y, and z in Cartesian coordi-
nates). B: one-dimensional (1-D) models describe
blood pressure (P), blood flow velocity (U), and
luminal area (A) with time and axial direction of
the vessel (z). C: zero-dimensional (0-D) models
can calculate a space-independent blood pres-
sure (pw) for the whole 3-D or 1-D arterial tree as
a function of the aortic inflow (qIN), total compli-
ance (CT) and resistance (RT), and outflow pres-
sure (Pout) at each terminal segment of 3-D and
1-D models (see Eq. 80 in Technical Supplement).

1All the equation labels in the main text refer to equations found in Technical Supplement.
2A reasonable assumption in large blood vessels (13). Non-Newtonian effects were studied by Robertson and Zakaria (14).
3Reynolds’ numbers based on mean velocities are well below 2,000 in normal conditions (15).
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Recently, the photoplethysmogram (PPG) signal [an opti-
cal measure of the arterial PW that can be measured in daily
life (61)] has been simulated using 1-D modeling; either cal-
culated 1) as being proportional to arterial blood volume in a
vascular bed (28) or luminal area (62) or 2) from the simu-
lated pressure wave using a transfer function (63).

2.1.2. Calibration.
Arterial PW models are composed of sets of equations, each
of which comprises a number of parameters that need to be
specified. This is often referred to as calibration. A particular
set of parameters allows for the simulation of physiologically
realistic PWs representative of a particular subject or pathol-
ogy. Baseline 1-D models have been calibrated to simulate
PWs representative of young, healthy (21, 39) and male sub-
jects (28). These baseline models have then been personal-
ized to simulate PWs for specific subjects (64–66) and
adapted to model changes that occur with aging (28, 60, 67–
70) (summarized in Table 3), hypertension (24) and its treat-
ment (80), aneurysms (81, 82), stenoses (83, 84), and variabil-
ity within a cohort (28, 85). The following model parameters
are typically calibrated, whereas others are held constant as
they have less effect on PWs (28): arterial geometry (length
and diameter of each arterial segment), arterial stiffness,
flow from the left ventricle into the aorta, and microvascular
properties (resistance, compliance, and outflow pressure).
The methods used to calibrate models are described in
Technical Supplemental Section 2.1.2.

Recently, 1-D models have been used to simulate PWs for
a set of virtual subjects representative of a population sam-
ple. For instance, in Refs. 28 and 85, PWs were simulated to
mimic those that would be measured from samples of
healthy adults of different ages. This was performed in three
steps: 1) suitable values for parameters were identified from
the literature, including mean values for each age group, and

ranges of variability within each age group; 2) these values
were converted into model parameters where necessary
(such as converting reported PW velocities into Young’s
moduli); and 3) model parameters were adjusted where nec-
essary to provide more realistic PWs. As illustrated in Fig. 2,
this approach allows different types of PWs to be simulated,
at a range of anatomical sites, for subjects with different CV
properties, and different ages. The morphology of these
waves matches in vivo data showing, for instance, 1) a simi-
larity among pressure, luminal area and PPG signals, and
between flow velocity and flow rate signals (Fig. 2A); 2) pulse
pressure (PP, the amplitude of the pressure PW) amplifica-
tion from central to peripheral anatomical sites (Fig. 2B); 3)
an earlier arrival time of the diastolic peak in the PPG signal
with increased arterial stiffness (Fig. 2C), and 4) increases in
PP with aging (Fig. 2D).

2.1.3. Verification.
Arterial PW models can be verified by comparing the model
outputs with reference in silico, in vitro, and in vivo data
(see Table 4). Simulated PWs have been comparedwith refer-
ence PWs by qualitatively assessing their shapes and PW-
derived indices such as mean blood pressures and flow rates
(21, 28, 39, 64, 65, 84, 95, 97–100). Error statistics have been
used to quantify the performance of models: statistics such
as the (relative) rootmean square error (RMSE; see, for exam-
ple, Refs. 64 and 90) and relative (or percentage) error (90)
quantify the overall performance of model simulations (see
Technical Supplemental Section 2.1.3). Quantitative compar-
isons have shown relative RMSEs between 1-D model and
reference PWs of as little as 1.2% for pressure, 2.1% for the
flow, and 2.6% for the luminal cross-sectional area (see Table
4). In these studies, reference PWs included those measured
in well-defined CV simulation rigs made of flexible tubes
(18, 92–95) and those computed using 3-D fluid-structure

Table 1. Comparison of the main arterial blood flow modeling approaches

Model Spatial Accuracy Computation Time Advantages Limitations

0-D Space-independent blood
pressure, blood flow, and
luminal volume

Seconds Computationally inexpensive
descriptions of 1) global blood
flow features altered by VA (e.g.,
systemic arterial compliance) in
the whole cardiovascular system
and 2) boundary conditions for
1-D and 3-D models

Inability to describe 1) high-fre-
quency PW features, 2) PW prop-
agation phenomena, and 3)
spatial variations in vessel geo-
metric and material properties
altered by VA

1-D Crossed-sectionally aver-
aged blood pressure and
blood flow velocity, and
luminal area along the ves-
sel’s axis

Seconds to minutes Good trade-off between accuracy
and computation time to 1)
describe PW signals in large-
scale networks, accounting for
wave reflection and transmission
effects and spatial variations in
vessel geometric and material
properties altered by VA and 2)
improve boundary conditions for
3-D models

Inability to describe 1) complex
blood flow phenomena with non-
negligible radial and circumferen-
tial flows due to VA-related struc-
tural changes (e.g., aneurysms
and stenoses), 2) the mechanical
stresses these flows produce on
the arterial wall, and 3) blood
flow in the microcirculation

3-D Blood pressure, blood flow
velocity, and arterial wall
displacements in three
dimensions

Hours to days Description of complex local blood
flow phenomena and the me-
chanical stresses they produce
on the arterial wall, with a high
level of geometrical, structural,
and biophysical detail

Computationally expensive and
reliance on detailed input data
that can be challenging or even
impossible to acquire (e.g., re-
gional stiffness)

Zero-dimensional (0-D), one-dimensional (1-D), and three-dimensional (3-D) models can all describe time-varying pulse wave (PW)
signals. However, they have different degrees of spatial accuracy and computation time, which determine their advantages and limita-
tions to study vascular aging (VA).
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interaction models with identical boundary conditions
and compatible geometrical and material properties (32,
88, 89, 92). A few comparisons in diseased vasculature
with stenosis and aneurysms have also been carried out
(84, 92, 98). All these studies show that 1-D modeling can
simulate PWs in large arteries, in steady state, supine con-
ditions, and over one cardiac cycle, with a reasonable com-
putational cost and with accuracies comparable with those
obtained by 3-D models.

The ability of 1-D models to accurately simulate PWs and
precisely mimic changes in PWs under changing CV condi-
tions are both of interest. Statistical relationships between con-
tinuous measures derived from PW models are commonly
examined using correlation, under the assumption of linear
(Pearson’s) or monotonic (Spearman’s) relationships between
variables to produce quantitative estimates of dependency.
Information theory-basedmetrics, such asmutual information

that quantifies all the dependencies between two variables
(not just linear or rank dependencies) (101), have also been
used in studies of PWs (102, 103) but seem not to have been
used as a measure of fidelity. In Refs. 66 and 104, the accu-
racy and precision of simulated blood pressures were
assessed using the bias (i.e., mean error) and limits of
agreement (i.e., range around the bias within which 95% of
errors are expected to fall), respectively: this separation
allows assessment of the suitability of a model for simulat-
ing PWs for an individual at a given time and simulating
changes in PWs either between individuals or within an
individual over time.

2.1.4. Applications.
Arterial network models provide high-resolution arterial
pressure and flowwaveforms throughout the arterial domain
in a fully defined setting. The use of models to simulate PWs

Table 2. Main characteristics of existing 1-D models

References

Closed-

Loop

Heart

Model

Systemic

Circulation

Pulmonary

Circulation

Coronary

Circulation

Cerebral

Circulation

Tube

Law

Velocity

Profile

Convective

Acceleration

Distal

Vasculature

Models

Streeter et al. (42) � � � (aorta) � � � NLE � P � R
Schaaf and Abbrecht (43) � � þ � � � LE � P � R
Wemple and Mockros (44) � � þ � � � NLE þ W þ 3Wk
Raines et al. (45) � � � (leg) � � � NLE � P � 3Wk
Avolio (46) � � þ � � þ VE þ W � R
Stettler et al. (47, 48) � � þ � þ � NLE � P � R
Kufahl and Clark (49) � � � (cerebral) � � þ NLE � p þ 3Wk
Hillen et al. (50) � � � (cerebral) � � þ LE � P � R
Papapanayotou et al. (51) � � � (cerebral) � � þ LE � P � R
Fitchett (52) � þ 1 C þ � � þ VE þ W � R
Stergiopulos et al. (29) � � þ � � � NLE � P þ 3Wk
Cassot and Zagzoule (53) � � � (cerebral) � � þ LE � P � R
Olufsen (33) � � þ � � � LE þ BL � ST
Wan et al. (54) � � þ � � � LE � P þ R
Sherwin et al. (55) � � þ � � � LE � F � R
Wang and Parker (56) � � þ � � � LE � F � R
Formaggia et al. (30) � þ 1 C þ � � � LE � P � 3Wk
Azer and Peskin (34) � � þ � � � LE þ W þ ST
Bessems et al. (57) � � � (aorta and

coronary)
� � � LE þ BL þ 3Wk

Huo and Kassab (35) � � � (coronary) � þ � LE � P þ ST
Liang et al. (38) þ þ4 C þ þ � � LE � p � Wkþ
Reymond et al. (21) � þ 1 C þ � þ þ VE þ W þ 3Wk
Blanco et al. (26) � � þ � þ þ VE1 � P � 3Wk
M€uller and Toro (31) þ þ4 C þ � � þ LE � P � Wkþ
Qureshi et al. (27) � � � þ � � LE þ BL � ST
Mynard and Smolich (39) þ þ4 C þ þ þ þ VE3 � p � Wkþ 2

Acosta et al. (58) þ þ4 C þ þ � � LE � p � Wkþ 2

Carson et al. (59) þ þ4 C þ þ þ � VE þ BL � 3Wkþ
Charlton et al. (28) � � þ � � þ VE � p � 3Wk
Gallo et al. (41) þ þ4 C þ � � þ VE þ BL � 3Wkþ
Westerhof et al. (60) � � þ � � þ VE � P � 3Wk

Closed-loop: a closed-loop model of the circulation is (þ ) or not (�) included. Heart model: a heart model is (þ ) or not (�) coupled to
the one-dimensional (1-D) model vessels, with the number of heart chambers (C) indicated. Systemic circulation: the larger systemic
arteries are simulated using 1-D modeling (þ ), as opposed to none or a few arteries as indicated (�). Pulmonary circulation: the larger
pulmonary arteries are simulated using 1-D modeling (þ ), as opposed to none or a few arteries (�). Coronary circulation: the larger coro-
nary arteries are simulated using 1-D modeling (þ ), as opposed to none or a few arteries (�). Cerebral circulation: the larger cerebral
arteries, including the circle of Willis, are simulated using 1-D modeling (þ ), as opposed to none or a few arteries (�). Tube law: Arterial
wall modeled as a linear (LE) or nonlinear (NLE) purely elastic material, or as a viscoelastic (VE) material. Velocity profile: profile calcu-
lated (þ ) using Womersley flow (W) or a boundary layer method (BL), or prescribed (�) using Poiseuille flow (P), a higher-order polyno-
mial (p), a boundary layer method (BL), or a flat profile (F). Convective acceleration: Full term simulated (þ ) or either simplified by
assuming a flat velocity profile or completely neglected (�). Distal vasculature models: single resistance (R), three-element Windkessel
(3Wk), Windkessel with more than three elements (Wkþ ), structured-tree (ST). 1Elastin, collagen, smooth muscle contributions
accounted for; 2Nonlinear 0-D models, with specific models for the hepatic and coronary beds; 3Nonlinear elastic term using a power law
and Voigt-type viscous term.
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is complementary to clinical studies, and offers many advan-
tages: data can be obtained under a wide range of simulated
CV conditions; they allow for studying the effect of changes
in the model parameters on the wave shape; they are free of
measurement error; they can be obtained simultaneously at
all measurement sites; they are relatively inexpensive to
obtain; and the reference physiological parameters can be
specified precisely (105). Consequently, 1-D models have
found several applications in CV research. They are valuable
tools with which to 1) study the impact of aging on aortic
hemodynamics and wave dynamics (100, 106), 2) provide
mechanistic insights into arterial physiology, pathophysiol-
ogy, and hemodynamic phenotypes (see Refs. 28, 107–109
for some examples), and 3) assess the validity of methods
and medical devices for the assessment and treatment of
vascular aging.

One-dimensional models have been used to assess the va-
lidity of methods to estimate arterial system properties (250,
335), methods for pulse wave velocity (PWV) estimation (85,
112–114), estimation of cardiac output (28, 115, 116), estima-
tion of central blood pressure from peripheral pressure (104,
117–119), to detect aneurysms (81, 82, 120) or stenoses (120),
or to estimate ventricular contractility (121). Arterial network
models have also provided important insights into the per-
formance of loop-based methods for estimating local PWV,
demonstrating their susceptibility to the presence of wave
reflections (122, 123). The models have been at the basis of
a debate on the accuracy of the Arteriograph, a device
intended to estimate aortic PWV from a brachial cuff re-
cording inflated to suprasystolic pressures. Model simula-
tions indicated that the device measures brachioaxillary
PWV, rather than aortic PWV, because of reflections and re-
reflections in the brachioaxillary arterial segment (124). The
models have also been instrumental in the debate on the
reservoir-wave concept (125), demonstrating inconsisten-
cies in the original formulation of the paradigm leading to
spurious interpretation of wave dynamics (and, hence, arte-
rial physiology) confirmed by in vivo experiments (126).

One-dimensional arterial network models may also be
particularly suitable to assess the impact of vascular surgical
or transcatheter interventions if variables of interest are
pressure and flow. Models have, for instance, been used to
assess the impact of lower-limb bypass surgery (97, 127) and
the creation of a forearm vascular access (arteriovenous
shunt) for dialysis on arterial hemodynamics (95). The

forearm model was further extended to account for vascular
remodeling and was validated in patients, demonstrating its
ability to successfully predict maturation of the arteriove-
nous fistula in patients (128). Another application of 1-D
models is the hemodynamic impact of (aortic) (stent) grafts
in the arterial tree, which can be described by changing the
local stiffness parameter of the desired section in the arterial
tree (129). One-dimensional models can only assess the
impact of a stent graft on pressure and flow dynamics, and
cannot provide any information on the impact of a stent
graft on arterial wall stresses or the local flow field.

Nonetheless, the utility and validity of 1-D models should
not be overstretched, as computational models have inher-
ent simplifications and assumptions (see Section 2.1.1). Most
models lack important physiological feedback and control
mechanisms, and model results depend on the particular
topological network that is being simulated, its boundary
conditions, and solution methods. It is not guaranteed that,
because a method works on simulated data, it will be appli-
cable in any in vivo setting, where measurement error and
biological and physiological variability apply. Conversely, it
is reasonable to assume that a method that does not perform
well on synthetic data would not performwell in vivo.

2.2. 0-D Models

Zero-dimensional models further reduce reality to
mathematical descriptions without spacial dimensions.
Often these are called lumped parameter models since
distributed CV parameters are grouped into single pa-
rameters; e.g., distributed vessel elasticity is lumped into
vessel compliance, which in turn can be described as a
single compliance for the whole arterial tree. For a histor-
ical overview on 0-D models see Parker et al. (7) and
Westerhof et al. (130). This section focuses on the 0-D for-
mulation (Section 2.2.1), the Windkessel (Section 2.2.2),
and 0-D heart (Section 2.2.3) models, and their applica-
tions (Section 2.2.4).

2.2.1. Formulation.
Zero-dimensional models are described by ordinary differ-
ential equations, with time as the only independent vari-
able. The linear 0-D equations for 1) blood flow in a blood
vessel, 2) the entire arterial tree, or 3) a portion of it can be
obtained from the nonlinear 1-D equations, as described in
Technical Supplemental Section 2.2.1. Linearization of the

Table 3. Changes in mechanical and structural properties of the cardiovascular system with chronological age

Parameter Age Variation References

Heart rate Nonlinear change in M/F (71)
Stroke volume Dec. in M/F (72)
Cardiac output Dec. by 24% (M) and 7% (F) between 20 and 69 yr old (73)
Left ventricular ejection time No change (74)
End-systolic elastance Inc. by 51% between 20 and 80 yr old to normalize left ventricular stress (F > M) (70, 75)
End-diastolic elastance Inc. by 51% between 20 and 80 yr old to normalize left ventricular stress (F > M) (70, 75)
Arterial ventricular coupling Dec. slightly in F; no change in M (75)
Arterial length Inc. in proximal aorta length; no change in the lengths of other arterial segments (76)
Arterial diameter Inc. in aortic and carotid diameters; no change in the diameters of other arterial segments (76, 77)
Arterial stiffness Nonlinear inc. (78)
Arterial tree compliance Dec. (79)
Peripheral vascular resistance Inc. or no change (28)

Variations are given for adult males (M) and females (F) and in childhood if available. dec., decrease; inc., increase.
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1-D equations (see Technical Supplemental Section 2.2.1.1)
and integration over the vessel length (so that the axial
coordinate is eliminated; see Technical Supplemental
Section 2.2.1.2) yield the 0-D equations (Eq. 63) for blood
flow in a vessel segment. These equations are analogous to
the transmission line equations and, hence, 0-D models
are usually represented by electrical circuits (130) (Fig.
3B). Blood flow and pressure are analogous to electric cur-
rent and potential, respectively. The compliance of the
vessel is equivalent to a capacitance; the inertia of blood is
comparable with an inductance; and the resistance to
blood flow is matched by a resistor. Electrical analog mod-
els have been created to simulate blood flow in the sys-
temic arterial tree (132, 133).

By combining the 0-Dmodel equations for each segment of
the arterial tree we can obtain a differential equation (see
Technical Supplemental Section 2.2.1.3, Eq. 76) relating arte-
rial blood pressure in the entire arterial tree to the follow-
ing CV parameters that are affected by vascular aging (as
described in Table 3): time-varying aortic inflow, outflows
to the microcirculation, outflow pressure, and distributed
physical properties of the vasculature (length, diameter,
and stiffness for each arterial segment, and peripheral
compliances and resistances). This equation can be
solved analytically for blood pressure as a time-varying,
space-independent analytical function (Eq. 80). It shows
the ability of 0-D modeling to approximate distributed 1-
D model pressures, particularly during diastole (Fig. 2B),

C PPG pulse waves in subjects with different cardiovascular properties
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B Pressure pulse waves at different anatomical sites
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Figure 2. One-dimensional (1-D) blood flow
modeling used to simulate arterial pulse
waves (PWs). A: simulation of different
types of PWs at the carotid artery. B: simu-
lation of pressure PWs at different anatomi-
cal sites together with the analytical zero-
dimensional (0-D) pressure (red) given by
Eq. 80 (Technical Supplement). C: simula-
tion of photoplethysmogram (PPG) PWs at
the wrist for subjects with different cardio-
vascular properties (black, baseline; red,
increase; blue, decrease). D: simulation of
pressure PWs for subjects of different
ages. Source: data were obtained from the
Pulse Wave Database (28, 86).
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and identifies three key factors that describe arterial blood
flow: total vascular resistance, total arterial compliance, and
outflow pressure. Furthermore, changes in pressure can be
assumed to occur synchronously throughout the arterial tree
during diastole, with fluid inertia having a negligible effect
compared with compliance and resistance (134).

2.2.2. The Windkessel model.
The 0-D model for the arterial tree described by Eq. 76 leads
to the well-known Frank’s two-element Windkessel model
(Eq. 79) (135) when all peripheral compliances are neglected.
The Windkessel model describes the whole arterial tree as a
reservoir of constant compliance into which blood flows
from the left ventricle (Fig. 3A). The time-varying pressure in
the reservoir encounters a constant peripheral vascular re-
sistance and flows out into the vascular beds that are at a
constant pressure (usually assumed to be right atrial pres-
sure or zero). Despite its simplicity, this model is able to pre-
dict the exponential decay of pressure in diastole and the
increases in mean arterial pressure and PP with, respec-
tively, increasing resistance and decreasing compliance (Fig.
3C); both characteristics of vascular aging. The model pre-
dicts a pressure decay with a time constant given by the
product of the total resistance and compliance of the arterial
network (Eq. 83). Hence, it can describe the steeper diastolic
pressure decay observed with vascular aging as a result of
the smaller exponential time constant produced by the
reduction in arterial compliance (Fig. 2D). Windkessel mod-
els are common choices for outflow boundary conditions in
1-D (see Table 2) and 3-D modeling. They can contain more

than two elements and physically exist as bench hydraulic
models (Fig. 3B) (136).

2.2.3. Heart models and elastance.
There are several possibilities to describe the filing and con-
traction of the heart in 1-D and 0-D modeling. The simplest
approach is to simulate the left ventricle as a “pressure
source” and prescribe the pressure PW at the aortic root in-
dependently of vascular load. Then, pressure and load to-
gether determine blood flow (see Eq. 82). Otherwise, the left
ventricle can be modeled as a “flow source:” blood flow is
forced into the vascular system and the pressure build-up
has no impact on the flow. In reality, the heart is neither a
pressure source, nor a flow source; i.e., the pressure that the
ventricle experiences while ejecting has an effect on the flow
it outputs, and vice versa. However, it has been proposed
that a hypertrophied heart resembles a flow source; i.e., it
can generate output even if the afterload pressure is high.
And a failing heart is closer to a pressure source; i.e., pres-
sure may still be maintained but the flow becomes lessened
by the load (137).

More physiologically accurate heart models are based on
the pressure-volume description of cardiac function (138–
140). Ventricular pressure (P) plotted versus ventricular vol-
ume (V) for a complete cardiac cycle produces the so-called
PV loop (Fig. 3E) (141). This has four phases: 1) filling phase
in diastole (V increases with little P elevation), 2) isovolumic
contraction phase (no changes inV, steep P increase), 3) ejec-
tion phase (V decreased by stroke volume, relatively moder-
ate P alterations), and 4) isovolumic relaxation phase (no V

Table 4. Review of studies assessing the accuracy of 1-D model pulse waveforms

References Test Data Simulated Arteries ɛP ɛQ ɛU ɛA

Mynard et al. (32) 3-D data Carotid bifurcation - - � -
Reymond et al. (87) 3-D data Upper Ao and supra Ao arteries � � - -
Grinberg et al. (88) 3-D data 50 larger intracraneal arteries � � - -
Xiao et al. (89) 3-D data CCA, thoracic Ao, aortic bif. 1.4 2.1 - 2.6
Xiao et al. (89) 3-D data 20 larger sys. arteries 2.1 4.9 - -
Boileau et al. (90) 3-D data CCA, thoracic Ao, aortic bif. 1.2 2.6 - 4.3
Alastruey et al. (91) 3-D data Upper Ao and supra Ao arteries 2.0 5.0 - 3.0
Jin and Alastruey (92) 3-D data Abdominal Ao, carotid and iliac§ 5.4 7.3 - -
Bessems et al. (18) in vitro Ao† � � - -
Alastruey et al. (93) in vitro 37 larger sys. arteries 2.5 10.8 - -
Saito et al. (94) in vitro 9 larger sys. arteries 10.0 � - -
Huberts et al. (95) in vitro Upper-limb arteries � � - -
Boileau et al. (90) in vitro 37 larger sys. arteries 4.0 25.6 - -
Jin and Alastruey (92) in vitro Ao 5.0 - - -
Avolio (46) human 128 larger sys. arteries - - � -
Stettler et al. (47, 48) human Ao and lower limb arteries � � - -
Olufsen et al. (96) human 29 larger sys. arteries - � - -
Reymond et al. (21) human 103 larger sys. arteries � � - -
Reymond et al. (64) human 94 larger sys. arteries 6.0‡ 11.0 - -
Willemet et al. (97) human Lower-limb arteries 9.6 - 16.0 -
Guala et al. (65) human Larger sys. arteries 13.0 - - -
Mynard and Smolich (32) human Larger sys. and pul. arteries � � � -
Alastruey et al. (91) human Upper Ao and supra Ao arteries 10.0 7.0 - 8.0
Strocchi et al. (84) human 55 larger sys. arteries � � - -
Charlton et al. (28) human 116 larger sys. arteries � � - -
Steele et al. (98) animal Aortic bypass - 4.2 - -
Mynard et al. (99) animal Left conduit coronary arteries - 16.7 - -

The third column shows the type of reference data used in each study. Upper bounds for relative errors (in percentage) for pressure
(ɛP), flow rate (ɛQ), flow velocity (ɛU) and cross-sectional area (ɛA) wave morphology, calculated as described in the corresponding article,
are shown when available. (Adapted from Ref. 92). Ao, aorta; bif., bifurcation; CCA, common carotid artery; pul., pulmonary; sys., sys-
temic. -, no comparison made. �Qualitative comparison; †according to the dimensions shown in Fig. 4 of (18); ‡except at the abdominal
aorta, where root mean square error is 21%; §for stenosis and aneurysm sizes of up to 85% and 400%, respectively.
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changes, steep P drop). During these phases, the ventricle
changes from a high-compliance chamber, receiving blood
volume with limited P increase, to a chamber in which P is
increased to the extent that it becomes higher than aortic
pressure and ejection starts. These phases are conveniently
described by the slope of the line defined by a point on the PV
loop and a fixed point on the volume axis (i.e., the hypotheti-
cal V when P = 0). This slope is referred to as elastance. It
measures the rate of change in P with the change in V and is
therefore the reciprocal of compliance (Section 3.2.4). It is low
in diastole, increases during contraction, and decreases again
with relaxation. The end-systolic elastance (Ees) is a measure
of ventricular contractility, whereas the end-diastolic ela-
stance is a measure of diastolic myocardial stiffness (70). The
slope of the line joining the end-systolic and end-diastolic
points in the PV loop, called effective arterial elastance (Ea), is
a measure of arterial load (142). The ratio Ea/Ees is a measure
of arterial ventricular coupling (75). Table 3 shows the effect
of aging on elastance properties. Zero-dimensional heart
models often use a time-dependent elastance curve, which is
similar for healthy hearts and several heart diseases when
normalized by height and peak onset time. As a result, the
same curve shape can be used by adjusting the peak based on
heart function and heart rate (139, 140).

2.2.4. Applications.
Zero-dimensional models have been used, e.g., to study the
load on the heart (afterload) (130), provide mechanistic

insights into arterial physiology, pathophysiology, and he-
modynamic phenotypes (143–146), estimate central blood
pressure from aortic flow (104), and estimate cardiac output
(147, 148).

The Windkessel model allows us to describe the Windkessel
effect, an important vascular function whereby the pulsatile
nature of blood flow is smoothed by the elasticity of the arte-
rial wall. The Windkessel4 was used to “store” pressure in a
fire engine (Fig. 3A). By pumping water into the engine at a
higher rate than the flow leaves the spout (where the resist-
ance is located), the pressure in theWindkessel (the compliant
chamber) increases, compressing the air inside. As a result, a
relatively constant pressure can build up, maintaining flow
between the strokes of the pump. This results in less wastage
of water that would otherwise drop to the ground between the
strokes. In a similar way, the beating heart pumps blood into
the compliant large arteries, and since the outflow is restricted
by vascular resistance (Fig. 3A), blood pressure is built to
mean arterial pressure over several cycles. Blood pressure still
fluctuates between diastolic and systolic values (Fig. 3C), but
not between systolic and nearly zero pressure, as it does
within the ventricle (Fig. 3E). Thus, the pressure drop in dias-
tole is limited, the PP is reduced, and the flow is continued
between heartbeats. When the arteries become stiffer with
aging and disease, the Windkessel function is decreased
because of the decrease in compliance and, hence, PP
increases (Fig. 3C), in agreement with in vivo measurements
(149, 150).
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Figure 3. Zero-dimensional Windkessel models of the systemic circulation: fire engine analogy (A), hydraulic (left) and electrical circuit (right) analogies
(B); blood pressure (P; C), and blood flow (Q; D) with time, and pressure-volume (P-V; E) loops simulated using the four-element model (131, 144) with inde-
pendent increases (red) or decreases (blue) by ±50% in characteristic impedance (Zc), inductance (L), compliance (C), and peripheral resistance (Rp), from
the baseline model (gray). Changes in Zc alter pressure wave shape, with decreased Zc causing late systolic peaking. Variations in L have limited impact,
with a slight flattening of systolic P observed when L is low. Changes in C affect pulse pressure and systolic peak timing, whereas decreased Rp lowers
overall P and causes earlier ejection. Higher pressures result in lower flows, and changes in P vs. Q appear as “mirrored” alterations. The alterations in
P, such as changes in pulse pressure and early or late systolic peaks, can also be seen in P-V loops.

4Windkessel is German (hence the capital initial letter) for air chamber.
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Closed-loop 0-D models have been created to describe the
entire circulation using 1) lumped-parameter resistors, capaci-
tors, and inductances to simulate blood flow in the arterial
and venous vasculatures and 2) elastance functions to model
the right and left heart chambers (151–153). The vasculature
may be divided into several compartments representing, for
example, thoracic, abdominal, and more distal vasculatures.
Closed-loop models are used to study cardiac and vascular
pathophysiology for the whole CV system in the neonate, chil-
dren, and adult (5, 154, 155) and the effect of aging (156).
Changes or redistribution of blood volume (e.g., by a changed
unstressed volume of the veins) can be modeled in a straight-
forwardmanner, as well as the effects of autonomic control of
the heart and vasculature (138, 151, 157).

3. PULSE WAVE ANALYSIS METHODS

This section reviews methods for analyzing PW signals and
extracting relevant information for vascular age assessment. It
begins with considerations of how to obtain in vivo PW signals
(Section 3.1) that are ready to be analyzed using theoretical-
based (Section 3.2) and empirical-based (Section 3.3) methods.
Both types of analysis techniques can also be applied to in sil-
ico PW signals, which often do not require the preprocessing
steps described in Section 3.1.2 since they are free of measure-
ment errors and artifacts affecting their quality.

3.1. In Vivo Pulse Wave Signals

The arterial PW can be represented by blood pressure,
flow or velocity, arterial distension, and PPG signals. These
are continuous signals, showing a typical repeating pattern
with each heartbeat. The characteristics and morphologies
of PW signals, which differ between different types, mea-
surement sites, and ages, need to be considered when meas-
uring (Section 3.1.1) and preprocessing (Section 3.1.2) them.

3.1.1. Measurements.
PW signals can be probed centrally (e.g., heart, aorta, carotid
arteries) or on peripherally accessible measuring sites (e.g.,
upper arm, wrist, groin, finger, toe, retina, and earlobe).
Peripheral PWs differ from central PWs because of the effects
of PW propagation and reflection along the arterial tree.
Signals can be directly measured with methods such as
pressure catheters, applanation tonometry, volume clamp
method, oscillometric cuff (179, 180), (Doppler) ultrasound
(336), and magnetic resonance imaging (MRI) (181), but are

also increasingly accessible to wearable technologies such
as photoplethysmography (182), which is acquired by
pulse oximeters and consumer devices (e.g., smartwatches
and smartphones). These techniques are compared in
Table 5 in terms of characteristics of the PW signals they
measure and preferred features for measuring the PW in daily
life. Photoplethysmography is widely used because of its ease
of use; however, the PW signal it measures is not as well
understood physiologically as the signals measured by the
other techniques. Pressure catheters are the gold standard for
measuring blood pressure and central hemodynamics; how-
ever, they are an invasive technique, making them unsuitable
for large studies and used in apparently healthy individuals.
Ultrasound and MRI provide noninvasive and accurate meas-
urements of blood velocity, blood flow, and luminal diameter,
tonometry is a practical technique for noninvasively meas-
uring arterial pressure waveforms, and the use of cuffs to
measure PW has become increasingly popular recently. These
techniques have been used in many large epidemiological
studies and in routine clinical practice, but they are generally
not suitable for self-measurement since most require special-
ist equipment and trained operators.

Since arterial PW analysis depends on detailed features of
PW morphology, the reliability of the measurements is cru-
cial. Measurement methods are sensitive to technical errors
[e.g., damping or ringing of the catheter-manometer system
(183, 184)], artifacts [e.g., movement during MRI acquisition
(185)], operator-dependent inaccuracies [e.g., an incorrect
insonation angle for Dopplermeasurements (186)], and phys-
iological effects [e.g., respiration induced changes (187)]. The
frequencies of interest in the PW signal are below 20 Hz for
adults (188, 189), which means that a sampling frequency of
at least 40 Hz is needed according to the Nyquist theorem
(190). In general, the greatest care should be taken to obtain
good quality data, since in most cases it is impossible to cor-
rect measurements afterward.

3.1.2. Preprocessing.
A PW signal is typically preprocessed before analysis to
improve the reliability of the analysis. The process consists
of several steps, which are summarized in Fig. 4. First, indi-
vidual PWs are identified for analysis using a beat detection
algorithm (193, 194). Second, any periods of signal that are
incomplete, of low quality, or that contain data outside of
the plausible measurement scope should be excluded.
Techniques for assessing the quality of blood pressure and

Table 5. Comparison of pulse wave measurement techniques

Pressure Catheter Applanation Tonometry Volume Clamp Oscillometric Cuff PPG US MRI

Signal type P P P P PW U, Q, D U, Q, D
Central signal þ þ � � � þ þ
Peripheral signal þ þ þ þ þ þ þ
Noninvasive � þ þ þ þ þ þ
Continuous acquisition þ � þ � þ � �
No trained operator � � � þ þ � �
Calibrated þ � þ þ � þ þ
Unobtrusive monitoring � � � þ þ � �
The first three rows show characteristics of the pulse wave signals directly measured by each technique, and the remaining rows com-

pare techniques in terms of preferred features for measuring the pulse wave in daily life. D, luminal diameter; MRI, magnetic resonance
imaging; P, blood pressure; PPG, photoplethysmography; PW, pulse wave signal with arbitrary units; Q, blood flow rate; U, blood flow ve-
locity; US, ultrasound.
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PPG signals are reviewed in Refs. 195 and 196. Third, high-
frequency noise (e.g., electrical interference) and low-fre-
quency variations (e.g., due to respiration) can be eliminated
through digital filtering (61, 196). The filter design is impor-
tant: different filter cutoff frequencies may be required for
different analyses (197); and zero-phase digital filtering
should be used to prevent any phase shifting (196). After fil-
tering, a sufficient number of harmonics should still be pres-
ent in the signal since excessive filtering can lead to the loss
of important information in the PW shape.

There are several additional preprocessing steps that can
optionally be performed, as illustrated in Fig. 4: 1) calibrating
blood pressure PWs acquired by applanation tonometry with
an independent pressure measurement to convert the piezo-
electric measurement (voltage) into a pressure signal (198);
2) transforming a peripheral PW to a central PW using a
transfer function (117, 199); and 3) ensemble averaging PWs
to create a single, averaged PW (169). Other considerations
include 4) interpolating signals to increase their temporal re-
solution, which is particularly helpful when extracting the
timings of PWs (such as for PWV estimation) (200); 5) calcu-
lating derivatives for PW analysis [e.g., using Savitzky–Golay
filtering (201)]; and 6) when working with multiple simulta-
neous PW signals, ensuring that they are time aligned, such
as by the times of systolic upstrokes (see Section 3.3.1), by
waveformmatching, or by cross correlation (202).

3.2. Theoretical-Based Analysis Methods

The 1-D and 0-D blood flow models presented in Section
2 form the basis of several theoretical PW analysis meth-
ods used to assess vascular age. These methods offer valu-
able insights into the interpretation of PW morphology
and its relationship to CV parameters associated with vas-
cular aging and are subsequently reviewed. Table 6 shows
how vascular age indices obtained using these methods
vary with chronological age, accounting for sex differences
if available.

3.2.1. Forward- and backward-traveling waveforms.
Theoretical analysis of the 1-D model governing equations
reveals the presence of PW motion in flexible blood vessels
(see Technical Supplemental Section 3.2.1.1). PWs propagate
in the forward direction (i.e., from the heart to the periphery)
and interact with tapered vessels and bifurcations, produc-
ing reflected waves that travel back toward the heart, where
they can be rereflected into forward-running waves (203).
This analysis enables separation of the blood pressure, P,
and blood flow velocity, U, waveforms measured at the same
location into forward-traveling (Pf, Uf) and backward-travel-
ing (Pb, Ub) waves (Fig. 5A); i.e., P = Pf þ Pb and U = Uf þ Ub

(204) (see Technical Supplemental Section 3.2.1.2). The am-
plitude of Pb and the ratio of the Pb amplitude to the Pf am-
plitude have been shown to be an independent predictor of
CV events (205, 206). Changes in the amplitudes of Pf and Pb

have been observed with aging (see Table 6).
The separation into forward- and backward-traveling

waveforms can identify the direction (forward or backward)
of the waves that make up P and U at a given time within the
cardiac cycle. However, this method cannot provide the
physical locations in the CV system where the waves origi-
nated (207, 208). Alternative separation techniques have
been suggested to achieve this when analyzing in silico (208)
and in vivo (125, 203) data, although their potential for
assessing vascular age and disease has been questioned (209,
210), or needs to be investigated (203).

3.2.2. Wave intensity analysis.
Wave intensity is the rate of energy flux per unit area carried
by the PW, and is analogous to acoustic intensity (211). It can
be calculated from simultaneous P and U measurements at
any location in the arterial network using Eq. 101 (Fig. 5C)
and separated into forward- and backward-traveling compo-
nents using Eq. 107. As shown in Technical Supplemental
Section 3.2.2.1, wave intensity measures the prominence of
changes in P and U in the forward and backward directions
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Figure 4. Preprocessing an arterial pulse wave
(PW) signal. A: brachial applanation tonometry
blood pressure (BP) signal was processed to
identify high-quality PW data for analysis (blue,
from 1 to 9 s). PW onsets are detected (indi-
cated by red dots).B: individual PWs are filtered
to eliminate high-frequency content. C: PWs
are calibrated using independent mean and di-
astolic blood pressure measurements (MBP
and DBP, respectively). D: brachial (peripheral)
PWs are transformed to aortic (central) PWs.
E: PWs are ensemble averaged to produce a
final PW for analysis. Sources: (data) Brachial
data from the Asklepios data set, with artificial
noise added (334); (processing) PulseAnalyse
(28, 192).
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at any time during the cardiac cycle (204, 211). It is particu-
larly well suited to understanding the role of wave reflections
on pressure and flow in systemic arteries (212–219), including
coronary circulation (220–222). In vivo studies at the ascend-
ing aorta have shown that the magnitude and arrival time of
the backward compression wave in mid-systole varies with
age (see Table 6), disease, arterial compliance, and vascular
tone (213, 223), and the magnitude of the forward compres-
sion wave is a predictor of cognitive decline (160).

The units of wave intensity vary between studies, which
can limit comparison of data across different studies (see
Technical Supplemental Section 3.2.2.2). In addition, several
other factors affect absolute wave amplitude. Noise reduc-
tion, using techniques described in Section 3.1.2, is crucial in
reducing the effect of noise when calculating wave intensity
(224). Moreover, time alignment of P and U is critical for
accurate calculation of wave intensity, since misalignment
can lead to inaccurate wave profiles and artifactual waves.
Finally, differentiating between “real” wave peaks and back-
ground noise can be challenging, but may be aided by a
recently describedmaximum entropy technique (225).

In an attempt to use wave intensity analysis as a diagnos-
tic tool, the equations can be rewritten using luminal diame-
ter and flow velocity (see Technical Supplemental Section
3.2.2.3); both of which can be measured noninvasively (see
Table 5). In healthy subjects, this noninvasive wave intensity
has shown a decline in left ventricular early and late systolic
functions with age (161) and a greater effect of the aging pro-
cess on the carotid than the femoral artery (162).

Numerical studies using 1-D bloodflowmodeling have shown
that wave intensity can identify the timing, direction, and mag-
nitude of the predominant waves that shape aortic pressure and
flowwaveforms in systole. However,wave intensity fails to iden-
tify the important contribution of wave reflections during dias-
tole and those arising from pulses in previous cardiac cycles
(209, 226, 227). This occurs because wave intensity analysis
tends to accentuate high-frequency waves, whereas repeated
reflections in the arterial tree, along with wave dispersion,
attenuate high frequencies and lead to low-frequency waves
predominating during diastole (227, 228).

3.2.3. Pulse-wave velocity.
PWV is the speed by which the PW travels in arteries. Several
methods have been proposed to determine PWV, which can
broadly be grouped under two categories based on 1) local and
2) regional measurements. Local methods use measurements
at a single location of either pressure and velocity, diameter
and velocity, flow rate and area, or pressure and diameter. The
classical 19th-century Moens-Korteweg equation (Eq. 116)
(229, 230) was originally introduced in the context of flows in
thin elastic tubes. It relates local PWV to the geometrical and
mechanical properties of the local arterial wall, showing an
increase in PWV with increasing elastic modulus (i.e., wall
stiffness) and wall thickness, and with decreasing luminal ra-
dius. Therefore, PWV quantifies arterial stiffness, which is of
clinical interest for assessing the arteriosclerosis component
of vascular aging (3). In the 20th century, the Bramwell–Hill
equation was introduced, which describes the relationship

Table 6. Evolution of vascular age indices with chronological age

Index Age Variation Study Type References

Forward pressure wave amplitude Inc. in M/F C (158)
Dec. in M/F L (159)

Backward pressure wave amplitude Inc. initially in M/F; flattening in M and falling in F C (158)
Dec. in M/F L (159)

Wave intensity Dec. in forward compression wave in M/F; inc. in backward
compression wave in M/F; no change in forward decom-
pression wave in M/F

C (160–163)

Local pulse wave velocity Inc. in M/F C (161, 162)
Regional pulse wave velocity Exponential inc. in M/F; minor inc. in childhood C (3, 78, 164)

Exponential inc. in M/F (F > M) L† (3, 159)
Compliance Inc. in M/F up to 30 yr old; dec. after 50 yr old (F > M) C (165, 166)

Inc. in 35–40 yr old M (but not in F); minor dec. over 40–55
yr old in M/F

L (159)

Aortic input impedance Inc. in M/F; rightward shift of the minimum modulus C (166, 167)
No significant changes over 10 yr in middle-aged M/F L (159)

Aortic characteristic impedance No significant change C (168)
Pulse pressure Exponential inc. in M/F; minor inc. (or dic.) in childhood C (3, 164)

Exponential inc. in M/F; can dec. in young and elderly M L (3)
Pulse pressure amplification Dec. in M/F C (164, 169)
Augmentation index Inc. in M/F (M > F); dec. in childhood C (3, 164)
Augmentation pressure Linear inc. in M/F (F > M); plateau in elderly M C (3, 164)
Ankle-brachial index Inc. in M/F up to 60–69 yr old; dec. after (M > F) C (170)
Ambulatory arterial stiffness index Inc. in M/F (F > M) C (171)
Cardio-ankle vascular index Linear inc. in M/F (M > F) C (172)
Flow augmentation index Quadratic upwardly concave inc. in M/F C (173)
Reverse-to-forward flow index Inc. in M/F (aorta); no significant change (femoral artery) C (174, 175)
Diastolic-to-systolic forward flow ratio Dec. in M/F (femoral artery) C (174)
Photoplethysmogram second derivative Linear inc. in b/a and aging index in M/F; linear dec. in c/a,

d/a and e/a in M/F
C (176–178)

These indices have been calculated using the theoretical-based and empirical-based methods described in Sections 3.2 and 3.3, respec-
tively, in cross-sectional (C) or longitudinal (L) studies. Variations with chronological age are given for adult males (M) and females (F),
and in childhood if available. dec., decrease; inc., increase. †Results found for carotid-femoral and brachial-ankle pulse wave velocity
only.
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between local PWV and local arterial wall distensibility (Eq. 111).
In Technical Supplemental Section 3.2.3.1, the Bramwell–Hill
equation is derived from the 1-Dmodel governing equations. In
Technical Supplemental Section 3.2.3.2, the Moens–Korteweg
equation is derived from the Bramwell–Hill equation.

Early in the 21st century, a series of techniques for estimat-
ing local PWV were introduced. These can be classified as
loop and sum-of-squares methods. Most of the loop methods
rely on the existence of a reflection-free period within the car-
diac cycle (231–234) (Fig. 5D) (see Technical Supplemental
Section 3.2.3.3). The sum-of-squares technique (Technical
Supplemental Section 3.2.3.4) was introduced to assess local
PWV from simultaneous pressure and velocity measure-
ments in the coronary arteries, where a reflection-free period
cannot be safely assumed during the cardiac cycle (235).
These methods have primarily been studied using in vitro
and in silico data. Novel derivations of the sum-of-squares
method for diameter and velocity, or flow rate and area are
provided in Technical Supplemental Section 3.2.3.4.

Regional methods require pulse waveformsmeasured at two
arterial sites; e.g., along the aorta (236, 237), at the carotid and

femoral arteries (238), or at the brachial and ankle arteries
(239). Regional PWV is calculated as the ratio of the distance
between the two measurement sites to the time delay for the
wave to travel from one site to the other. Distances are typically
measured from surface markings or intra-arterial distance, and
time delays by identifying the feet of the two waves measured
at the two locations or using cross-correlation methods (113,
240). Regional PWV measures increase with age starting in
childhood (see Table 6). The effects of aging, however, are not
uniform in systemic arteries: central arteries such as the aorta
stiffen with age more than peripheral arteries in the arms and
legs (241). Regional PWV measures have been combined with
CV risk factors (242) and a measure of atherosclerosis, such as
coronary artery calcification (243), intima-media thickness
(244), to quantify an individual’s vascular age. Alternatively, re-
gional PWV alone may be able to quantify an individual’s vas-
cular age (243) and predict CV events andmortality (245, 246).

Computational blood flowmodeling has been used to assess
the performance of local (122, 226, 234, 247) and regional (85,
113, 124) measures of PWV. These studies have shown that 1)
methods using aortic PW data as well as the carotid-femoral
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Figure 5. Theoretical-based methods of
pulse wave (PW) analysis. The following
methods are applied to ensemble aver-
aged pressure and flow waveforms meas-
ured in the ascending aorta of young (top)
and old (bottom) subjects (149). A: pressure
wave separation into forward (Pf, red)- and
backward (Pb, blue)-traveling components
using the flow rate in B. RC is the time con-
stant of the total pressure wave (black). P1
and P2 are the inflection points described
in Section 3.3.1. C: wave intensity analysis.
D: pressure-flow loop with the calculated
characteristic impedance (Zc, see Eq. 134)
from the straight portion. E: impedance
modulus. F: impedance phase. E shows Zc
calculated from the 4th to 10th harmonics
(filled boxes).
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foot-to-foot method are accurate indicators of aortic stiffness,
2) other local and regional methods tend to over- or underesti-
mate aortic PWV, and 3) large PW reflections have an adverse
effect on the accuracy of PWV estimates.

3.2.4. Compliance.
Compliance is the rate of change in blood volume with the
change in blood pressure (often expressed in mL/mmHg or
m3/Pa). It quantifies the buffer capacity or Windkessel effect
of the vasculature (see Section 2.2.4) and is directly related to
arterial size and inversely related to local PWV (see Technical
Supplemental Section 3.2.4). Direct measurement of compli-
ance is impossible, as it would require sealing off the arterial
tree for a pressure inflation test. The most simple estimate of
compliance is the ratio of stroke volume to PP (248), but this
method does not account for arterial outflow in systole and
overestimates compliance (249).

Other methods implicitly or explicitly rely on an assumed
Windkessel model (Fig. 3B) (130). In the decay time method,
an exponential is fitted to the diastolic part of the aortic pres-
sure wave, with the time constant providing an estimate of
the product of total peripheral resistance and compliance,
also termed the decay time of the arterial system (250) (see
Eq. 83 and Fig. 5A). A variation of this method is the area
method (251), computing the decay time from the area under
the diastolic pressure waveform, rather than fitting an expo-
nential. Note that to obtain compliance using methods that
estimate the decay time, resistance must be calculated from
mean arterial pressure and flow (cardiac output). To eliminate
the sensitivity of the area and decay time method to wave
morphology (thatmay be far from exponential) or the selected
diastolic segment, the PPmethod was introduced (111, 252): an
iterative method estimating compliance through minimizing
the difference between the measured PP and the pulse pre-
dicted by a two-element Windkessel model. Themethod is ro-
bust with results highly correlating with the ratio of stroke
volume to PP (249). Virtually all other compliance estimation
methods make use of more complex Windkessel models con-
sisting of more elements (3-element or 4-element Windkessel
models) (110, 251, 253) and nonlinear terms, including pres-
sure-dependent (254) or frequency-dependent compliance
(255) (see Technical Supplemental Section 3.2.4).

With compliance depending on both arterial stiffness
(which is dependent on blood pressure) and arterial size, the
relation with age is not straightforward. It has been reported
to increase up to age 30, vary little inmiddle age, and decline
rapidly above age 50 (165). Longitudinal analysis of data
from round 1 of the Asklepios study in subjects aged 35–55 yr
confirmed a relatively constant compliance in males, but a
decrease in compliance in females (168), consistent with the
study by Waddell et al. (166). Longitudinal data from the
Asklepios population, with an effective age change of�10 yr,
showed an increase in compliance in the younger men (35–
40 yr at baseline) but not in females. Compliance remained
fairly constant at the higher age categories, suggesting that
the increase in stiffness (increase in PWV) is balanced by a
change in aortic dimensions in this age range (159).

3.2.5. Input impedance and characteristic impedance.
Although hydraulic resistance is calculated as the ratio of
mean pressure drop (difference between inlet and outlet of

the resistance) and mean flow, impedance can be defined as
the ratio of the pulsatile components of pressure and flow.
Rather than viscous friction, inertia of the blood and vessel
stiffness are the determinants of impedance (256). The ter-
minology is adopted from electrical engineering. Impedance
is typically calculated in the frequency domain, after Fourier
decomposition of pressure and flow into harmonics (see
Technical Supplemental Section 3.2.5). It is a complex
number, most often represented in a modulus (Fig. 5E)
and phase (Fig. 5F) notation, where the modulus repre-
sents the ratio of the amplitude of corresponding pressure
and flow harmonics, and the phase angle the phase delay
between both (see Eq. 135). When calculated from ascend-
ing aorta pressure and flow, it is termed input impedance
(often denoted as Zin) and constitutes a global systemic
description that characterizes the cumulative effect of
wave travel and reflection from the arterial tree and con-
stitutes the afterload of the heart (257, 258).

A special case arises for a system that is free of reflec-
tions. Zin is reduced to characteristic impedance (Zc),
which can be shown to approximate the ratio of the prod-
uct of blood density and local PWV to the vessel cross-sec-
tional area (Eq. 137). Therefore, Zc constitutes a local
arterial parameter. Since, for high frequencies, the arterial
system can be considered to be reflectionless because of
destructive interference of reflected waves (259), Zin at
high frequencies approaches Zc (Eq. 146). Hence, Zc can be
calculated by averaging the modulus of Zin between the
fourth and tenth harmonics (Fig. 5E) (260). Alternatively,
Zc can also be estimated in the time domain from the ratio
of changes in pressure and flow in early systole (Fig. 5D)
(261) (see Technical Supplemental Section 3.2.5).

Arterial impedance has been used less often to assess vas-
cular age. Aortic Zin has been shown to increase with aging
in healthy populations (167), suggesting that it may consti-
tute a relevant indicator of age-related CV risk. A study
involving over 2,000 healthy individuals aged 35 to 55 found
Zin to evolve from a pattern indicative of wave transmission
and reflection in the younger to a pattern more compatible
with a Windkessel-like system in the elder. In women, but
not in men, a decrease in total arterial compliance led to an
increased Zin in the low-frequency range. Little to no
changes with age were observed in Zc, possibly because of
compensatory effects of aortic dilatation and stiffening (168).
Albeit, arterial impedance can provide major mechanistic
insights into age-related changes in vascular function, other
parameters (e.g., PWV) are required for a more complete
interpretation and to disentangle the effects of changes in
stiffness from changes in arterial dimensions.

3.3. Empirical-Based Analysis Methods

This section reviews indices of vascular age that are based
on empirical analyses of PW morphology or on semiempiri-
cal analyses incorporating theoretical concepts described in
Section 2. These indices require the identification of fiducial
points on a PW (Section 3.3.1) from which indices of vascular
age can be calculated (Section 3.3.2). Figure 6 shows exam-
ples of how the shapes of 1) carotid blood pressure and 2) fin-
ger PPG PWs change with age, allowing the effects of aging
to be elucidated from the shapes of PWs.
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3.3.1. Fiducial points.
Several fiducial points can be identified on a PW signal, as
shown for the PPG PW in Fig. 7A. Accurate identification of
these fiducial points is crucial for reliable analysis of PW
shape. We now describe the methodology for identifying
fiducial points that are common to all PW types, followed by
themethodology for fiducial points that are specific to differ-
ent types of PWs.
3.3.1.1. Systolic and diastolic phases. PWs can be sep-

arated into systolic and diastolic phases, where the systolic
phase corresponds to the time during which blood is
ejected from the left ventricle into the aorta, and the dia-
stolic phase corresponds to the time during which no
blood is ejected. When PWs are measured at sites close to
the heart, the end of systole can be identified on blood
pressure waves as the time of the dicrotic notch (as
described later), and on flow velocity PWs as the time at
which the flow velocity reduces to (close to) zero. Under
normal physiological conditions, flow into the aorta is zero
during diastole (Fig. 5B), but more distally a positive dia-
stolic flowmay be present (Fig. 8).
3.3.1.2. Pulse onset. The pulse onset is the local mini-

mum at the start of each PW, often called the foot of the
wave, which indicates the beginning of systole (see red dots
in Fig. 4A). The simplest approach to identify the pulse onset
is as the point corresponding to the minimum value on a
PW. On pressure PWs this corresponds to the diastolic blood
pressure (DBP). Several more complex approaches have been
proposed to more accurately identify the pulse onset for use
in pulse transit time measurement (113). For example, the
intersecting tangents method fits a line to the upstroke and
another line to the preceding diastolic decay (or simply a
horizontal line to the diastolic minimum). The intersection
of the two tangents is then used to define the onset of the

wave. Other approaches include using the maximum in the
first or second derivative (202), or using a slope sum function
to accentuate the systolic upstroke and therefore more
clearly define the pulse onset (262). The choice of approach
can influence the accuracy of parameters derived from the
timing of the pulse onset, such as PWV (240, 263).
3.3.1.3. Systolic peak. The systolic peak is the highest

point on a PW, separating the systolic upstroke from the sys-
tolic downstroke. On pressure PWs this corresponds to sys-
tolic blood pressure (SBP) and on flow velocity PWs it
corresponds to systolic forward peak velocity (Fig. 8). PPG
PWs exhibit a similar systolic peak (Fig. 7, top), although the
timing of the systolic peak can vary greatly between mea-
surement sites (such as finger and wrist) (264).
3.3.1.4. Dicrotic notch. In pressure PWs, the closure of

the aortic valve causes a (relatively sharp) notch called an
incisura. This may be seen at the end of systole in central
pressure PWs, at approximately one-third of the heart pe-
riod, and around one-third down the descending part of the
wave (Fig. 5A and Fig. 6A; ages, 30–39 and 40–49 yr). The
notch may be followed by a secondary dicrotic wave because
when the aortic valve closes, the elastic recoil of the aorta
can cause a small increase in blood pressure (265). As the
wave travels away from the heart, the waveform changes
with the incisura becoming less sharp, which is then called a
dicrotic notch, and also sometimes followed by an increasing
secondary dicrotic wave (266) (Fig. 6A; ages, 30–39 and 40–
49 yr). With the change in the waveform, the time relation of
the dicrotic notch and the incisura as functional measures of
end ejectionmay become disturbed.

A range of algorithms has been proposed to identify the di-
crotic notch. The first approach is to analyze the original pres-
sure PW, or its first or second derivatives (267). A challenge
with this approach is to correctly identify dicrotic notches even
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Figure 6. Changes in in vivo pulse waves (PWs) with
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Sources: blood pressure data from the Asklepios data
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when they onlymanifest as an incisura rather than a notch. An
alternative approach is to estimate an arterial flow signal from
the pressure signal using a three-element Windkessel model,
and then identify the dicrotic notch as the minimum of the
first negative dip in the flow signal after the systolic peak (268).
Figure 6A illustrates some of the difficulties in detecting the di-
crotic notch. It is clearly visible on the downslopes of the pres-
sure PWs for 30- to 39- and 40- to 49-yr-old subjects (at�0.3 s).
However, it manifests as a less clear incisura in the 60- to 69-
yr-old PW. Similarly, dicrotic notches can be less clear at more
peripheral measurement sites. It has been suggested that the
presence or absence of a clearly defined dicrotic notch in a pe-
ripheral pressure PW may be indicative of CV health or aging
(269).

The PPG signal can exhibit a trough at a similar time to
the dicrotic notch on a pressure PW (e.g., the Class 1 wave in
Fig. 6B). Although thismay look similar to the dicrotic notch,

it is not yet clear how closely this corresponds to the end of
systole (270).
3.3.1.5. Fiducial points on pressure PWs. The shape of

the pressure PW is determined by the shapes of the forward
and reflected waves (Fig. 5A). The addition of reflected waves
to the forward wave may result in an inflection point during
systole or anacrotic notches (i.e., notches in the systolic
upstroke). An inflection point occurs where the slope of a
curve changes from becoming less steep to becoming steeper
again (formally: the curvature changes from “concave down-
ward” to “concave upward”). Inflection points are typically
identified from higher-order derivatives of the curve. When
the inflection point occurs before the systolic peak [an A-
type PW as shown in Fig. 5A, bottom (149)], the pressure at
the inflection point is termed P1, and the systolic pressure is
termed P2 (271). In this case, P1 can be defined as coincident
with the inflection point (identified using the 4th derivative)

Identifying fiducial pointsA B

0

1
sys

dia

dic

onset end

p1

p2

P
ul

se
 W

av
e

0

ms
1s

t d
er

iv

0 0.25 0.5 0.75 1
Time (s)

0

a

b

c

d

e

2n
d 

de
riv

0

1
sys

dia

dic

onset end

p1

p2

T�CT

h1

h2

RI = h1/h2

0

ms

ms

0 0.25 0.5 0.75 1
Time (s)

0

a

b

c

d

e

slope
b-d

Calculating vascular
age indices 

P
ul

se
 W

av
e

1s
t d

er
iv

2n
d 

de
riv

Figure 7. Extracting vascular age indices: vascular
age indices can be obtained from a single photople-
thysmogram (PPG) pulse wave (PW) in two steps. A:
identifying fiducial points on the PW [systolic (sys) and
diastolic (dia) peaks, dicrotic notch (dic), early and late
systolic peaks (p1 and p2)], its first derivative [slope of
the rising front (ms)], and its second derivative (a, c, e
peaks and b and d troughs). B: calculating features
from the amplitudes and timings of these points, such
as the time from pulse onset to sys (CT), the time from
sys to dia (DT), the reflection index (RI), the maximum
upslope (ms), and the slope between b and d troughs
(slopes b–d). Sources for A and B: Peter Charlton,
Photoplethysmogram (PPG) pulse wave fiducial points
(CC tBY 4.0; A) and Photoplethysmogram (PPG) pulse
wave indices (CC BY 4.0; B) https://commons.
wikimedia.org/wiki/File:Photoplethysmogram_(PPG)_
pulse_wave_indices.svg.
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(272), or alternatively defined as the “shoulder point” just
before the inflection point (identified using the 2nd deriva-
tive) (273). When the inflection point occurs after the systolic
peak [a C-type PW as shown in Fig. 5A, top (149)], the systolic
pressure becomes P1 and the pressure at the inflection point
becomes P2. In this case, P2 can be identified using the 2nd

derivative (273).
The wave shape changes when traveling from the heart to

the periphery and with it, the timing and height of the inflec-
tion points and anacrotic notches. The A-type wave com-
monly seen in the aorta transforms to a C-type in the more
distal vessels. A central A-type with a small augmentation
(i.e., difference between P1 and P2) is related to a low postsys-
tolic inflection point in the periphery, whereas a high A-type
augmentation corresponds to a high peripheral inflection
point (271). Since it thus seems that the same information
may be obtained from a peripherally and centrally measured
wave, it has been suggested that preprocessing by using a
transfer function to reconstruct the corresponding central
wave is not necessary (274). Extensive derivative-based analy-
sis techniques for peripherally measured waves have been
developed, see for instance Ref. 176.
3.3.1.6. Fiducial points on PPG PWs. The finger PPG

signal is typically characterized by multiple points (61). The
PW can exhibit a diastolic peak, indicated by “dia” in Fig. 7,
top. It has been hypothesized that this peak is caused by
wave reflections, which is why it is more prominent in
younger subjects (Fig. 6B) (275). The first derivative is domi-
nated by a point of maximum slope, indicated by “ms” in
Fig. 7, middle. The second derivative is typically described
using five fiducial points, named a, b, c, d, and e, whose
amplitudes vary with age (176) (Fig. 7, bottom). Algorithms
have been proposed to identify these fiducial points (276,
277). Much of the literature on these fiducial points is based
on the analysis of finger PPG PWs. Further research is
required to determine whether they can be accurately identi-
fied at other anatomical sites such as the wrist (264).
3.3.1.7. Fiducial points on flow PWs. In cases where

flow augmentation is present, such as in a common carotid
artery, the systolic phase of the flow velocity PW may con-
tain not a single systolic peak, but early and late systolic

peaks, which can also be called shoulders (Fig. 8A) (173). A
bidirectional flow velocity PW, which can be seen, e.g., in the
femoral artery (Fig. 8B) or the distal aorta, exhibits the
reverse peak velocity (174, 175). Since the volume flow rate is
assessed from the cross-sectional area of and blood flow ve-
locity at the artery of interest, the flow rate and flow velocity
waves exhibit similar morphology (assuming that the influ-
ence of arterial diameter is negligibly small).

3.3.2. Indices of vascular age.
Several indices of vascular age can be calculated from fidu-
cial points identified on pressure, flow, and PPG PWs. Table
6 shows the evolution of these indices with aging.
3.3.2.1. Pressure indices. Pulse pressure (PP), the differ-

ence between systolic and diastolic pressures, is an easily ac-
cessible measure of vascular age (278) which is associated
with unfavorable CV outcomes (279). The increase in PP with
aging has several consequences for CV health, including 1)
increased left ventricular afterload leading to left ventricular
remodeling, dysfunction, and failure (280, 281) and 2) micro-
vascular lesions in high-flow/low-resistance organs, such as
the brain and kidneys, by increased transmission of pulsatile
pressure and flow to themicrovasculature (282, 283).

Pulse pressure amplification (PPA) describes the increase
in PP along the arterial tree. It is primarily quantified as
the ratio of distal to proximal PP (284), although other defi-
nitions have been proposed (285, 286). Amplification
decreases with age (164, 169), increases with heart rate
(287), and is different for men and women (288). A lower
PPA is usually associated with increased CV risk (205, 289)
and vascular aging (290).

The difference in pressure between P1 and P2 is called aug-
mentation pressure (or DP in the original publication) (149).
DP indicates the rise in pressure because of reflected waves.
It is often expressed as the augmentation index, AIx = DP/PP.
When the inflection point occurs after the systolic peak (C-
type waves shown in Fig. 5A, top), P1 > P2, and therefore
DP < 0 and AIx < 0: this does not imply that the reflected
pressure wave is negative, but that it starts contributing at a
late point in time. DP and AIx were introduced as measures
of wave reflection (238), but the relation between the two is
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not straightforward (see also Refs. 105 and 108). In general,
DP and AIx increase with age (see the A-type waves in Fig. 6)
(168, 291). AIx has been proposed as a surrogate for PWV.
However, the association between AIx and PWV is limited
(292), or even nonexistent when using invasive measure-
ments (293). Although arterial stiffness continues to increase
with age, the rise in AIx levels off around the age of 60 yr
(164, 294). The increase with age of AIx is related to the
decrease in PP amplification (169). Despite the interpretation
of AIx not being straightforward, several significant associa-
tions have been established between AIx and CV disorders
(295–298).

Since ventricular ejection patterns influence the shape of
the forward wave (and thus, also of the reflected wave) (203),
heart function has an impact on the inflection points from
which DP and AIx are calculated (299). This at least in part
explains the obfuscated relation between AIx and timing of
the reflected wave (191). Recently, the notion that inflection
points are not purely markers of the vascular status, but also
of heart function, has been gaining momentum (300–303).
For instance, the need to correct the AIx for different heart
rates (304) points to the influence of heart function on inflec-
tion points.

Interestingly, the time at which the inflection point is
found on the A-type wave hardly changes with age (305).
This opposed the general view that reflections occur at one
or two distinct distal reflection sites, and that with age-
related increases in arterial stiffness and thus PWV, the
reflected wave would return earlier. The notion of a few
distinct reflection sites is probably an oversimplification; a
more comprehensive analysis of wave reflection using 1-D
models reconciles the findings of increasing AIx with lim-
ited changes in “reflection time” (306, 307). It is not yet
clear how the arrival time of reflected waves from pressure
PWs can be best determined (273, 308). Indeed, detailed
model-based analysis suggests that neither the inflection
point nor the shoulder point can be directly related to the
return of the reflected wave (309, 310).

The ankle-brachial index (ABI) is an easily accessible
and well-known indicator of the atherosclerosis compo-
nent of vascular aging. It is calculated as the ratio
between ankle and brachial systolic blood pressure (311).
A more novel index of atherosclerosis is the ambulatory
arterial stiffness index (AASI). It is assessed by a 24-h am-
bulatory blood pressure measurement and therefore
loses the disadvantages of a snapshot measurement.
AASI describes the linear relationship between systolic
and diastolic blood pressure (312), however, is not so
much a measure of arterial stiffness, but more a measure
of ventriculo-arterial coupling determined by heart rate
and vascular resistance (313, 314). The cardio-ankle vas-
cular index (CAVI) is an advanced index reflecting the
stiffness of the arterial tree. It uses PWV to deduce the
parameter b (315), which was developed as a pressure-in-
dependent measure of stiffness (316). However, the pres-
sure independence has been challenged and an improved
parameter has been provided (317).
3.3.2.2. Flow indices. The flow AIx is defined similarly

as pressure AIx and is calculated as the ratio between the
late and early systolic velocity wave heights (Fig. 8A); thus,
flow AIx is related to the amplitude and timing of wave

reflection (318). It has been shown that carotid flow AIx is
more closely associated with age, arterial stiffness parame-
ters (such as aortic PWV, compliance, and elastic/muscu-
lar PWV ratio), and microvascular damage in brain than
aortic pressure AIx (173). The aortic reverse-to-forward
flow ratio has been found to be independently associated
with aortic PWV and characteristic impedance, supporting
the hypotheses that aortic stiffness determines the extent
of flow reversal from the descending aorta to the aortic
arch (175). Furthermore, aortic arteriosclerosis (assessed as
reduced PPA, increased aortic PWV, and pressure augmen-
tation) affects femoral flow wave morphology by decreas-
ing femoral reverse-to-forward flow index and diastolic-to-
systolic forward flow ratio (Fig. 8B) (174).
3.3.2.3. PPG indices. Several indices of vascular age can

be derived from the PPG PW, as illustrated in Fig. 7B.
These are typically calculated from the time delay or dif-
ference in amplitudes between two fiducial points. For
instance, DT is the time delay between systolic and dia-
stolic peaks (top), and the aging index is calculated from
the amplitudes of points on the second derivative (bottom)
as (b � c � d � e)/a. The wide range of PPG-based indices is
reviewed in Ref. 182, and the most pertinent indices are
now discussed.

The aging index has been found to correlate with carotid-
femoral PWV and chronological age (176, 319), and to be asso-
ciated with the presence of atherosclerosis. The aging index
was designed to increase with chronological age, with corre-
lations of r = 0.80 and r = 0.42 with age reported in the origi-
nal and a subsequent publication, respectively (176, 177).
Multiple studies have found that the aging index may have
utility as a measure of atherosclerosis (320, 321).

The stiffness index is calculated as height/DT, providing a
value in m/s to mimic PWV measurements. It has been
found to correlate with carotid-femoral PWV (r = 0.65) (322),
to be a genetically causal risk factor for coronary artery dis-
ease (323), and to be higher in diabetic than healthy subjects
(324). The stiffness index is available in the UK Biobank
Database (325), enabling extensive research into its potential
utility.

The pulse rise time is the time from pulse onset to systolic
peak. It has been found to be increased in subjects with pe-
ripheral arterial disease compared with healthy subjects
(326), and to be increased in patients with hypertension and
arteriosclerosis (327). The pulse rise time could have utility
for identifying signs of peripheral arterial disease, particu-
larly whenmeasured at the toe.

4. RESEARCH DIRECTIONS

This section provides directions for future research to real-
ize the potential of modeling and analysis of PW signals for
vascular age assessment in the clinic and daily life.

4.1. New Generation of Cardiovascular Models

Current state-of-the-art 1-D/0-D models typically provide
PWs in steady-state, supine conditions over a period of sec-
onds. However, to unlock the full potential of reduced-order
modeling for vascular age studies, future 1-D/0-D model for-
mulations should describe the hemodynamic effects on
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arterial PWs of 1) respiration, e.g., by including intrathoracic
pressure as an extra variable affecting functional vessel stiff-
ness and ventricular preload; 2) physiological regulation by
using feedback loops that dynamically adapt relevant model
parameters and boundary conditions; and 3) gravity/fluid
shifts by adding source terms to the governing equations,
e.g., a gravity term to the conservation of linear momentum
equation. These improvements will generate beat-to-beat
variations under a wide range of dynamic, transient hemo-
dynamic conditions (e.g., horizontal rest, postural changes,
mental stress, exercise, sleep) over minutes and hours.
Longer-term dynamic aspects of PWs from birth to old age,
including sex-specific growth patterns, adiposity gain, and
CV disease progression should also be formulated and
coupled to the state-of-the-art 1-D/0-D governing equations.
As a result, arterial PWmodels could be used to simulate PW
signals with growth and aging for both sexes, over a time
span of years.

Arterial stiffness, which varies along the arterial net-
work and with aging, sex, and disease, has a considerable
influence on simulated pulse waveforms. It is, therefore,
a key physiological parameter in 1-D models. Future mod-
els should incorporate the latest knowledge on the
mechanobiological homeostasis of the arteries’ constitu-
ents (elastin, collagen, smooth muscle cells, proteogly-
cans) and their evolution from (pre-)birth to adulthood
and throughout adulthood. They should therefore go
beyond current approaches requiring detailed knowledge
of arterial stiffness across the network, impeding model
personalization. This new approach will also allow
accounting for the impact of metabolic disorders, inflam-
mation, or other factors (e.g., hormones, genetics), and
processes on the mechanobiology of blood vessels and
their material properties.

Current state-of-the-art 1-D/0-D models are deterministic.
In the future, nondeterministic models should be created to
account for biological variability and uncertainty in the
input parameters of the models (e.g., due to measurement
errors). Bayesian methods and Gaussian process regression
can be used to quantify how uncertainty translates into vari-
ability in model-generated PWs (328, 329) and their pre-
dicted evolution during growth and aging. Measurement
noise (81) and artifacts should also be considered to make
simulated signals more realistic.

4.2. Unleashing the Potential of In Silico Data

The data sets of in silico PWs described in Section 2.1.2
offer a novel and cost-effective approach for the develop-
ment and preclinical testing of PW analysis algorithms
across a wide range of CV conditions, in a relatively quick
and inexpensive manner. Current in silico PWs have
allowed us to 1) understand the physical mechanisms
underlying observations from real populations and 2) train
and test machine learning-based PW analysis algorithms;
e.g., for aneurysm (81, 120) and stenosis (120) detection, ar-
terial stiffness calculation (28, 105), and cardiac elastance
assessment (330).

So far, machine learning models trained using in silico
data have been tested using in silico data only. In the future,
combination of in silico training of algorithms with in vivo
testing in real populations could overcome the need to

acquire large data sets in vivo. This will require data sets of
in silico PWs created using a new generation of CV models
(see Section 4.1) that can replicate trajectories of CV growth,
remodeling, and aging in children, adolescents, and adults,
for both sexes and in a wide variety of physiological and
pathological conditions, including early vascular aging (4).

4.3. AI-Based Algorithms and Digital Twins

We envision PW analysis algorithms based on AI for vas-
cular age assessment from PW signals acquired under vary-
ing physiological conditions in daily life, from infants to
adults. AI-based algorithms could be constructed using in
silico data (see Section 4.2) to assess arterial stiffness from
basic clinical data (age, sex, body height/weight) and PW sig-
nals acquired by noninvasive wearable devices (e.g., the PPG
signal). We also envision digital twins of the CV system capa-
ble of predicting an individual’s CV aging trajectory. This
could lead to an early assessment of vascular age for patient
stratification. Data assimilation and AI techniques will allow
the new generation of CV models (see Section 4.1) to be used
as digital twins for personalized diagnosis, prognosis, and
therapy. Current state-of-the-art models require detailed an-
atomical and physiological data sets to estimate model pa-
rameters, yet currently rely on only a few anatomical data
sets of “representative” adult males. This unworkable and
biased approach should be abandoned. Instead, genera-
tion of digital twins will require data assimilation algo-
rithms and morphing/scaling methods to generate an
individual’s changing arterial network throughout life,
matching body size for males/females. Existing imaging
and deep phenotyping data [e.g., UK Biobank (325)] could
be used for this purpose. UK Biobank also contains PW
data together with epidemiological, demographic, and
genomics data, which enables investigation of the ge-
nome-wide associations of PW signals, their prognostic
value for incident CV disease (331), and their use in
Mendelian randomization studies (332).

4.4. Clinical Perspectives

Ultimately, AI-based algorithms and digital twins should
be tested using longitudinal studies in large populations, such
as UK Biobank (331), Framingham (333), or Asklepios (334).
These methods could be calibrated to the individual’s clinical
and measured data at study onset. Follow-up data could then
be used to assess how well the effective evolution of the sub-
ject’s CV system and the aging process of their arteries
matches model predictions and, hence, facilitates the early
identification of at-risk citizens. This should be compared
with current practice where CV disease screening mostly
requires direct contact with patients. Application of these dig-
ital solutions in children and adolescents offers the prospect
to detect adverse CV trajectories with accelerated stiffening of
arteries, elevated blood pressures, and concomitant cardiac
problems (ventricular hypertrophy, heart failure). Preventive
measures could then be targeted at high-risk individuals to
protect the CV system from prolonged insults and accumulat-
ing damage that manifest as an increased CV risk in later life.
A combination of population level- and high-risk-targeted
prevention would represent a cost-efficient solution with a
high societal impact.
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5. CONCLUSIONS

This review has shown thatmodeling and analysis of arterial
PWs play a key role in vascular age studies, in the clinic and in
daily life. The following main conclusions arise from our
review:

1) Blood pressure, blood flow velocity, blood flow rate, arte-
rial distension, and PPG PW signals contain a wealth of
information suitable for vascular age assessment and
identification of individuals at elevated CV risk.

2) PW signals can be measured by a variety of invasive and
noninvasive devices, including wearable technologies.
Their characteristics and morphologies, which differ
between different signal types, measurement sites, and
ages need to be considered whenmeasuring, preprocess-
ing, and analyzing PW signals.

3) Further research is needed to identify the most accurate
PW analysis method considering the characteristics and
morphology of the available input PW signal/s. Modeling
can facilitate this research by providing reference data
sets of in silico PWs to benchmark PW analysis methods
and thereby identify reliable methods that are ready for
implementation in real subjects.

4) Physics-based, reduced-order 1-D and 0-D models can
simulate PWs in large arteries, often in steady state, in
supine conditions, and over one cardiac cycle, with a rea-
sonable computational cost and with accuracies compa-
rable with those obtained by 3-D models. However, to
unlock the full potential of reduced-order modeling for
vascular age studies, models should simulate PW signals
under a wide range of dynamic hemodynamic condi-
tions, accounting for uncertainty in the input parameters,
biological variability, and long-term mechanobiological
processes related to growth, aging, sex, and disease, from
birth to old age.

5) We envision AI-based algorithms and digital twins capa-
ble of predicting an individual’s CV aging trajectory
through model-based, automated interpretation of PW
signals, from frequent recordings by noninvasive, wear-
able technologies, throughout life. The development of
these tools will require a combination of in silico and in
vivo PW data, to overcome the need to acquire large data
sets in vivo.
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